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Seismic inversion with  L2,0‑norm 
joint‑sparse constraint 
on multi‑trace impedance model
Ronghuo Dai 1* & Jun Yang 2,3

Impedance inversion of post‑stack seismic data is a key technology in reservoir prediction and 
characterization. Compared to the common used single‑trace impedance inversion, multi‑
trace impedance simultaneous inversion has many advantages. For example, it can take lateral 
regularization constraint to improve the lateral stability and resolution. We propose to use the 
 L2,0‑norm of multi‑trace impedance model as a regularization constraint in multi‑trace impedance 
inversion in this paper.  L2,0‑norm is a joint‑sparse measure, which can not only measure the 
conventional vertical sparsity with  L0‑norm in vertical direction, but also measure the lateral 
continuity with  L2‑norm in lateral direction. Then, we use a split Bregman iteration strategy to solve 
the  L2,0‑norm joint‑sparse constrained objective function. Next, we use a 2D numerical model and 
a real seismic data section to test the efficacy of the proposed method. The results show that the 
inverted impedance from the  L2,0‑norm constraint inversion has higher lateral stability and resolution 
compared to the inverted impedance from the conventional sparse constraint impedance inversion.

In exploration geophysics, seismic inversion can infer out the elastic parameters or petrophysical properties of 
the underground formation from seismic data, especially seismic reflection  data1,2.

The seismic inversion problem began to be dealt with deterministic methods, which are optimization proce-
dures seeking the minimization of an objective function, normally the mismatch between the synthetic seismic 
that is obtained by perturbing an initial guess and the observed seismic reflection  data3. In recent decades, seismic 
inversion has been successfully extended to a statistical framework for assessing the uncertainty of the inferred 
3D subsurface elastic  models3. Among statistical inversion, there are two different stochastic approaches. The 
first group of stochastic seismic inversion execute in a geostatistical iterative procedures, in which the model 
parameter is globally perturbed by stochastic sequential simulation  algorithms4–8. The second group of stochastic 
seismic inversion is called Bayesian inversion methods, which is based on the solution of inverse problem using 
the Bayesian  framework3,9.

From the type of reflection seismic data, seismic inversion contains the post-stack  inversion10 and pre-stack 
 inversion11. Impedance inversion of post-stack seismic data is one of the common used seismic inversion methods 
in oil and gas industry and is a key technology in reservoir prediction and characterization. The inverted imped-
ance model has been wildly used in oil and gas reservoir prediction, reserve evaluation of oil and gas reservoirs, 
design of drilling location and trajectory, and so forth.

However, most geophysical inverse problems are ill-posed and the solution is extreme unstable. The best 
way to solve ill-posed inverse problem are performing regularization  constraints12. As a regularization option, 
the sparsity constraint of the inversion results has become more and more popular in the field of geophysics, 
especially among seismic inversion workers. It can not only achieve the goal of stable inversion solution, but also 
better describe the sparse characteristics of seismic data to improve the resolution of inversion results.

There are two forms to perform sparse regularization in the existing references. The one is synthesis prior 
 form13,14. In geophysical inverse problems, it directly performs the sparsity constraint on the model parameters 
to be inverted. For example, the sparse spike inversion of post-stack seismic data directly uses the sparsity con-
straint on the reflectivity  series15. Another option of sparse regularization is analysis prior  form14. The analysis 
prior formulation assumes that the signal is not sparse but has a sparse representation in another basis (or 
transform). Unlike the synthesis prior formulation, it recovers the signal itself rather than the transform coef-
ficients. For example, the total variation regularization in image processing is the L1-norm sparse constraint on 
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the magnitudes of image’s  gradient16. The total variation regularization has also been widely applied in geophysi-
cal inverse  problems17–20. The minimum gradient support regularization in geophysical inversion is in fact the 
modified Cauchy prior sparse constraint on the magnitude of the model parameters’  gradient12.

In this paper, we deal with impedance inversion at the framework of deterministic inversion, which belongs 
to the category of the analysis prior formulation when the sparse regularization constraint has been used. The 
impedance inversion with sparse regularization constraint has been widely used in reservoir prediction and 
characterization and has achieved very successful practical effects. However, the sparse regularization in common 
used impedance inversion methods just constrains in time or depth direction (i.e. in vertical direction). In addi-
tion, it performs inversion through single trace by single trace. It cannot allow lateral  regularization18,21. Hence, 
the lateral resolution and continuity is very coarse. To perform lateral regularization, we deal with seismic inver-
sion in the multi-trace case and adopt  L2,0-norm of multi-trace impedance model as an regularization constraint.

L2,0-norm is a joint-sparse measure or row-sparse14, which can not only measure the conventional sparsity 
with  L0-norm in vertical direction, but also measure the lateral continuity with  L2-norm in lateral direction. The 
joint-sparse or row-sparse has promoted the sparse signal representation and compressed sensing  recovery22,23 
and has been applied in many science fields, such as target  detection24, color image  restoration25, hyperspectral 
image  processing26, art  restoration27, feature  extraction28, and applied  geophysics29. Then, we use a split Bregman 
algorithm to solve the  L2,0-norm joint-sparse constrained objective function. Next, we use a 2D numerical model 
and a real seismic data section to test the efficacy of the proposed inversion method. The results show that the 
inverted impedance from the  L2,0-norm constraint inversion has higher lateral stability and resolution compared 
to the inverted impedance from the conventional sparse constraint impedance inversion.

Methodology
Joint‑sparse. In the theory of sparse signal representation and compressed sensing recovery, the joint-
sparse representation is proposed based on the similarity of multiple signals. It aims to reconstruct multiple 
unknown signals from a small number of observations that share a common observation operator and the same 
or similar support sets. In other words, when multiple signals have a joint sparse structure, their non-zero ele-
ments occupy the same or similar positions. If the multiple singles can be sparsely represented in some basis or 
dictionaries or through some sparse transforms, their sparse representation coefficients also share the same or 
similar support sets. If the multiple sparse representation coefficients are arranged in a matrix in columns, the 
matrix will become row-sparse14. Considered the observed data contains some noise, the problem of multiple 
signals’ joint-sparse recovery can be formulated as,

where S is the observation operator, X is the matrix of multiple signals, A is the observed data matrix of multiple 
signals, T is the sparse transform operator, ||.||F is the Frobenius norm of a matrix, δ is the level of observa-
tion errors. Here, ||.||2,0 is the  L2,0-norm of a matrix; it is defined as the number of  L2-norms of the rows. The 
“number of rows” acts as an outer  L0-norm; it enforces minimizing the number of selected rows, thus enforcing 
row-sparsity. From the theory of sparse signal representation, all of the other sparse regularization options are 
different relaxations of  L0-norm13. Hence, we choose  L0-norm to measure the sparsity of rows. Of course, Eq. (1) 
belongs to the category of the analysis prior formulation.

Impedance inversion with  L2,0‑norm joint‑sparse constraint. Forward equation. The convolution 
model of seismic data is a simplification of the seismic acoustic field. The post-stack single-trace seismic data is 
considered to be the result of the convolution between the reflectivity series and a band-limited seismic source 
wavelet. For calculation, the convolution can be discretized  as30 ,

where d is the vector of observed single seismic data trace, W is the wavelet convolution operator matrix, and r 
is the discrete reflectivities vector.

In seismic impedance inversion, the model parameters to be inverted are impedance. When the reflectivity 
is small, the relation between impedance and reflectivity series can be approximated  as31,

where D is the first-order difference operator, m(i) is the ith element of vector m, and is defined as the logarith-
mic impedance.

Combine Eq. (2) with Eq. (3), we can obtain the forward equation for single trace seismic impedance inver-
sion, i.e.,

where G = WD is the forward operator matrix.
In the case of multi-trace seismic impedance inversion, we simultaneously consider multiple seismic traces 

for inversion. Assume that there are L traces, i.e.,

(1)min ||TX||2,0, s.t.||A− SX||2F ≤ δ

(2)d=Wr

(3)r=Dm

(4)d = WDm = Gm

(5)B = [d1,d2,...,dj ,...,dL]

(6)Y = [m1,m2,...,mj ,...,mL]
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where dj is the jth seismic data trace, mj is the jth logarithmic impedance trace. Hence, B is the seismic data 
matrix including L seismic traces arranged in columns, Y is the logarithmic impedance matrix including L 
logarithmic impedance traces arranged in columns.

Hence, the forward equation for multi-trace impedance inversion is,

Objective function. In sparse constraint seismic inversion, we think the reflectivity series of underground for-
mations are sparse. Hence, under the least square criterion to deal with the effects of random noise and the 
constraint of L0-norm spare regularization for reflectivity series, the objective function for sparse constraint 
multi-trace seismic impedance inversion is given by,

where α is the regularization parameter for sparse constraint. Here, ||.||0 is the  L0-norm of a vector obtained from 
arranging all the elements of matrix DY starting with the first column.

Although the above objective function is constructed under the framework of multi-trace inversion, there is 
still no any lateral regularization constraint. It is because the conventional sparse regularization constraint only 
considers the vertical sparsity, and does not consider the lateral variation feature and continuity of multi-trace 
impedance model. Although the underground strata are not uniform in lateral direction, the lateral changes 
are relatively stable in sedimentary strata, i.e., the strata have local lateral continuity. The reflectivity series and 
impedance from near traces are local similar. Hence, we can think the multi-trace reflectivity series have local 
similar support sets. In other words, we can think the multi-trace impedance model can be local joint-sparsely 
represented through the first-order difference transforms, i.e. the matrix DY has joint-sparsity. Hence, we use 
 L2,0-norm as an joint-sparse regularization constraint to replace  L0-norm in Eq. (8) and construct the following 
the objective function for multi-trace seismic impedance inversion,

From joint-sparse, one can know that the L2,0-norm can not only measure the sparsity in the vertical direc-
tion, but also consider the lateral similarity and continuity of multi-trace impedance model to increase the lateral 
resolution and continuity.

Usually, the inversion can improve the overall stability through compensating the lacked low-frequency 
components in original seismic  data20. To compensate the low frequency components which coincide with true 
geological background, a priori model can be  used17. Adding the a priori model constraint into the objective 
function (9), it can be updated as,

where α is the regularization parameter for a priori model constraint, Yprior is the a priori multi-trace logarithmic 
impedance model.

Split Bregman algorithm to solve the objective function. The solution of objective function (10) is a multiple 
regularization constraints problem. In this paper, we use split Bregman iteration  strategy14,32,33 to solve it.

The basic idea of split Bregman is introducing an auxiliary matrix A and modifying the objective function 
(10) to,

where β is an automatically adapting auxiliary parameter to control the similarity between the auxiliary matrix 
A and DY.

The objective function (11) does not impose strict equality constraints. The main idea behind split Bregman 
is to relax the equality in the initial iterations but enforce it toward the end (while the solution converges)14,32. 
In order to do so, the value of β is varied; usually, it is kept low initially, but as the solution converges, its value 
is progressively increased.

Then, Eq. (11) is solved iteratively by alternatively minimizing A and Y with two sub-problems. In each sub-
problem, one variable is fixed with values obtained from the previous iteration.

Sub-problem 1: take the auxiliary matrix A fixed and estimate the model parameters Y. Hence, sub-problem 1 
has the following sub-objective function,

It is a linear inversion problem constrained by strict quadratic regularization. Hence, the exact solution of 
Eq. (12) is,

where I is the identity matrix.

(7)B = GY

(8)min f (Y) = ||B− GY||2F + α||DY||0

(9)min f (Y) = ||B− GY||2F + α||DY||2,0

(10)min f (Y) = ||B− GY||2F + α||DY||2,0 + ρ||Y − Yprior||
2
F

(11)min f (Y,A) = ||B− GY||2F + ρ||Y − Yprior||
2
F + α||A||2,0 + β||A−DY||2F

(12)min f (Y) = ||B− GY||2F + ρ||Y − Yprior||
2
2 + β||A−DY||2F

(13)Y = (GT
G+ βDT

D+ ρI)−1(GT
B+ βDT

A+ ρYprior)
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One can see that Eq. (13) contains the inverse of a square symmetric matrix. In seismic inversion problem, 
these matrices are usually very big. Hence, we usually use some iterative algorithm to solve it, such as conjugate 
gradient algorithm.

Sub-problem 2: take the model parameters Y fixed and update the auxiliary matrix A. Hence, sub-problem 1 
has the following sub-objective function,

It is a linear inversion problem constrained by  L2,0-norm regularization. We can use the row hard-thresholding 
algorithm to solve  it34. Hence, the solution is,

where ai is the ith row of the auxiliary matrix A, xi is the ith row of DY, 0 is a vector with all of elements equal 
to zero.

From the above, the specific steps of split-Bregman iteration algorithm to solve the objective function (10) are:
Input: multi-trace seismic data matrix B, wavelet convolution matrix W, difference operator matrix D, a priori 

impedance model Ipprior, regularization parameters α and ρ, initial auxiliary parameter β0.
Initialization: calculate the a priori logarithmic impedance Yprior from Ipprior, set A0 = O, where O is a matrix 

with all of elements equal to zero, set l = 1.
Step 1: With A = Al-1 and β = βl-1, solve the sub-problem 1 to compute Yl.
Step 2: With Y = Yl, solve the sub-problem 2 to compute Al.
Step 3: If the following criterion for split-Bergman iteration is satisfied, stop the iteration,

where ε is a tolerance value for split-Bergman iteration. If not, set,

where τ is an automatically increasing rate for β. As usual, its value is bigger than 1 and needs to be carefully 
selected.

Step 4: Set l = l + 1, and go back to step 1 for the iteration.
Having solved objective function (10), multiplied by two, a simple exponential transformation can give the 

final inverted impedance  model18.

Numerical tests and real data applications
Numerical tests. First, we adopt a 2D synthetic seismic data section to test the feasibility of the proposed 
multi-trace impedance inversion with  L2,0-norm regularization constraint  (L2,0-MI). This synthetic seismic data 
section has been added into 15% Gaussian random noise with zero-mean. The noise-tainted synthetic seismic 
data section is shown in Fig. 1a. The corresponding true 2D impedance model section is shown in Fig. 1b. From 
the true impedance model, we can see that it contains thick layers, thin-bedded layers, and some lenticular-
bodies. The stratigraphic changes in local areas are relatively continuous and stable.

The true 2D impedance model is smoothed through a low-pass filter (the threshold value is 15 Hz) to obtain 
a low-frequency trend model to serve as the a priori impedance model. Then,  L2,0-MI is performed on the noise-
tainted synthetic seismic data. The inverted impedance model by  L2,0-MI is shown in Fig. 2a. From the compari-
son between the Figs. 1b and 2a, we can see that the inverted impedance model by  L2,0-MI faithfully matches the 
true impedance model. The difference is very small. The inverted impedance model possesses a “blocky” structure 
and the vertical boundaries of different strata are very clear. It is due to the sparse regularization constraint effect 
in  L2,0-norm. In addition, the lateral resolution and continuity is very well. The edges of lenticular-bodies are 
very clear. The lateral distribution characteristics of both layers are also very clear.

To show superiority of  L2,0-MI in lateral resolution and stability, the conventional sparse regularization con-
straint impedance inversion (CSI) is performed on the noise-tainted synthetic seismic data with the same low-
frequency trend model as  L2,0-MI to serve as the a priori impedance model. To fairly compare with  L2,0-MI, a ω-x 
prediction filter has been included in the process of CSI to improve spatial  continuity35. The inverted impedance 
model by CSI is shown in Fig. 2b. From the comparison between the Figs 1b and 2b, we can see that the inverted 
impedance model by CSI can also match the true impedance model. The inverted impedance model also pos-
sesses a “blocky” structure and the vertical boundaries of different strata are also very clear. It is due to the sparse 
regularization constraint effect. However, the lateral distribution characteristics in inverted impedance by CSI are 
less clear compared to inverted impedance by  L2,0-MI. For example, the edges of lenticular-bodies are indistinct 
in Fig. 2b. It is because CSI only constrains inversion in the vertical direction through sparse regularization and 
does not use lateral regularization. Figure 3 shows the residuals between predicted data by two inverted imped-
ance model and noise-tainted synthetic seismic data. We can see that the residual strength of  L2,0-MI is visually 
smaller than CSI.

To quantificationally compare the quality of inverted impedance model from  L2,0-MI and CSI, we calculate 
the relative errors (RE) of the above different inverted impedance model compared to the true impedance model. 

(14)min f (A) = �DY − A|�22 +
α

β
�A�2,0

(15)a
i=

{

0, ||xi||22 ≤ α/β

x
i , ||xi||22 > α/β

(16)
||Yl − Yl−1||

2
2

1+ ||Yl||
2
2

< ε

(17)βl = τβ
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Figure 1.  (a) Noise-tainted synthetic seismic data section. (b) The true 2D impedance model section.

Figure 2.  (a) The inverted impedance model section by  L2,0-MI. (b) The inverted impedance model section by 
CSI.
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The REs are listed in Table 1. From Table 1, we can see that the REs of inverted impedance model by  L2,0-MI are 
well below the REs of inverted impedance model by CSI.

From the test results of 2D numerical model, we can see that, compared to the CSI,  L2,0-MI can not only clearly 
estimate the vertical variation features, but also improve the lateral stability and resolution.

Real data applications. Next, we adopt a real seismic data section from a work area in Eastern China to 
study the applicability of  L2,0-MI in practice. Figure 4 shows this real seismic data section. Then, an interpolat-

Figure 3.  (a) The residuals between predicted data by  L2,0-MI and noise-tainted synthetic seismic data. (b) The 
residuals between predicted data by CSI and noise-tainted synthetic seismic data.

Table 1.  The REs of different inverted impedance model.

Methods RE

CSI
L2,0-MI

0.1083
0.0649

Figure 4.  Real seismic data section.
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ing impedance model is built by Kriging interpolation method with actual well logs in this work area under the 
constraint of seismic geologic horizon. After that, the 15 Hz low-pass filter is performed on the interpolation 
model to obtain a low-frequency trend model to serve as the a priori impedance model.

L2,0-MI is performed on the real seismic data section. The inverted impedance section is shown in Fig. 5a. The 
actual impedance well log is overlaid in Fig. 5a for the comparison between the actual well log and the inverted 
impedance. From Fig. 5a, we can see that, the structural configurations and stratigraphic lateral distributions 
in the inverted impedance section match with the real seismic data section. The inverted impedances are well-
matched with the actual impedance well log. The vertical boundaries of different strata are very clear, i.e. high 
vertical resolution. In lateral direction, both the transverse distribution characteristics of underground forma-
tions and the transverse interfaces of different faults are very clear. Hence, the inverted impedance section by 
 L2,0-MI also has good lateral stability and resolution. Then, CSI is also performed on the real seismic data section 
with the same low-frequency trend model to serve as the a priori impedance model. The inverted impedance 
section by CSI is shown in Fig. 5b. As well, the actual impedance well log is also overlaid. From Fig. 5b, we can 
see that, the inverted impedance by CSI is also well-matched with the actual impedance well log. The structural 
configurations and stratigraphic lateral distributions in the inverted impedance section by CSI also match with 
the real seismic data section. And the vertical boundaries of different strata are also very clear. However, the 
lateral distribution characteristics and the interfaces of different faults in inverted impedance by CSI are less 
clear compared to inverted impedance by  L2,0-MI.

Figure 6 further compares two inverted impedance by  L2,0-MI and CSI at near-well trace with the actual 
impedance well log. The black curve is the actual impedance well log, the blue curve is the inverted impedance 
by  L2,0-MI, and the red curve is the inverted impedance by CSI. We can see that, in some layers, the inversion 
results cannot coincide with the well log completely. It is because the scale of seismic data and well log data is 
different. The inverted impedance cannot coincide with the actual well log completely. The general variation trend 
and local relative variation characteristics of the two inverted impedances are in good agreement with the actual 
well log. Hence, we say that both two inverted impedances are really well-matched with the actual impedance 
well log. In addition, the vertical resolution of  L2,0-MI is somewhat improved in some layers.

From the real seismic data applications, we can also see that, compared to the CSI,  L2,0-MI can not only 
clearly estimate the vertical variation features of underground formations, but also improve the lateral stability 
and resolution.

Discussions
From the main body of the “Methodology”Section, we can see that, there are some key factors to effect the qual-
ity of  L2,0-MI. First, we think the lateral changes of underground formations are relatively stable in sedimentary 
strata, i.e., the strata have local lateral continuity. Hence, we need to partition the whole seismic data section 
into many small blocks. In these blocks, the local lateral continuity is much more likely to be satisfied. To avoid 
blocking artifacts at the connecting location, these blocks need to be overlapped. Hence, the block size and the 

Figure 5.  (a) Inverted impedance section by  L2,0-MI. (b) Inverted impedance section by CSI.The black curve is 
the actual impedance well log.
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overlap size need to be carefully selected and is controlled by the geologic features of the studied work area. 
Second, the two regularization parameters α and ρ, also greatly effects the inverted impedance. The inversion 
results are sensitive to different lateral regularization options. During the inversion procedure, the regularization 
parameters act as a tradeoff between the joint-sparsity and density of reflectivity series. In practice, the choice 
of the regularization parameters depends on the actual geological setting of underground formations and the 
aim of seismic inversion. If the underground formations are main thick and the lateral continuity is good, or 
the aim of inversion is to invert main stratigraphic sequence interface of underground formation, the value of α 
needs to be large. In this case, it is in fact equivalent to sparse-spike inversion with joint-sparse constraint. On 
the other hand, if the underground formations contain thin interbed, or the inversion is performed near the 
location of abrupt lateral changes, we need to, carefully choose the block size when partition the seismic data, 
and relatively decrease the value of α. In this paper, we adopt the quality control method to select the above 
parameters, i.e., block size, overlap size, two regularization parameters α and ρ. That is, adjust the parameters to 
be selected, get the inversion result for each value, and choose the one whose inversion result has the best match 
with the actual well log.

In general, when the post-stack inversion problem is solved in the multi-trace way rather than trace-by-trace, 
the computation resources will increase. In this paper, we use split Bregman algorithm to solve the objective 
function of  L2,0-MI. The basic consideration of using this algorithm is that the iteration process is simple and the 
program implementation is relatively easy. In the framework of split Bregman algorithm, compared to CSI, the 
additional computation costs of  L2,0-MI per iteration are just once calculation of row hard-thresholding. Hence, 
the computational time of  L2,0-MI is just little longer than CSI.

Another factor that affects the computational cost and quality of  L2,0-MI is auxiliary parameter β in split-
Bergman iteration. This auxiliary parameter β is automatically adapted in iterations starting from a small initial 
value with a multiplier τ (i.e. automatically increasing rate). A smaller multiplier gives higher-quality inverted 
impedance, but at the cost of a longer computational time. Hence, the multiplier τ is used to balance the efficiency 
and performance. From a number of experiments, τ = 1.2 seems to be a good choice.

Here,  L2,0-MI is dealt with at the framework of deterministic inversion. Usually, the uncertainty of determin-
istic inversion results can be assessed with a posterior covariance through a Bayesian  point9. However, due to 
the joint sparse constraint represented by  L2,0-norm, the posterior covariance cannot be analytically expressed. 
Besides deterministic inversion, the uncertainty can also be effectively assessed on the framework of stochastic 
inversion. It includes Bayesian  inversion3 and iterative geostatistical  inversion4,36. Stochastic inversion defines 
the inversion results as a probability distribution of model parameters. Hence, it can assess different sources’ 
uncertainties, such as original observed seismic data, well log data, or the a priori model and initial  model36,37.

To perform uncertainty assessment in the process of  L2,0-MI, an alternative way is to execute  L2,0-MI on the 
framework of iterative geostatistical inversion. On that occasion, Eq. (10) can be used as the objective function 
of iterative geostatistical inversion. In iterative geostatistical inversion, the common used objective function base 
exclusively on the misfit or correlation coefficients between observed and predicted seismic  data38. Azevedo and 
Soares have proposed a method to incorporate a priori model constraint into geostatistical  inversion38. In fact, 
the a priori model constraint are common used in deterministic inversion. Hence, we can also incorporate the 

Figure 6.  Comparison between actual impedance well log and two different inverted impedances at near-well 
trace. The black curve is the actual impedance well log, the blue curve is the inverted impedance by L2,0-MI, 
and the red curve is the inverted impedance by CSI.
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joint sparse constraint into the framework of iterative geostatistical inversion. But it can be a future research 
topic and is outside the scope of this paper.

Conclusions
In this paper,  L2,0-norm has been used as an joint-sparse regularization constraint to replace  L0-norm in the 
conventional sparse regularization constraint impedance inversion and construct the joint-sparse regulariza-
tion constrained objective function for multi-trace seismic impedance inversion. It is because the conventional 
sparse regularization constraint only considers the vertical sparsity, and does not consider the lateral variation 
feature and continuity of multi-trace impedance model. Whereas,  L2,0-norm can not only measure the sparsity 
in the vertical direction, but also consider the lateral similarity and continuity of multi-trace impedance model 
to increase the lateral resolution and continuity. From the 2D numerical model tests and the real seismic data 
applications, we can see that, compared to the inverted impedance by CSI, the inverted impedance by  L2,0-MI 
has higher lateral stability and resolution. Hence, compared to the CSI,  L2,0-MI can not only clearly estimate the 
vertical variation features, but also improve the lateral stability and resolution.

Data availability
The datasets used during the current study are available from the corresponding author on reasonable request.
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