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Localization 
of magnetocardiographic sources 
for myocardial infarction cases 
using deterministic and Bayesian 
approaches
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In this paper, the inverse problems of cardiac sources using analytical and probabilistic methods are 
solved and discussed. The standard Tikhonov regularization technique is solved initially to estimate 
the under-determined heart surface potentials from Magnetocardiographic (MCG) signals. The results 
of the deterministic method subjected to noise in the measurements are discussed and compared 
with the probabilistic models. Hierarchical Bayesian modeling with fixed Gaussian prior is employed 
to quantify the uncertainties in source reconstructions. A novel application of Variational Bayesian 
inference approach has been presented to estimate the heart sources. The reconstruction results 
of Variational Bayesian model with non-stationary priors are compared with solutions of simplistic 
Bayesian approach; and the performances are evaluated using Root Mean Square Error (RMSE) and 
correlation co-efficient metrics. The Bayesian solutions in the study are also extended to localize the 
MCG sources for two types of Myocardial infarction cases.

The ionic exchange in the cardiac muscle cells creates a potential difference across the fibers known as trans-
membrane potentials. Due to this exchange, a tiny current flows throughout the heart cells in intra and extra 
cellular spaces. The spread of electrical activity on the myocardium follows a specific pathway to complete the 
cardiac cycle. The propagation of these electrical impulses help myocardial fibres to contract and relax. During 
the process of these contractions and expansions of muscles, the activity is manifested in terms of functional 
waves characterized as P, QRS and T  waves1.

P shape is formed due to the contraction process of the atria and QRS is activated due to the ventricular depo-
larization; and the T wave is obtained from the relaxation of ventricles. The investigation of these electrophysi-
ological changes in heart functioning is measured by Electrocardiogram (ECG) in terms of potential  difference2. 
Any deviations in the ECG signals from the normal represent cardiac dysfunctions. Clinicians use ECG as a 
primary diagnostic tool to administer the functionality of heart diseases. Since this tool provides information at 
the surface level, sometimes clinicians may need further structural markings to confirm or localize the diseases 
with the help of non-invasive procedures.

In the biomedical society, researchers have contributed many works to minimize the invasive procedures in 
the diagnosis of heart diseases. Since the cardiac current flow is responsible for generating a tiny magnetic field 
across the human thorax,  researchers3,4 developed a non-contact and non-invasive equipment called Magneto-
cardiogram (MCG) to record bio-magnetic fields.

MCG offers distinct advantages in analyzing the cardiac signals than ECG. Some advantages are as follows: (1) 
even though both ECG and MCG measurements are non-invasive, MCG is a non-contact procedure and requires 
less subject preparation than ECG. (2) The other advantage is that the problem of variations in skin-electrode 
contact impedance in ECG is circumvented in MCG due to the non-contact nature of the  recordings3. (3) Also, 
the artefacts that may arise due to the fluctuating skin-electrode contacts in the ECG recordings are absent in the 
MCG. (4) MCG records the field due to primary currents and is least affected by the conductivity profiles of the 
intervening tissues present between the location of the heart and the thorax surface. This provides an ultimate 
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scope to localize the cardiac sources more precisely within a few millimeters which is often not possible with the 
surface potentials measured in the  ECG5.

However, these measurements can observe and record only at the surface levels and it would have been bet-
ter for physicians to visualize the problems and diseases specifically at the heart level. Many researchers have 
contributed their works in non-invasively imaging the cardiac anomalies from the surface level recordings.

Related work
Inverse problems have been solved in various applications, one of them is demonstrated by Qu et al.6 where 
authors analysed the steady state responses by solving the inverse problems based on Sparse-Bayesian learning.

Pullan et al.7, Hamalainen and  Ilmoniemi8, Sarvas et al.9, contributed their works in modeling the heart 
activities non-invasively using electromagnetic inverse problems in the deterministic approaches.

Fang et al.10 proposed a novel framework to solve the ill posed inverse problems of spatiotemporal ECG using 
sparse decomposition and total variation method.

In order to solve the inverse problem, one has to model the structural heart and align it with the torso and 
detectors; and formulate a spatial relation between them using Maxwell’s equations, which is known as forward 
 problem11.  Tilg12, Huiskamp et al.13 mathematically assumed action potentials as distributed sources in the for-
ward model. The  authors14 used invasively pre-recorded epicardial potentials as cardiac sources and generated 
the spatial sensitivity in the forward study.

The inverse problem reconstructs the cardiac activation from the MCG signals along with the constructed 
transfer matrix. These bio-inverse problems are ill-posed since the sources are more in number than the sensors 
(in practice) and even small errors in the recordings may lead to large variations in the source  estimations9. The 
common technique used to solve the inverse problem in deterministic approach is Tikhonov regularization 
(optimization methods)13,14. Mohammad-Djafari15 discussed and compared deterministic approach with the 
probabilistic model in the regularization theory and concluded that the latter method solved better in dealing 
with uncertainties and inaccuracies.

Zhou et al.16 demonstrated Sparse Bayesian Learning (SBL) (with Gaussian hierarchical priors) method to 
improve the localization accuracy of the inverse problem for the left-ventricular endocardium. The researchers 
reconstructed the endocardial potentials from the body surface ECGs and evaluated the results on the patient-
specific and normal heart geometry models. The deterministic methods utilize some form of regularization, out 
of which the most widely used is  Tikhonov17, which ensures the stable inverse solutions.

Serinagaoglu et al.18 evaluated the Bayesian approach to estimate the epicardial potentials from the body 
surface potentials. In this article, the authors solved the inverse ECG using surface measurements, a generic 
forward model with prior information of epicardial distributions (estimated from previous recordings) and 
the epicardial signals recorded invasively. The authors also discussed the advantages of Bayesian inference over 
deterministic methods. Bayesian framework includes error covariance that depends on the probability distribu-
tion of the prior sources and noise that effectively helps to yield the inverse solution.The other advantage of the 
Bayesian inference lies in the automatic estimation of the unknown posteriors by updating the covariance from 
the minimal knowledge about the hidden models. Whereas in Tikhonov method, one has to manually choose 
an optimal regularizer with the help of L-curve criterion to determine a good solution fit.

France19 studied Bayesian approach to quantify difference in L2 norm solutions that arise from conductivity 
and mesh discretization in the inverse problem of ECG. Even though the L2 norm solution provides satisfactory 
deterministic results, Bayesian not only estimate an equivalent maximum a-posteriori (MAP), but also capable 
of providing a distribution to study the sources of uncertainty. The Gaussian priors has been used to model the 
prior source activities.

The inverse problems addressed by  Arinbjarnarson20 discuss for various types of Bayesian approaches in the 
context of Electroencephalography (EEG) domain. The Gaussian type models have been assumed to design the 
hyper-prior distributions in the inverse study.

The literature on Bayesian approach has been found to be confined to solving the bioelectric inverse problems; 
however, the framework could be extended to address the inverse problems in biomagnetism. This is the basic 
motivation to apply Bayesian modeling techniques for MCG.

The above mentioned Bayesian methods assume stationary Gaussian distribution and therefore estimate the 
unknown parameters from the observed measurements. The method fails to model non-stationary distributions.

Bishop21 explained about the competitive framework called Variational Bayes that imposes non-stationary 
distributions on the priors and hyper-prior models (distributions) to infer the unknowns with the help of Kull-
back–Leibler (KL) divergence. Tzikas et al.22 introduced Variational Bayesian Linear Regression (VBLR) approach 
where non-stationary Gaussian priors for hyperparameters were explored. The main idea of this method is to 
fit blue estimate the prior distribution with the help of varying family of distributions rather than a single prior 
in the simplistic Bayesian models. It has been reported that the solution quality of the VBLR approach is better 
than the stationary Bayesian  models23.

Similar supporting work experimented by Rahimi et al.24 where a multiple-model Bayesian approach was 
proposed and utilized to solve the inverse problem of ECG data. The ill-posed nature was regularized by a fixed 
evaluation criteria which constrains the source distribution to follow a fixed prior structure rather than time 
varying sources. The issue has been addressed by multiple-prior models that uses time varying prior sources.
The study was applied on the synthetic and real data experiments.

The experimental results demonstrated that the combination of different priors can be employed for assess-
ing the complex source structures. Also, the proposed multiple model investigates the impact of different prior 
distributions which helps in reducing the poor fit of assumed model.
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One of the objectives of this paper is to reconstruct epicardial sources using Bayesian frameworks to address 
the uncertainties that occur in the deterministic approach. The other objective is to apply Hierarchical models 
using the simplistic Bayesian and the novel (in this domain) Variational Bayesian methods in solving the inverse 
problem of epicardial activities. Further, the proposed inverse models have been analyzed based on noise-free 
and noisy MCG signals of normal and Myocardial Infarction cases.

Methodology
In this section, the forward model of MCG has been described which discusses the source models, the explana-
tion of the Lead Field/Transfer Matrix followed by the mathematical depiction of the forward model. In the next 
subsection, the inverse problem is described and solved using the standard Tikhonov method, the Hierarchical 
Bayesian method and the Variational Bayesian Linear Regression method. Two different heart models have been 
used, one for the forward problem and the other to solve the inverse problem in order to avoid the ‘inverse crime’.

Forward problem. Source model. The source model is designed based on the prior knowledge of the elec-
trophysiological nature of the heart. The source parameters assumed in the current study consisted of a ven-
tricular surface model extracted from  ECGsim25, covered by Q = 257 nodal locations with each discretized node 
assigned to epicardial potentials. The thorax model of size (25, 45, 45) cm consisting of 300 nodes with 596 tet-
rahedral meshes is considered in the study. The heart mesh was placed inside the thorax model at a location (0.3, 
0.3,0) cm that lay in the realistic anatomical position between the lungs and behind the  sternum13 (geometrical 
models were assembled in SCIRun  software26,27). The volume of the thorax were filled with assumed conductivity 
σ values of 0.6, 0.04 and 0.2 S/m for the ventricles, the lungs and the torso,  respectively28.

The discretized model of the heart is defined as the vector of q = (q1, q2, . . . qQ) sources. The ventricular 
surface nodes at q points oriented in âq directions have been assigned with epicardial potentials. In this study, two 
types of Myocardial infarction (MI) cases are simulated using ECGsim  software25. The activations are created at 
a node with 1.5 cm potential spread (shown as patch in the inset of Fig. 1a) near the anterior left ventricular wall 
by varying the transmembrane potentials waves: (1) ST elevated MI is simulated by decreasing the magnitudes 
of the transmembrane potentials wave by 48%29, and (2) the time instants of the transmembrane potentials 
wave was shortened to get increased T peak MI case. The amplitudes of the abnormal epicardial potentials are 
shown in Fig. 1c.

The current inverse study is tested on another heart model (all simulations were designed and executed in 
SCIRUN/BioPSE  software26) and the models were imported from ECGSim  software25 as source with the same 
diseased cases as shown in Fig. 1b. The model consisted of 585 discretized nodes with 1156 triangular surface 
mesh elements. The source sampling in this structure is more than the previous heart model. The reason for 
performing the inverse study on this test model is explained in the succeeding sections.

Transfer matrix. After modeling the structural and functional prior assumptions of the heart aligned with the 
torso, the spatial detector vector m = (m1, m2, . . . mM) are placed in parallel to the thorax. The MCG detec-
tors are collected from a set of 9× 9 observation points ( M = 81 ) with 3 cm intervals in between (available in 
 ECGsim25). Now, a transfer matrix is designed to construct the spatial sensitivity between Q sources and M 
detectors. The generic field is recorded by placing unit current dipole vectors âq at the nodes of the myocardium 

Figure 1.  Source modeling and simulation: (a,b) Heart and Torso models aligned with MCG detectors (inset: 
ruptured cells patch considered in the study), (c) simulated epicardial potentials at the selected node (vertical 
lines indicate the desired time instants in ms).
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with the help of Biot-Savarts law. The magnetic field observed at sensor array (position vector in three dimen-
sional Cartesian coordinates denoted by rm = (r1, r2, r3, . . . rM) ) due to unit dipoles at r′q = (r′1, r

′
2, r

′
3, . . . r

′
Q) 

heart points are appended for all the sources to construct a lead field spatial tensor of dimension M × Q × 3:

The tensor L(rm, �r′q, âq�) is expressed as:

The elements of the constructed spatial transfer tensor L(rm, �r′q, âq�) = [Lx(rm, �r′q, âq�), Ly(rm, �r′q, âq�), 
Lz(rm, �r

′
q, âq�)] has the dimension RM×Q×3 ; includes the locations and orientations of the sources, denoted as 

L in further discussions.

Forward linear model. The forward magnetic fields (MCG) with dimensions RM×t×3 are defined as an array of 
M detector coils, Bf (rm, t) = [Bfx(rm, t), Bfy(rm, t), Bfz(rm, t)] which are computed from the lead field matrix 
L and prior scalar epicardial potential distributions s(�r′q, âq�, t) ∈ R

Q×t . In further discussions throughout the 
article, Bf (rm, t) and s(�r′q, âq�, t) are denoted as Bf  and s, respectively. The following equation represents the 
linear model to construct the forward magnetic field:

The MCG waves are simulated for normal and abnormal cases and considered as true observed signals in the 
inverse problem. But, the usage of the same model to obtain the inverse solution leads to a problem called ‘inverse 
crime’  i.e., the results may yield best estimates which could be equivalent to the truth. One can overcome this 
problem by adding noise to the linear forward  problem30. However, the actual modeling error of using the same 
models (unrealistic scenarios) in the inverse estimations is still a ‘crime’ and the results may end up providing 
over-estimated  solutions31,32.

In our study, it has been attempted to solve the ‘inverse crime’. First the forward calculated magnetic field 
intensity (subjecting to uncertainties) is distorted by Gaussian noise with substantial amount of Signal-to-Noise 
Ratio (SNR) levels (ranging from 6 to 16 dB) and then the hidden potentials are determined. However as 
explained before, this does not solve the inverse crime so we further utilized the forward model of the different 
heart structure and the forward calculated magnetic field intensity obtained from the first source to estimate 
the unknowns.

Figure 2a,b represent the MCG maps at mid ST instants of normal and ST elevated MI case from the first 
heart model, respectively. Similarly, MCG fields at increased T peak maps of normal and abnormal of model 1 
are illustrated in Fig. 2d,e, respectively. The forward calculated magnetic field intensity from the second source 
model (shown in Fig. 1b) are mapped in Fig. 2c,f depicting the ST elevated and increased T instants, respectively. 
The variations in the amplitudes of the field intensities can be visualized in the maps.

The linear forward field ( Bf  ) representing the cardiac cycle from t = 1 s to t = T s, subjected to noise n(rm, t) 
denoted as n is formulated to get Bfn and is expressed as:

The noise n of time frame Ts is derived from the SNR dB with signal power 
(

Ps =
1
T

∫ T
t=1 |Bf |

2dt
)

 and noise 
power 

(

Pn = 1
T

∫ T
t=1 |n|

2dt
)

 is given by:

 Since the noise power is not known, the parameter of a specific noise amplitude is formed using the above 
equation that reduces to

for a range of SNR from 6 to 16 dB. The obtained noise power amplitude Pn is then multiplied with the random 
noise sequence of the length similar to the signal’s time points.

(1)L(rm, �r
′
q, âq�) =

µ0

4π

rm − r′q

�rm − r′q�
3
× âq

(2)Bf = Ls

(3)Bfn = Bf + n

(4)SNR(dB) = 10 log10

(

Ps

Pn

)

(5)Pn =

√

Ps

10
SNR
10
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Inverse problem. The ill-posed inverse problems are solved after establishing the forward model. In this 
paper, Deterministic and Probabilistic approaches for inverse problems are implemented and their efficiencies 
in noiseless and noisy conditions compared.

Deterministic approach: Tikhonov regularization. The unknown source activations are estimated with the help 
of transfer matrix L and from known observations B(rm, t) denoted as B using squared error  function14. The 
general cost function to be minimized is computed using:

Since the system is under-determined ( M < Q ), it causes over-fitting in the function. In order to overcome 
this problem, a penalty term called solution norm (L2 norm) is introduced that contains squared magnitude 
of the epicardial source weights. The standard Tikhonov (L2 norm) regularization implemented in the study, 
is expressed as:

where �R is the regularization parameter which controls and helps in fitting the sources by minimizing the cost 
function.

Hierarchical Bayesian framework. In the Bayesian estimation, the magnitudes of unknown source 
activities are estimated, which are priorly assumed to be random with known prior distributions. The joint 
probability density function (pdf) of the magnetic field data B and source activities s are assumed to be normally 
distributed. In this, p(s) is the prior distribution of s and p(B | s) is the likelihood function of MCG conditioned 
on the sources s. The posterior distribution to estimate the activities is written as:

where p(B) in the denominator is the normalizing factor of observed signals.
The conditional probability of the complete MCG cardiac cycle from ith detector Bit = B(rm = ri , t) with 

time points ( t = 1, . . . ,T ) given the whole latents of the epicardial potentials sqt = s(�r′q, âq�, t) considering the 
lead field ( L ) is given by,

 We assume the noise n (Eq. 3) is Gaussian with zero mean and is i.i.d across time expressed as

(6)F(·) = �B− Bfn�
2

(7)F(·) = �B− (Ls + n)�2 + �R�s�
2

(8)p(s | B) =
p(B | s) · p(s)

p(B)

(9)p(B | s) =

T
∏

t=1

p(Bit | sqt) ∼

T
∏

t=1

N (Bit | Liqsqt ,�
−1)

Figure 2.  MCG signals mapped on to the detectors plane: (a) normal MCG map (model 1), and (b) ST elevated 
MCG of model 1 at 85 ms. (c) ST elevated MCG of model 2 at 85 ms. (d) Normal MCG (model 1) and (e) 
increased T maps captured of model 1 at 125 ms instant, and (f) increased T maps of model 2 captured at 125 
ms instant (dark/red: maximum magnetic field intensities, light/blue: minimum magnetic field intensities).
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 Here, � is a diagonal precision matrix in which the diagonal entries are equal to the inverse of the noise 
variances for the corresponding observed MCG data.

The forward likelihood over the MCG at M detectors in an instant is defined as:

 Similarly, the prior distribution of the epicardials sjt for a jth source is assumed to be Gaussian and i.i.d across 
time and the model for the entire time series of sjt ( t = 1, . . .T ) is given by

 Here, � is the precision or covariance matrix which contains the inverse of the source variances ( σ 2
s ).

The explicit form of the Gaussian distribution of the epicardial priors at Q sources in a specific instant is 
given by

Two scalar parameters α and β called hyperparameters are introduced to control the distribution of the 
parameter s. The hyperparameters supporting the precision matrices are assumed as � = αI and � = βI for 
prior source and noise covariances, respectively.

These precision hyperparameters decide the variance estimates of the posterior distribution. The posterior 
distribution of the epicardial weights (Gaussian) for any source at r′q is formed as

where the mean and variance are given by

 The values of the hyperparameters are unknown and are derived from the data. This can be done by introduc-
ing prior distributions over the hyperparameters α and β , and predicting the posteriors by marginalizing with 
respect to these hyperparameters and epicardial weights s.

We employed the method of evidence approximation, since the complete marginalization over s, α , and β by 
integrating analytically is not  tractable21,30.

If the hyperpriors are modeled over α and β , the predictive distribution by marginalizing over s, α , and β gives

 If the hyperposteriors p(α,β | B) are most probable around the values α̂ and β̂ , the posterior distribution 
of epicardials is computed by marginalizing over s with α̂ and β̂ . From Bayes’ theorem, hyperposteriors are 
expressed as

Thus, by maximizing the p(B | α,β) provides the evidence for α and β.
The marginal likelihood of the MCG data p(B | α,β) is obtained by integrating over the sources s,

 From Eqs. (9) and (12), the evidence function is written in the form

 where

(10)n ∼ N (n | 0,�−1)

(11)p(B | s) ∝
|�|

1
2

2π
M
2

exp

[

−
�

2
�B− (Ls + n)�2

]

(12)p(s) =

T
∏

t=1

p(sjt) ∼

T
∏

t=1

N (sjt | 0,�
−1)

(13)p(s) ∝
|�|

1
2

2π
Q
2

exp

[

−
�

2
�s�2

]

(14)p(ŝjt | Bit , sjt ,α,β) ∼

T
∏

t=1

N (sjt | ŝjt ,�
−1)

ŝjt = β�−1L⊤Bit

�−1 = αI + βL⊤L

(15)
p(s | B) =

∫ ∫

p(s,α,β | B)dαdβ

=

∫ ∫

p(s | α,β ,B)p(α,β | B)dαdβ

(16)p(α,β | B) ∝ p(B | α,β)p(α,β)

(17)p(B | α,β) =

∫

p(B | s,β)p(s | α)ds

(18)p(B | α,β) =

(

β

2π

)
M
2 ( α

2π

)
Q
2

∫

exp{−E(s)}ds
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The expression 
∫

exp{−E(s)}ds cannot be obtained analytically and practical solution of the same over s is 
larger. To simplify this, Taylor expansion of E(s) is considered around the minimum value by retaining up to the 
second  order23. The expansion of E(s) around its minimum value is given by

 where sMP denotes the most probable solution (epicardial potentials). The second term in the expansion is the 
minimum value and can be discarded or equated to zero. The second order derivative function is

 and

 By differentiating the log evidence of Eq. (18) with respect to α , we get,

where γ = �i
�i+α

 & �i(i = 1, . . . ,Q) are the eigen values of βL⊤L.
Similarly, by maximizing the log evidence with respect to β , results in

 The Algorithm 1 explains the source estimation procedure by updating the hyper-parameters in iterative 
manner until it reaches to a convergence criteria. 

Algorithm 1

1: Initialize α = β = 1

2: Estimate sMP

sMP =
(
βL�L+ αI

)−1
L�.B

3: Update α and β :

α =
γ

2‖sMP ‖2

β =
M − γ

2‖B− (LsMP + n)‖2

where γ =
∑Q

i=1
λi

λi+α , λi = eig(βL�L)

4: Convergence:
F(.) = ‖B− (LsMP + n)‖2

Variational Bayesian linear regression. The Variational Bayesian linear regression method is a proba-
bilistic algorithm previously used in solving other applications as seen  in33. So in this paper, this method has 
been explored for the first time to localize the sources from MCG signals.

Bayesian model. The linear model explained in the forward model (Eq. 2) that assumes linear relation between 
Q dimensional s sources and M dimensional MCG observations with independent noise at the detectors is con-
sidered in the inverse procedure. The magnetic field intensity likelihood of the observations B (similar to the 
previous approach) is assumed with constant-variance Gaussian noise distribution � = βI20, defined as:

The graphical representation of Bayesian models is illustrated in Fig. 3a,b to understand the relationships 
between variables.

Priors and hyper‑priors. In the previous section (simplistic Bayesian approach), the prior source weights in the 
linear model were assumed to be Gaussian distribution. Due to this stationary prior, it is possible to estimate 

(19)E(s) =
β

2
�B− (Ls + n)�2 +

α

2
�s�2

(20)E(s) = EsMP +
1

1!
f ′(EsMP )(s − sMP)+

1

2!
(s − sMP)

⊤f ′′(EsMP )(s − sMP)

f ′′(EsMP ) = βL⊤L + αI

EsMP =
β

2
�B− (LsMP + n)�2 +

α

2
�sMP�

2

(21)α̂ =
γ

2�sMP�2

(22)β =
M − γ

2�B− (LsMP + n)�2

(23)p(B | L, s,β) ∼ N (B | Ls,�−1)
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marginal likelihood and obtain  posteriors19. It is also important to extract the sparser characteristics of the 
unknown signals such as region of abnormal spread estimations in the epicardial potentials that appear to be 
smoother solutions in stationary prior. To overcome this problem, a non-stationary conjugate normal inverse-
gamma distribution is assumed on the prior sources s and variance � = βI , parametrized by hyper prior � = αI 
graphically represented in Fig. 3. The prior source distribution is modeled as:

In this prior, β acts as inverse variance on s with zero-mean. Due to imposition of Gamma on β , β−1 is defined 
as the inverse-gamma function with shape a0 and scale b0 and is expressed as:

where η =
β

2
(αs⊤s)+ 2b0

The convergence criteria of the algorithm 1 is evaluated by checking the change in updates of hyperparam-
eters. This is done by setting a stop threshold ǫ = 10−3 value to track the difference between the hyperparameter 
updates. Then the algorithm is constrained to stop at iteration j if P(j) < ǫ where:

Variational inference. The final step is to estimate the cardiac sources in terms of variational posteriors termed 
as p(s,β ,α | B) . Since it is difficult to obtain the closed form of posteriors, a distribution g(s,β ,α) is introduced 
in the model to solve it as variational approximation. With the help of Kullback-Leibler (KL) divergence, the 
difference between g(s,β ,α) and posterior p(s,β ,α | B) is minimized, defined as:

where g = g(s,β ,α) and p = p(s,β ,α | B) . The distribution g(·) is computed by minimizing the KL divergence:

The main idea is to find the distribution g that is closer to the distribution p. The divergence in Eq. (27) 
reduces to:

Now, with the help of known ln p(B) , the variational posteriors g(s,β) and g(α) are estimated by maximizing the 
variational lower bound L(g)23 (equivalent to minimizing the KL divergence function in Eq. (28)).

The variational posteriors for s and β , with fixed g(α) is given by:

The posterior on sources with variance g(s,β) reduces to:

(24)p(s,β | α) ∼ N (s | 0, (βα)−1I) · Gam(β | a0, b0)

(25)p(s,β | α) =
( α

2π

)
Q
2 ba00
Ŵ(a0)

β
Q
2 +a0−1 exp (−η)

(26)P(j) = max{|α(j)− α(j − 1)|, |β(j)− β(j − 1)|}

(27)KL(g || p) =

∫

s,β ,α
g · ln

(

g

p

)

dsdβdα

(28)g = argming(s,β)g(α)KL(g�p)

(29)KL(g�p) = −L(g)+ ln p(B)

(30)ln g(s,β) = ln p(B | L, s,β)+ Eα
(

ln p(s,β | α)
)

+ constant

Figure 3.  Graphical models representing the relationship between the variables: (a) Bayesian model with 
Gaussian priors, (b) Variational Bayesian linear model with Normal inverse-gamma priors.
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where C is the covariance matrix of sources, a and b are the shaping and scaling parameters influencing the 
hypers β . Similarly, by differentiating the lower bound L(g) with respect to α by keeping s and β as constant:

The variational posteriors on α reduces to:

Algorithm 2 explains the reconstruction of epicardial potentials from MCG observation using Variational 
Bayesian linear regression technique. 

Algorithm 2
1: Initialize hyper-priors a0 , b0, c0 & d0

2: Estimate Ĉ
−1

Ĉ
−1 = Eα(α)I + L�L

3: Estimate ŝ
ŝ = ĈL�B

4: Update â and b̂ :

â = a0 +
M

2

b̂ = b0 +
1
2

(
(B− (Lŝ+ n))2 + Eα(α)ŝ�ŝ

)

5: Update ĉ and d̂ :

ĉ = c0 +
Q

2

d̂ = d0 +
1
2

(
Es,β(βŝ

�ŝ)
)

6: Update Es,β and Eα(α):

Es,β(βŝ
�ŝ) =

â

b̂
ŝ�ŝ+ trace(Ĉ)

Eα(α) =
ĉ

d̂

7: Convergence:
F(.) = ‖B− (Lŝ+ n)‖2

 The hyperparameter update is terminated when the variational lower bound L(g) remains unchanged for 
more than 0.001% between the two successive iterations.

Results and discussion
In this section, the performance of algorithms 1 and 2 for epicardial source reconstructions are compared with 
that of deterministic method in noise-free and noisy conditions. The inverse algorithms are computed in MAT-
LAB and the results are visualized in SCIRun  software25,30. The true epicardial maps were generated using the 
geometry of model 1 (mappings at t= 85ms and t= 125 ms shown in Fig. 4A.i,B.i, respectively) while the transfer 
matrix generated from the geometry of model 2 was used to solve the inverse problem. Due to this reason the 
inverse crime was avoided however it led to some significant modeling errors. The results obtained from the 
Tikhonov approach in noiseless condition ranged from − 1.4 to 2.9 mV; where the region of spread showed 
a similar kind of ruptured information as that of true potentials (shown in Fig. 4A.a). The magnitudes of the 
spread regions of the Bayesian inference (Fig. 4A.b) yielded a reasonable amount of improvement in the results 
than the Tikhonov method and the solutions ranged from − 1.4 to 3 mV in noise-free case. The main study was 
to visualize and evaluate the results for uncertainty conditions.

This is performed by adding a noise of 8 dB SNR to the forward magnetic field intensity and solving the 
inverse problems. It can be observed from the Fig. 4A.d that the Tikhonov method in the noisy cases produced 
the contorted reconstruction spread at the diseased node. Figure 4A.e represents the Bayesian estimation results 
where the distributed area surrounding the diseased node was noticeable with magnitude ranges [− 3.8 3.2] mV. 
The VBLR approach performed well in both noise-free and noisy conditions evident from the maps shown in 
Fig. 4A.c,A.f, respectively. Similarly, Fig. 4B.a–c describe the estimations solved by Tikhonov, Bayesian inference, 

(31)ln g(s,β) = ln
(

N (s | ŝ,β−1Ĉ)
)

· Gam(β | â, b̂)

(32)ln g(α) = Es,β
(

ln p(s,β | α)
)

+ ln p(α)+ constant

(33)ln g(α) = ln Gam(α | ĉ, d̂)
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and VBLR methods, respectively at t = 125 ms. Also, the inverse solutions obtained at this instant from Tik-
honov, Bayesian inference, and VBLR techniques due to the impact of noises in the forward field are shown in 
Fig. 4B.d–f, respectively.

Figure 5 depicts the time series reconstructions of the heart surface potentials at the desired node index. The 
potentials activated in the model 1 (shown in Fig. 5A.i,B.i) are considered as the reference truth values for ST 
elevated and increased T cases, respectively. As compared to the true values, the amplitudes reconstructed by 
the VBLR were less than the Bayesian solutions (visually—for elevated ST case shown in Fig. 5A.iii,iv); but the 
temporal RMSEs of the VBLR method outperformed the Bayesian method in both noisy and noise-free condi-
tions which are later discussed in Table 2.

It can be observed that the Tikhonov approach attempted to produce good solution as shown in Fig. 5A.v,B.v 
visually, but the amplitudes are not satisfactory which still showed the elements of noise present in the estimated 
results. This shows that uncertainties in the forward magnetic field intensity are less handled by deterministic 
methods. The solution of the Bayesian inference (Fig. 5A.vi,B.vi) traced out better estimates than the Tikhonov 
method. The temporal reconstruction of the potentials showed remarkably better results in VBLR method even 
under 8 dB SNR (Fig. 5A.vii,B.vii) than the other methods.

Figure 4.  Results of epicardial map estimations obtained from inverse algorithms at the desired time instant: 
(A.i) reference map of model 1 at t = 85 ms (inset: epicardial of the diseased node with time point t = 85 ms 
shown as a dotted vertical line ) Inverse solutions solved on model 2 at noise-free condition from (a) Tikhonov, 
(b) Bayesian and, (c) VBLR methods, whereas the second row shows the results obtained for (d) Tikhonov, (e) 
Bayesian and, (f) VBLR in 8 dB SNR. Similarly, the results of the increased T peak solutions at t = 125 ms are 
represented in (B).
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Choice of regularization parameter. In the regularization theory, the selection of an optimum value 
is a tricky and challenging task that provides a good solution of fit. L-curve is the commonly used approach 
to choose an optimum regularization parameter in the Tikhonov estimation. The parametric L-curve graph 
is the log− log plot of the regularized solution norm ( ‖s‖ ) versus the norm of the corresponding residuals 
( �B− (Ls + n)� ) shown for ST elevated solution in Fig. 6. As the regularization parameter is varied, the graphi-
cal tool displays the trade-off occurring between the regularized solution and its fit to the observed data. In the 
work, the regularization parameter was varied from � = 1E − 10 to � = 10 with 100 linearly spaced vectors in 
between them. The optimal regularizer can be found at a corner of the curve isolating the horizontal and vertical 
lines in the log− log scale.

The vertical part of the curve in Fig. 6c corresponds to the solutions with small � values. As the � values 
are tuned to the small values, the solution norm starts increasing, thereby decreasing the norm of the residu-
als as shown in the Fig.  6a,b (for � = 0.01 , the values of �s� = 401.582 , and the residual norm found was 
�B− (Ls + n)� = 4.8466).

The solution norm decreases slightly for large � values causing the solution to over regularize (and increases 
the residual norm); corresponds to the horizontal part of the L-curve. The corner in Fig. 6c is considered as an 
optimum value � = 1.6681 that yields a good solution fit for the latent t = 85 ms (mid ST elevated point).

Figure 5.  (A.i) True epicardial potentials of ST elevated MI (model 1) at the diseased node (vertical dotted line: 
time stamp at t = 85ms), (B.i) True heart potentials of T elevated case from model 1 (vertical dotted line: time 
stamp at t = 125 ms). Results of the epicardial estimations obtained from inverse algorithms on the model 2 with 
respect to time for both the cases (A,B): (ii) standard Tikhonov regularization, (iii) Bayesian modeling with 
Gaussian priors and (iv) variational Bayesian inference in noise free conditions, and reconstructions from (v) 
Tikhonov regularization, (vi) Bayesian modeling, and (vii) Variational Bayesian inference method for 8 dB SNR, 
respectively.
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The inverse algorithms are tested by applying different levels of noise (SNR ranging from 6 to 16 dB) to the 
MCG system and Root Mean Square Error (RMSE) between the true (assumed) and estimated potentials are 
computed for quantitative evaluations and is defined as:

 
where sq denotes the assumed epicardial potentials for two different heart models with geometrical nodes Q1 

and Q2 , and ŝq represents the estimated potentials at the same spatial points Q1 and Q2.
Figure 7a,b show the plot of SNR versus sRMSE applied on deterministic and Bayesian algorithms for ST 

elevated MI and increased T cases, respectively. The sRMSE values obtained in the worst case scenarios (6 dB) 

(34)sRMSE =

√

∑Q
q=1

(

sq − ŝq
)2

Q

Figure 6.  Selection of an optimum regularization parameter using L-curve criterion. (a) Plots of the residual 
norms and the solution norms, (b) Range of the � values used in the algorithm (asterisks in a and b represent the 
trade-off optimal point), (c) L-curve optimization plot for the Tikhonov solution at t = 85 ms (ST elevated case).

Figure 7.  Performance evaluation of algorithms using sRMSE compared under different levels of noise in 
forward magnetic field ((a) Case 1: ST elevated at t= 85 ms, (b) Case 2: increased T at t = 125 ms).
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for the Tikhonov method at t = 85 ms was 3.8 mV and at t = 125 ms was 8.66 mV. The Bayesian inference per-
formed well in estimating the sources in 6 dB case by reaching to an sRMSE value of 2.50 mV. Both Tikhonov 
and Bayesian results yielded constant sRMSE s of 0.94 and 0.546, respectively after the noise-levels of 12 dB.

It can be seen that both the Bayesian and Tikhonov methods take time to adjust themselves from noisy to 
less noisy conditions however VBLR always maintains similar values and hence it can be said that it works best 
even in noisy conditions. The VBLR method thus outperforms the other methods by showing good sRMSE s of 
0.5428 mV even in worst cases from 6 to 8 dB and reached to a constant sRMSE s of 0.538 mV after 8 dB.

Similarly, the VBLR showed good estimations in the second case at t = 125 ms, with sRMSE s of 0.347 mV 
for all the noise levels whereas the hierarchical Bayesian inference provided negligibly better solutions than the 
Tikhonov approach from 6 to 8 dB and reached constant sRMSE s of 0.3672 mV after 8 dB in both the methods. 
Thus we can conclude that the VBLR method provides far better estimates of sRMSE values than Tikhonov and 
Bayesian methods in noisy cases.

Another metric called Correlation Co-efficient (CC) used in the study is tabulated in Table 1. The results of 
CC obtained for ST elevated case reached to 0.14 which is a very low value and it got improved by 1.7 times in 
the Bayesian approaches under noisy conditions.

Along with this, the temporal RMSEs are evaluated to check the performances of the estimated epicardials 
with respect time formulated as:

Figure 8.  Reconstruction of MCG maps from the estimated epicardials of the model 2 at t = 85 ms, (a) true 
forward magnetic field intensity (pico Tesla—pT) from the epicardial potentials (milli Volts—mV) of the heart 
model 1 (shown inside the thorax), (e) utilization of MCG forward calculated magnetic field intensity from 
model 1 but the objective is to seek the unknown potentials of model 2 at t = 85 ms, (b–d) reconstructions of 
solutions estimated on model 2 for Tikhonov, Bayesian and, VBLR in noise-free environments on model 2, (f–h) 
reconstructions of solutions from model 2 for Tikhonov, Bayesian and, VBLR subjected to 8 dB SNR. (Dark/red: 
maximum magnetic field intensities, light/blue: minimum magnetic field intensities).

Table 1.  Evaluation of the inverse algorithms in terms of temporal RMSEs in mV and CC.

Condition Cases Tikhonov Bayesian VBLR

tRMSE CC tRMSE CC tRMSE CC

Noise-free Elevated ST 1.1577 0.7840 1.0091 0.8343 1.2627 0.8169

Increased T 1.6185 0.6872 1.414 0.7966 1.0917 0.7817

Noisy: 6 dB SNR elevated ST 22.6499 0.1416 21.5155 0.3832 1.2627 0.3873

Increased T 23.3212 0.2022 21.7024 0.3347 1.8068 0.3348
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As it can be observed from Table 1, the tRMSE values of the VBLR method reached to 1.807 mV for ST elevated 
case at 6 dB SNR that can be considered as a good estimate, whereas the tRMSE s of the Tikhonov and Bayesian 
yielded 22.65 mV and 21.52 mV at noisy conditions.

Figure 8a represents the true MCG (range [− 57 25] pT) mapped at 85 ms for ST elevated MI case with epi-
cardial potential spread of abnormal node (model 1 range [− 0.56 4.5] mV ) inside the torso. Now, the observed 
MCG is considered as the test data to solve the inverse problem for model 2 (shown in Fig.  8e). The results of 
the epicardial estimations for different conditions are discussed in Fig. 4. Here, we discuss the MCG forward 
reconstructions from the estimated heart activities (model 2) and the results are mapped on to the detector planes 
for field visualization. It was found that there were only small deviations in magnitudes of reconstructions from 
deterministic and Bayesian methods in noise-free conditions as shown in Fig. 8b–d.

Figure 8f illustrates the reconstruction results of Tikhonov regularization (8 dB SNR) which showed reduction 
in amplitude range [− 84 27] pT. The MCG waves reconstructed from Bayesian model handled uncertainties and 
amplitudes appeared near to the range of true maps as shown in Fig. 8g. However, the VBLR reconstructions 
(Fig. 8h) showed an improvement in the map than Bayesian method and the distribution range found was [− 51 
22] pT.

The optimal values of hyperparameters are updated in the simplistic Bayesian modeling by maximizing the 
measurement likelihood and ratio corresponding to the regularization parameter. The final RMSE measure of 
Bayesian method in elevated ST case converged to 0.5463 mV, for hyperparameters α = 6.5676 and β = 1.907E15 
in noise-free condition. For 6dB, the RMSE reached to 2.5081 mV for α = 0.0232 and β = 5.38E12. But in VBLR 
method, the distribution function q(α) known as hyperpriors is approximated using KL divergence. The hyper-
posterior mean ( Eα(α) = ĉ

d̂
 ) obtained was 0.0023 and ( Eβ ,s(βs⊤s) = 780.3) at 6 dB (lowest SNR) in ST elevated 

case. To evaluate the hypers, the optimal ratios of α
β

 are captured at different SNRs along with the converged 
RMSEs in the hierarchical Bayesian method as tabulated in Table 2. Similarly the means of hyperposteriors are 
obtained in VBLR technique to study the behaviour at uncertainty conditions. It was observed that there was 
slight improvement in the RMSE of VBLR method than the Bayesian approach. The nature of variations of α

β
 

(hierarchical Bayesian) and Eα(α) (VBLR) with respect to iterations showed similar activities; where the values 
of both ratio and hyperparameters increase in noisy signals, whereas decrease in noiseless measurements.

Conclusion
In this paper, we presented inverse problems of MCG using deterministic and probabilistic methods employed 
on two types of MI cases. The results are estimated in terms of epicardial maps from the observed MCG signals 
in noisy and noiseless conditions. In competition to the simplistic Bayesian technique, a new method called 
Variational Bayesian Linear approach is applied which contained non-stationary normal inverse-gamma priors 
that used KL divergence to approximate the posteriors. The other drawback of selecting the optimal parameter is 
addressed in Tikhonov regularization. It is shown that the problem is overcome in Bayesian models that learn the 
posteriors automatically and estimate the unknowns from prior knowledge and observations. The performance 
of VBLR method is shown to be better than the simplistic Bayesian approach since it uses varying distribution 
of priors that estimate the posteriors of heart activities which fit well using KL divergence. The current work 
on inverse algorithms has been tested on different heart shapes. Further, the method assumed zero effect of the 
conductivity profile to the magnetic measurements in the forward simulation steps, due to which, the transfer 
matrix was built to map between different heart shapes and the detectors. The complicated electrodynamic design 
of heart and torso with respiratory movements, skin conductivity profiles, bio-electric and bio-magnetic fields 
has to be modelled in future studies to mimic a realistic environment for cardiac source localization.

To avoid the inverse crime, two different geometrical models were used. The forward measurements were 
simulated from the potentials of the first heart model. The observed MCG data was tested on the different heart 
geometry (model 2) by inverting the forward matrix constructed from the first model in order to determine the 
source activities.

The current outcome of this research limits its study to the simulations and solving the inverse problems of 
MCG on different realistic heart models. The future study of this research involves localization of abnormal car-
diac sources due to the effect of other artefacts such as realistic noise levels and breathing movements with physi-
cally acquired MCG measurements. The results of this paper promise the clinicians an advantage of diagnosing 

(35)tRMSE =

√

∑T
t=1

(

st − ŝt
)2

T

Table 2.  Evaluation of hyper-posterior means with respect to RMSE at different noise levels.

SNR dB Bayesian VBLR
α
β

RMSE Eβ,s(βs
⊤
s) RMSE

8 4.714E−15 0.6004 1077.9 0.5384

10 2.65E−16 0.547 1083.9 0.5382

12 5.5E−15 0.5463 1084.2 0.5381

14 4.4E−15 0.5463 1084.2 0.5381

16 4.95E−15 0.5463 1084.2 0.5381
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the infarction region or any other cardiac-related diseases as the reconstructed heart surface potential maps on 
the myocardium. The study provides the advantage of source localization with high accuracy. This serves as an 
inspiration to design an online system for non-invasive monitoring of inverse solutions during MCG recording 
where the clinician will be able to view the unknown functional activities on the screen. However, the models 
depicted in the paper are limited only to generic models. There is a motive to obtain good quality localization for 
modeling the geometries of sources acquired from the individual Magnetic Resonance Imaging (MRIs) systems. 
Further, the inverse problems of the cardiac activations presented in this paper from the MCG signals are to be 
thoroughly investigated for the subject-specific assessments and could be validated with the recorded epicardial 
potentials of the structurally healthy hearts.

Data availability
The datasets generated during the current study are available in the ECGSIM software https:// www. ecgsim. org/ 
index. php and the computations were simulated and analysed using SCIRUN https:// www. sci. utah. edu/ cibc- 
softw are/ scirun. html.
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