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Reliability assessment 
of transformer insulating oil using 
accelerated life testing
Xingchun Wei , Zhiming Wang * & Junfeng Guo 

To improve the reliability and reduce the maintenance cost of transformer oil, a life prediction 
of transformer oil is needed so that the maintenance of transformer can be performed correctly. 
However, it is difficult to predict the reliable lifetime of transformer oil accurately because of its 
unkind operating condition at different environments. To solve this problem, based on the theory 
of accelerated life testing (ALT), a reliability assessment method for transformer insulating oil on a 
normal operational conditions is proposed. An inverse power Weibull distribution model for insulating 
oil lifetime with voltage is built. Numerical procedure of model parameter estimation is presented, 
the variances of model parameters and reliability indices, which including mean lifetime, reliability, 
reliable lifetime at given reliability and failure rate, are derived. The feasibility and correctness of the 
proposed method are validated by real lifetime data of transformer insulating oil in literature. The 
reliability of transformer insulating oil used at normal usage conditions are predicted by the proposed 
method, and the point and interval estimations of reliability indices are evaluated. The results show 
that reliable lifetime and mean lifetime under reliability limit should be considered simultaneously in 
repair or replacement of transformer insulating oil.

Transformer is a key equipment in electrical system transmission, it plays a very important role in stable opera-
tion of power system. If a failure occurs in transformer, it will bring huge losses to power enterprises and 
national economy. A lot of research data show that the main cause of transformer failure is the deterioration of 
insulation  performance1. This is because that transformer is subjected to the interaction of thermal, electrical 
and mechanical stresses in operation conditions, and its insulation system is gradually aging and unable to meet 
the requirements of safe and reliable operation, which resulting in a failure at  last1. The service life of oil-paper 
insulated transformer is determined by the life of insulating material which is mainly composed of insulating 
oil and solid insulation. Among them, the performance decline of transformer insulation oil is the main reason 
of transformer breakdown. On the other hand, it is found that voltage is the main factor which affecting the 
insulation performance of transformer oil. Therefore, at present, a lot of research work has been done on trans-
former insulation aging and insulation life prediction. Based on a single ageing test at higher temperature and 
the activation energy of the oxidation reaction obtained by non-iso-thermal Differential Scanning Calorimetry 
measurements. Dumitran et al.2 proposed a mineral oil lifetime estimation method. To prolong the service life of 
transformers, Chatterjee et al.3 developed predictive models for transformer health. Due to the uncertainty and 
complexity between transformer remaining life and its influence factors such as load and ambient temperature, 
AbU-Elanien and  Salama4 applied a Monte Carlo method to estimate the thermal life of transformer insulation 
oil. Other commonly used methods for analyzing transformer insulation aging include neural network  method5–8, 
fuzzy analysis  method9–12, grey clustering  method13, genetic  algorithm14,15, deep  learning16,17, support vector 
 machine18,19 and hybrid  methods20–24, etc.

However, due to the limitation of time and funds, it is impossible and unnecessary to carry out long-term life 
test of insulating materials according to actual operating conditions in engineering practice. In this case, an ideal 
solution is to use accelerated life testing (ALT) method. In other words, by an ALT of insulating materials under 
high stress level, fault data of transformer can be obtained in a short time, and the corresponding life model can 
be established, so as to extrapolate the life characteristics under normal operational conditions. ALT method 
can also provide a theoretical basis for transformer overhaul and maintenance plan, and then simultaneously 
determine the best time for transformer insulation oil overhaul and  replacement25–27. In literature, the relation-
ship between insulation oil voltage and lifetime is often described with inverse power law (IPL)  model28,29, and 
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failure times of insulation oil generally follow Weibull  distribution30–32. Therefore, a Weibull IPL life model is 
applied in this paper to analyze the reliability and reliable life of transformer insulation oil.

Therefore, the novelty and main contributions of this work can be summarized as follows:

1. Numerical method of model parameter estimation of IPL-Weibull distribution for insulating oil lifetime is 
proposed, the variances of model parameters and reliability indices, which including mean lifetime, reliability, 
reliable lifetime and failure rate, are derived.

2. The reliability of transformer insulating oil used at usual operational conditions are predicted by the proposed 
method, and the point and interval estimations of reliability indices are evaluated. The feasibility and cor-
rectness of the proposed method are validated by real lifetime data of transformer insulating oil in literature.

The paper is organized as follows. In “Methodology”, the details on lifetime data modelling for transformer 
insulating oil using IPL-Weibull distribution, model parameter estimation, as well as the point and interval 
estimation for reliability indices are given. In “Case study”, some information about ALT for a real case in litera-
ture are described. Results and comparison with the existing method are presented with details in “Results and 
discussion”. Conclusions are drawn in the final and concluding section.

Methodology
Reliability modelling for transformer insulating oil with accelerated life testing. Some basic 
assumptions of ALT for insulating oil are given as follows:

1. The lifetime of insulating oil follows the Weibull distribution under usual use stress level and accelerated 
stress level;

2. The failure mechanism of insulating oil is the same at different stress levels;
3. The acceleration model of insulating oil is the same at each stress level.

Suppose that failure time t of insulating oil follows a two-parameter Weibull distribution, then the cumula-
tive distribution function (CDF) F(t) and probability density function (pdf) f(t) of failure time t of insulating 
oil are respectively given by

and

where η is scale parameter and β is shape parameter, η > 0, β > 0.
The IPL model can be used for insulating oil where voltage is the main stress. Therefore, its characteristic life is

 where K > 0, N > 0 are model parameters, and U > 0 is voltage stress.
Therefore, from Eqs. (1) and (3), the reliability R of insulating oil at given time t can be given by

Numerical method of model parameter estimation. Assume that n stress levels of insulating oil in 
ALT are U1 < U2 < … < Ui < … < Un (i = 1, 2, …, n), its failure time at the ith stress level is ti1 < ti2 < … < tij < … < timi

(j = 1, 2, …, mi), then substituting Eq. (3) into Eq. (2), the responding pdf of all failure time of insulating oil in 
ALT is

According Eq. (5), the likelihood function of failure time ti,j of insulating oil is

Thus, the corresponding log-likelihood function is

Taking the first partial derivatives of Eq. (7) with respect to the model parameters β, K and N, and setting them 
equal to zero, respectively. The maximum likelihood estimates (MLE) of model parameters satisfy Eqs. (8)–(10):
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However, Eqs. (8)-(10) have no closed-form solutions, and a numerical method, which consists of three 
steps, is needed.

Step 1: Estimate the first model parameter β using the least square method. Twice taking the logarithmic of 
Eq. (1) with some mathematical transformations, the following Eq. (11) can be obtained as

 where Fi (ti, j) can be given by midpoint estimate or median rank estimate, and the estimators are

and

Therefore, the least square  method33 can be used to obtain an estimate of the parameter βi by combining 
Eq. (11) with Eqs. (12) or (13). ALT does not change failure mechanism, and thus the estimators of βi (i = 1, 2, 
…, n) should be equal each other. However, there exit some errors and uncertainty in test, the estimators of βi 
are not exactly the same. Therefore, its weighted estimated value can be given by

Step 2: Estimate the second model parameter K with an iterative method. After some mathematical calcula-
tions, Eq. (9) and Eq. (10) can be changed as

Divided the left and right sides of Eq. (16) by the corresponding two sides of Eq. (15), one can get

Equation (17) contains only parameter N, and its estimated value N̂ can be solved by an iterative method. 
One iterative expression for the second parameter N would be

 where N̂ (l+1) and N̂ (l) are the (l + 1)th and l th iteration values of parameter N, and
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Step 3: Estimate the last model parameter N by the iterative method. Finally, substituting the estimated value 
N̂ into Eq. (8), the estimated value K̂ of the last parameter K can be obtain, and its (r + 1) th iteration value 
is

where K̂ (r)
1  is the r th iteration value of parameter K. When the estimated value K̂ of parameter K is obtained 

by using Eq. (9) or Eq. (10), its value is

or

In general, at this case, K̂1 �= K̂2 = K̂3 , the estimated value K̂  can be selected according to the maximum 
log-likelihood value of Eq. (7), and given by

Thus, all estimated values of three model parameters can be obtained.

Interval estimates for model parameters and reliability indices. To estimate the confidence bounds 
of model parameters and reliability indicators, their variances are needed. The variance–covariance matrix of 
model parameters can be given by Fisher information matrix method as  follows34:
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In general, the MLE of model parameters are asymptotically a normal distribution. Therefore, the interval 
estimation  IEθ of the model parameter θ = (β, N, K) with a confidence of 100(1-α)% can be constructed as

where θ̂ is the estimated value of model parameter,Var
(

θ̂

)

 is the variance of model parameter, Zα/2 is the quantile 
of standard normal distribution, L and U are the lower bound and upper bound, respectively.

When model parameters are non-negative, they are more close to follow a lognormal  distribution34. Therefore,
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So, after obtaining the lower uL and upper bound uU of u with Eqs. (25), (27) and (32), the interval estimation 
of reliability R can be given by

Similarly, in Eq. (30), set v = ln t = 1
β
ln (− lnR)− lnK − N lnU  , then

The confidence interval [vL, vP] of v can also be estimated using Eqs. (25), (27) and (34). Finally, the interval 
estimate of reliable life is given as

Finally, in Eq. (31), set w = ln � = ln β + β(lnK + N lnU)+ (β − 1) ln t , then

The interval estimate of failure rate can also be given as

Case study
Using constant ALT, Ref.35 gives 76 failure-to-time data of a transformer insulation oil under n = 7 high voltage 
stress levels including U1 = 26, U2 = 28, U3 = 30, U4 = 32, U5 = 34, U6 = 36 and U7 = 38 kV, the numbers of failure 
time data for each stress level are m1 = 3, m2 = 5, m3 = 11, m4 = 15, m5 = 19, m6 = 15 and m7 = 8, respectively, the 
usual use voltage is 20 kV. The testing data are shown in Table 1.

Results and discussion
When the least square method is used to estimate shape parameter β of accelerated life model, the midpoint 
estimate and median rank estimate can be used to fit the reliability of insulating oil. The estimates β̂ of shape 
parameter β are shown in Table 2. It can be seen that the different estimate methods give different results. At 
the same time, even the same method is used, the estimated results for shape parameter β in the different stress 
level i are also different.
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Table 1.  Constant ALT data for a transformer insulating oil with different voltages.

Stress level i Voltage stress (Ui/kV) Failure times (ti,j/min)

1 26 5.79, 1579.52, 2323.70

2 28 68.85, 108.29, 110.29, 426.07, 1067.60

3 30 7.74, 17.05, 20.46, 21.02, 22.66, 43.40, 47.30, 139.07, 144.12, 175.88, 194.90

4 32 0.27, 0.40, 0.69, 0.79, 2.75, 3.91, 9.88, 13.95, 15.93, 27.80, 53.24, 82.85, 89.29, 100.58, 215.10

5 34 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 
36.71, 72.89

6 36 0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.90, 3.67, 3.99, 5.35, 13.77, 25.50

7 38 0.09, 0.39, 0.47, 0.73, 0.74, 1.13, 1.40, 2.38
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The failure probability of failure time t is an approximate straight line after logarithmic transformation. Fig-
ure 1 is the failure probability diagram of insulating oil at different high voltages under median rank estimate.

It can be seen from Fig. 1 that the slope of failure probability line at two stress levels of 26 kV and 32 kV is 
small, and the slope of the other five voltages are basically parallel. The main reason is that there are only 3 failure 
data obtained at the lowest stress level of 26 kV. The first failure datum 5.79 is particularly far less than the other 
two data 1579.52 and 2323.70, so the estimators have a certain deviation.

Akaike information criterion (AIC) and Bayesian information criterion (BIC)36 are most widely used in 
selecting the optimal model, the values of AIC and BIC are given by

where p is the number of estimated parameters, q is the number of all lifetime, and maxlnL is the maximized log-
likelihood. Table 3 shows the comparison results of model parameter estimation using MLE with the midpoint 
estimate and median rank estimate.

From Table 3, it is found that the MLE with median rank is superior to MLE with midpoint estimate, the 
former has a larger log-likelihood value and smaller AIC and BIC values. Compared with the result of Ref.35, 
the relative errors of log-likelihood estimation, AIC and BIC are all within 0.022%, indicating that the method 
proposed in this paper has a high estimation accuracy. Therefore, the estimators of model parameter are given 
as follows: β̂ = 0.8017, N̂ = 17.7318 and K̂ = 6.70E-29, respectively.

The variance–covariance matrix of model parameters β, N, K is given by:

(38)AIC = −2max ln L+ 2p, BIC = −2max ln L+ p ln q





Var(β̂) Cov(β̂ , N̂) Cov(β̂ , K̂)

Cov(N̂ , β̂) Var(N̂) Cov(N̂ , K̂)

Cov(K̂ , β̂) Cov(K̂ , N̂) Var(K̂)



 =





4.8882× 10−3 −5.1966× 10−4 −1.1305× 10−31

−5.1966× 10−4 9.0867× 10−1 −2.1224× 10−28

−1.1305× 10−31 −2.1224× 10−28 4.9679× 10−56





Table 2.  The least square estimate for shape parameter.

Method

Shape parameter estimators

β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂

Midpoint estimate 0.3191 0.9293 1.0373 0.5425 0.8018 1.0594 1.2030 0.8671

Median rank estimate 0.2670 0.8212 0.9587 0.5090 0.7550 0.9898 1.0812 0.8017

Figure 1.  Probability plot under different voltages for insulating oil. Figure created using Matlab R2014a 
(https:// www. mathw orks. com).

Table 3.  Results comparison for model parameters with the different methods.

Method β N

K LnL(β, N, K)

AIC BICK1 K2 LnL(β, N, K1) LnL(β, N, K2)

MLE with midpoint estimate 0.8671 17.7311 1.65E−29 6.42E−29 − 338.5120 − 301.6495 609.2990 616.2912

MLE with median rank estimate 0.8017 17.7318 2.23E−29 6.70E−29 − 323.3626 − 300.8841 607.7682 614.7604

Results of Ref.35 0.7770 17.7296 6.87E−29 − 300.8174 607.6348 614.6270

https://www.mathworks.com
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The normal operating voltage of insulating oil is U0 = 20 kV, therefore, using Eq. (28), the mean lifetime 
under normal use circumstances is 1.4406E + 05 min, the corresponding variance is Var(tMTBF) = 3.2824E + 08, 
based on Eqs. (25), (27) and (29), the interval estimator of mean lifetime is [1.2247E + 04, 4.9916E + 05]. The 
other point estimation and 95% confidence interval estimation of reliability indices and model parameters for 
transformer insulation oil under normal operating circumstances are shown in Table 4. Note that the values of 
reliability and failure rate are all given with mean lifetime 1.4406E + 05, reliable life is calculated by 90% reliabil-
ity. Therefore, u = 9.8895E−02, v = 8.9476, w = − 12.0001, the corresponding variances are Var(u) = 1.5772E−01, 
Var(v) = 3.2893E−01 and Var(w) = 1.6033E−01, respectively.

It can be seen from Table 4, the insulating oil has a higher mean lifetime 1.4406E + 05, but its reliability at 
mean lifetime is very low, only 33.16%, and the reliable life of insulating oil with 90% reliability is 7689.68 min, 
only 5.34% of mean lifetime. At this case, if the average life is taken as the criterion of maintenance and replace-
ment only, it will bring some potential safety hazards. Therefore, the replacement time should be determined 
according to the reliability and mean lifetime of the transformer during maintenance simultaneously.

Figure 2 is the plot of mean time-to-failure vs. voltage, two sides confidence bounds are also given. It can be 
found that as the increasing of voltage, the MMTF decreases rapidly. The MMTFs are 1374.43 min and 369.34 min 
when voltages are 26 kV and 28 kV, especially when voltage is greater than 30 kV, the value of MMTF not exceeds 
200 min. At 38 kV, it is 1.64 kV only.

The interval estimations of reliability, reliable life and failure rate of insulating oil under normal use condi-
tions are shown in Figs. 3, 4, 5.

Conclusions
Based on the theory of constant ALT, a probabilistic method for reliability assessment of transformer insulating 
oil is proposed using two-parameter Weibull IPL life model. Numerical procedure of model parameter estima-
tion is given. The reliability indices such as the MMTF, reliability, reliable life and failure rate of insulating oil 
under normal service conditions were predicted by using the proposed method, and the point estimation and 
interval estimation were calculated. Compared with the existing method, the method proposed in this paper 
has a high accuracy, the relative errors of log-likelihood estimation, AIC and BIC do not exceed 0.022%. The 
results of reliability analyses show that even the insulating oil has a higher mean lifetime, the reliable life is not 
always high. Therefore, mean lifetime and reliable life should be considered simultaneously in replacement and 
maintenance of insulating oil.

Table 4.  Reliability analysis results for insulating oil.

Parameter and reliability indices Point estimator Interval estimation with 95% confidence

β 0.8017 [0.6757, 0.9387]

N 17.7318 [15.9585, 19.6002]

K 6.70E−29 [9.76E−32, 5.04E−28]

tMTBF/min 1.4406E + 05 [1.2247E+04, 4.9916E+05]

R(t = tMTBF) 0.3316 [0.0903, 0.6024]

t(R = 0.9)/min 7689.68 [2673.85, 23,664.69]

λ(t = tMTBF) 6.1435E-06 [2.8027E-06, 1.3133E-05]

Figure 2.  Interval estimation of MTTF. Figure created using Matlab R2014a (https:// www. mathw orks. com).

https://www.mathworks.com
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Figure 3.  Interval estimation of reliability. Figure created using Matlab R2014a (https:// www. mathw orks. com).

Figure 4.  Interval estimation of reliable life. Figure created using Matlab R2014a (https:// www. mathw orks. 
com).

Figure 5.  Interval estimation of failure rate. Figure created using Matlab R2014a (https:// www. mathw orks. 
com).
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