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Bacterial sensitivity 
to chlorhexidine 
and povidone‑iodine antiseptics 
over time: a systematic 
review and meta‑analysis 
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Surgical site infection (SSI) is the most common complication of surgery, increasing healthcare 
costs and hospital stay. Chlorhexidine (CHX) and povidone‑iodine (PVI) are used for skin antisepsis, 
minimising SSIs. There is concern that  resistance to topical biocides may be emergeing, although the 
potential clinical implications remain unclear. The objective of this systematic review was to determine 
whether the minimum bactericidal concentration (MBC) of topical preparations of CHX or PVI have 
changed over time, in microbes relevant to SSI. We included studies reporting the MBC of laboratory 
and clinical isolates of common microbes to CHX and PVI. We excluded studies using non‑human 
samples and antimicrobial solvents or mixtures with other active substances. MBC was pooled in 
random effects meta‑analyses and the change in MBC over time was explored using meta‑regression. 
Seventy‑nine studies were included, analysing 6218 microbes over 45 years. Most studies investigated 
CHX (93%), with insufficient data for meta‑analysis of PVI. There was no change in the MBC of CHX 
to Staphylococci or Streptococci over time. Overall, we find no evidence of reduced susceptibility of 
common SSI‑causing microbes to CHX over time. This provides reassurance and confidence in the 
worldwide guidance that CHX should remain the first‑choice agent for surgical skin antisepsis.

Surgical site infection (SSI) is the most common and costly complication of  surgery1,2, occurring in approximately 
5% of all surgical  interventions3. They represent an important economic burden across all surgical  specialties4, 
increasing hospital inpatient stay time and adversely affecting patient’s mental and physical  health4. The use of 
skin antisepsis prior to surgery significantly reduces the risk of SSI and consequently, post-operative morbidity 
and  mortality5–7.

Staphylococcus aureus and Streptococci spp. are commonly implicated microbes in SSI, along with Enterococ-
cus spp. and Escherichia coli8. To reduce the risk of SSI, the World Health Organization (WHO)7, United States 
of America Centres for Disease Control (CDC)9 and United Kingdom National Institute for Health and Care 
Excellence (NICE)10 recommend the application of topical chlorhexidine (CHX) in alcohol to the planned 
operative site, for skin antisepsis. CHX in an alcoholic solvent has been shown to halve the risk of SSI following 
 clean11,  contaminated12,13 and dirty surgery when compared to other antiseptics such as povidone-iodine (PVI).

CHX is a biguanide compound, utilised both as a broad spectrum antimicrobial and topical  antiseptic14. By 
binding to the cell membrane and cell wall of bacteria, at lower concentrations it has a bacteriostatic effect by 
displacing the cations and destabilising the cell wall. At higher concentrations there is a complete loss of cellular 
structural integrity, having a bactericidal  effect15. PVI is an iodophor; a chemical complex between a water soluble 
povidone polymer and  iodine16. When dissolved in water, iodine is released, penetrating microorganisms and 
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oxidising proteins, nucleotides and fatty  acids17 causing cell death. Both PVI and CHX are active against gram 
positive and negative bacteria, fungi and  viruses16,18.

There are growing fears that as antiseptic use increases, sensitivity may reduce and resistance  emerge19. This is 
particularly concerning given the accelerating global antibiotic resistance  crisis20. Multiple bacteria have shown 
reduced sensitivity (perhaps even resistance) to CHX, particularly through the multidrug resistance efflux pro-
tein  qacA19. Methicillin resistant Staphylococcus aureus (MRSA) samples with qacA/B genes showed persistent 
MRSA carriage despite de-colonisation  therapy21. Not only is the presence of reduced sensitivity concerning, 
but the presence of resistance conferring genes seems to be increasing  annually22. PVI resistance has been less 
commonly  reported23 although this might be secondary to the multimodal effect of iodine on  microbes23 or 
otherwise. Overall, the current state of microbial sensitivity to CHX and PVI remains unclear.

The aim of this review is to summarise the sensitivity profiles of skin microbes (relevant to surgical site infec-
tion) to CHX and PVI, and explore how these have changed over time.

Methods
This review was designed and conducted in accordance with the Cochrane Handbook of Systematic  Reviews24, 
the protocol was published in the PROSPERO databased (CRD42021241089) and the report has been authored 
in accordance with the PRISMA  checklist25.

Types of studies. We included all studies which reported the resistance of microbes to CHX or PVI based 
topical biocides derived from human samples. There were no language restrictions. We excluded case reports 
and studies which used antimicrobial solvents (e.g., alcohol) or mixtures of antiseptics (e.g. chlorhexidine mixed 
with cetrimide).

Search strategy. The NICE Healthcare Databases (hdas.nice.org.uk) was searched according to Appen-
dix 1 (Supplementary Materials). The medRxiv and bioRxiv preprint archives were searched with the same strat-
egy using the R package  medrxivr26. This yielded 582 hits in PubMed, 720 in Embase, 993 in Web of Science and 
896 in CINAHL. After de-duplication, there were 2318 unique citations which were screened (Fig. 1). A further 
3 articles were found by manual searching of these articles.

Figure 1.  PRISMA flowchart—the following studies were excluded from the systematic review: (1) no MBC 
calculated, (2) use of biocide and alcohol mixtures, (3) use of non-human bacteria, (4) use of dental preparations 
of biocides, (5) no data on the strength of biocide used.
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Study selection. Two review authors (RA and VHD) independently screened titles and abstracts for rel-
evance, in accordance with the eligibility criteria. The full texts of potentially eligible articles were obtained and 
again independently assessed by the same authors. Disagreements were resolved by discussion with RGW and 
CJ.

Data extraction. Two review authors (RA and VHD) independently double extracted data. The colony was 
the unit of analysis. Where data was missing or unclear, the corresponding author was contacted by email and if 
no reply was received, these values were estimated from the available  data27.

Outcomes. The outcome of interest was the minimum bactericidal concentration (MBC). MBC was chosen 
over the minimum inhibitory concentration (MIC) as a measure of susceptibility because it is generally felt to be 
a more appropriate for topical  antiseptics15,28. We were interested in deriving a pooled estimate of the MBC for 
different species to understand how this may have changed over time.

Methodological quality assessment. The risk of bias was not assessed because there are no validated 
tools available for studies of this nature and the study selection process ensured that only the highest quality 
research was included.

Missing data. After back-calculating some parameters, the overall rate of missing data (in the predictor 
variables) was 14.5%. Importantly, the variance of the mean MBC was missing at random in 36 observations 
(61%) and because this was required for the primary analyses, we imputed this data using chained  equations29,30.

Statistical analysis. The raw data are available open-source at https:// osf. io/ khnb2. Using  metafor31,32, 5 
 studies33–37 reporting the MBC of CHX for Staphylococci were identified as outliers (based on externally stand-
ardised residuals) or influential studies (based on the Cook’s distance and leave-one-out values of the test sta-
tistics for heterogeneity), and their 95% confidence intervals (CIs) were far outside the 95% CI of the pooled 
estimate, so they were excluded from the meta-analyses. Data were then analysed in Stata/MP v16 (StataCop 
LLC, Texas) using the meta suite. To synthesise a pooled MBC, we used a mixed-effects meta-analyses. We 
sub-grouped by the microbial family. To estimate change in MBC over time, we performed meta-regression for 
Staphylococci and Streptococci, separately. A sensitivity multivariable meta-regression for Staphylococci was per-
formed, controlling for methicillin-resistance as a binary co-variate. The REML estimator was used throughout. 
To align with calls for the abolition of p-values, we minimise their use and avoid the term “statistical signifi-
cance”38,39, instead focusing on how our findings may be clinically applicable and what might explain uncertainty 
in the estimates.

Results
Ultimately, 79  studies33–37,40–113 were included (Fig. 1).

Study characteristics. The details of the included studies are summarised in Table  S1; read-
ers who wish to know more detail should refer to the raw data (https:// osf. io/ khnb2/). The included 
studies originated from 24 countries. Articles were published between 1976 and 2021, although the 
majority (95%) were published this century. The antiseptics used included five different CHX salts 
 (digluconate33,35,37,40,47,50,55–58,61,63,67,69,74,75,81,83,88,90,94,97,99,101,106,107,111,113,  gluconate34,36,42,42,53,91,102,103,108,108,109,112, 
 dichlorohydrate85–87,  diacetate71,99 and  dihydrochloride96) and povidone-iodine37,46,49,70,76,91. In total, MBC data 
from 6218 microbes were extracted. The microbes tested are shown in Table S2. Most samples were laboratory 
isolates (61%) and not multi-drug resistant (88%). The reporting standards used to establish the MBC were 
the according to the Clinical Laboratory Standards Institute (CLSI, 67%), European Committee on Antimicro-
bial Testing (EUCAST, 6%), German Institute for Standardisation (DIN, 5%), British Society for Antimicrobial 
Chemotherapy (BSAC, 3%) or International Organisation for Standardisation (ISO, 1%).

Evidence synthesis. The MBC of CHX differed significantly between the families of microbes (Fig. 2). 
Enterobacteriales had the highest MBC for CHX (20 mg/L [95% CI 14, 26];  I2 96%) whilst MRSA had the lowest 
(2 mg/L [95% CI 1, 2];  I2 94%).

Overall, 23 studies reported the mean MBC for Staphylococci; observations based on MSSA were more 
 common41,44,51,59,61,67,68,74,88,93–95,102,106,107,110–113 than  MRSA34,35,37,50,67,68,80,90,93,106,110,113. The pooled mean MBC of 
CHX for Staphylococci was 6 mg/L (95% CI 3, 9;  I2 99%). Meta-regression showed no change in the MBC of CHX 
for Staphylococci over time (β 0.12 [− 1.13, 1.37];  I2 99%; Fig. 3). When controlling for resistance to methicillin 
(MRSA vs MSSA), there was still no evidence of a change in the MBC over time (β 0.26 [− 0.87, 1.34];  I2 99%). 
Study level estimates for MSSA, MRSA and coagulase-negative Staphylococci are shown in  Fig. S1.

Overall, 25 studies reported the MBC of CHX for Streptococci species; observations of viridans Streptococci 
were most  common44,45,47,48,52–54,58,66,69,75,77–79,81,82,84–86,89,99,100,103,105,106 and 1  study106 provided an estimate for Strep-
tococcus pyogenes (Lancefield group A). The pooled mean MBC of CHX for Streptococci was 9 mg/L (95% CI 5, 
12;  I2 99%). Meta-regression showed that the MBC of CHX for Streptococci had not changed over time (β 0.13 
[− 0.35, 0.62];  I2 97%; Fig. 4).

There were insufficient data for meta-analysis of the MBC of PVI. Also, the majority of MBC data for PVI 
was derived from studies of Enterobacteriales, which is not a common cause of surgical site infection and so 
equally, not clinically relevant.

https://osf.io/khnb2
https://osf.io/khnb2/
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Discussion
This review summarises the evidence to-date and suggests that there has been no increase in MBC of CHX for the 
main SSI-causing skin microbes in recent decades. The stability of CHX susceptibility is reassuring for clinicians 
and policy makers alike, as it endorses current surgical guidance worldwide, which advocates topical alcoholic 
chlorhexidine for skin asepsis prior to surgery.

The definition of bacterial susceptibility and resistance to biocides is still a matter of debate. Most clinically 
relevant bacteria have defined susceptibility and resistance to systemic antibacterials based upon the MIC relative 
to an epidemiologically derived clinical breakpoint. However, the use of MICs is less useful in determining the 
efficacy of topical antiseptics biocides given the desire to induce death of specific microbes rather than inhibition. 
Understanding the lethality of a biocide (hence MBC) is therefore a potentially more attractive measure than MIC 
for topical  antiseptics114. Additionally, the relevance of both MICs and MBCs with respect to biocides has been 
 questioned15. Chlorhexidine for skin prep is used in concentrations of 5000 to 50,000 µg/mL and with MBC val-
ues ranging from 0 to 30 µg/mL, this is one thousand times greater than the apparent required  concentration115.

MIC and MBC rely on attaining a steady concentration in bodily fluids as seen by the pharmacodynamics of 
 antibiotics116. The EUCAST definition of a susceptible organism is “a microorganism is defined as susceptible by 

Figure 2.  Forest plot of the mean MBC for different species and families of bacteria.
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a level of antimicrobial activity associated with a high likelihood of therapeutic success”117. Therapeutic success in 
the context of topical CHX prior to surgery is disinfection; complete elimination of all relevant micro-organisms, 
except certain bacterial  spores118. In the literature, there are no established clinical breakpoints for defining 
resistance and susceptibility of skin flora to CHX. With the available data, we look at if there is a drift in MBC 
over time as the next best surrogate for the development of resistance in skin flora known to cause SSI. Measure-
ment of MIC and MBC are gained from in vitro susceptibility testing of microorganisms to topical biocides and 
therefore, provide little information as to the mechanism of resistance or likely clinical outcome. Therefore, our 
recommendation is the utilisation of epidemiological cut-off values (ECOFF) based on MBC distributions to 
better understand the response of bacteria to CHX in clinical practice. An analysis of ECOFF values of CHX to 
common bacterium, including those commonly causing SSI did not reveal a bimodal distribution, concluding 
that resistance is uncommon to CHX in natural populations of clinically relevant  organisms88. While values 
above a certain cut off may be defined as a breakpoint and hence resistant, this needs to be correlated with the 
clinical picture. Does CHX still achieve adequate disinfection in a population of bacterium with a MBC value 
greater than the 95% ECOFF? Without this information, our understanding of how MBC values beyond the 
normal distribution impacts clinical use remains poor.

Of note, all the studies measuring MBC, the method of analysis looks at the action of a biocide over a very long 
period (hours). This does not represent real time clinical application of CHX, whereby topical application occurs 
over minutes although equally, chlorhexidine is known to penetrate the stratum corneum and exert bactericidal 
activity for hours (and potentially days) after  application73. Therefore, we propose alternative methods of testing 

Figure 3.  A scatterplot of study-level estimates of mean MBC over time, for Staphylococci. The size of the points 
corresponds to the precision (inverse variance) of the study, whereby larger bubbles are more precise (bigger and 
so, more accurate) studies.

Figure 4.  A scatterplot of study-level estimates of mean MBC over time, for Streptococci. The size of the points 
corresponds to the precision (inverse variance) of the study, whereby larger bubbles are more precise (bigger and 
so, more accurate) studies.
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biocides utilising a model of topical application over minutes using clinically relevant concentrations (such as 
those conducted by Touzel et al.107 might be more meaningful. Furthermore, to represent clinical use, experi-
ments must also be conducted looking at biofilm models of skin flora and the impact of CHX use on biofilms.

The majority of experiments utilising CHX and skin flora carried out in-vitro measurements using pure 
monospecies planktonic forms of bacteria, which does not represent the clinical environment of skin flora. Addi-
tionally, if a rise in MBC is seen, this does not prove that chlorhexidine contributes to an increase in antiseptic 
tolerance. We propose that future in vivo studies apply CHX topically and explore how antiseptic and antibiotic 
tolerance or resistance develops thereafter. Until these methods are mature, cost-effective and widely available, 
the MBC is the best surrogate for emergent resistance.

Limitations
Most of the included studies reported MIC rather than MBC, which meant that much data could not be synthe-
sised. This might explain why our meta-data (for Staphylococci and Streptococci at least) disagrees with individual 
 articles18,19,21,22. Papers also often failed to report the type and concentration of chlorhexidine used. Some papers 
clearly stated the year that the microbial strain was isolated, although this was often unclear and therefore the 
date of the paper was taken as the year of the isolate which may not adequately represent the change in MBC 
over time. This was also the case with location, so where possible the location of the laboratory or hospital was 
used as a surrogate. Isolates from a clinical setting are exposed to different selection pressures; as 61% of the 
microbes used were laboratory isolates as opposed to clinical isolates, it is unclear how our data can be gener-
alised to clinical environments.

Conclusion
There has been no demonstrable change in the susceptibility of surgical site infection causing pathogens to 
chlorhexidine over time. A clear definition of reduced susceptibility and resistance of pathogens to biocides is 
needed, alongside consensus on the methods for measuring these phenomena.

Data availability
The raw data are available via the Open Science Framework (https:// osf. io/ khnb2/). The statistical syntax are 
available from the senior author (RGW) upon request.
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