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Graph partitioning 
MapReduce‑based algorithms 
for counting triangles in large‑scale 
graphs
Ahmed Sharafeldeen *, Mohammed Alrahmawy  & Samir Elmougy 

Counting number of triangles in the graph is considered a major task in many large‑scale graph 
analytics problems such as clustering coefficient, transitivity ratio, trusses, etc. In recent years, 
MapReduce becomes one of the most popular and powerful frameworks for analyzing large‑scale 
graphs in clusters of machines. In this paper, we propose two new MapReduce algorithms based on 
graph partitioning. The two algorithms avoid the problem of duplicate counting triangles that other 
algorithms suffer from. The experimental results show a high efficiency of the two algorithms in 
comparison with an existing algorithm, overcoming it in the execution time performance, especially in 
very large‑scale graphs.

Over the last decade, the size of graphs used in social networks has grown significantly due to the increase in data 
used in these networks. One of the most important problem in social networks is to analyze their large graphs 
to extract useful information. Sequential algorithms can’t deal with large graphs due to limitations in memory 
and processing capabilities. We can overcome those problems by applying parallel computing in analyzing these 
networks. One of the most popular parallel computing methods is  MapReduce1 which is the-state-of-the-art 
for processing large scale graphs and is implemented on a cluster of machines using  Hadoop2 which is an open 
source framework provided by Apache.

One of the most major problems in graph analysis is to count the number of triangles in a graph, which is 
called triangle counting. Triangle counting is considered the core in many graph analytic operations such as 
measuring clustering  coefficient3, transitivity  ratio4, triangular connectivity, k-truss5, etc. Also, there are many 
real-world applications based mainly on triangle counting such as spam detection, Facebook, and  LinkedIn6.

In this paper, we propose two new MapReduce algorithms to count triangles in large scale graphs. Our 
algorithms partition a large graph into sub-graphs, then count triangles in each sub-graph. After partitioning 
the graph, every triangle in the graph is classified into one of three categories according to the number of the 
partitioned sub-graphs containing that triangle. The three triangle categories are named Type-1, Type-2, and 
Type-3 triangle.

We evaluate our two MapReduce algorithms locally in a single node running Hadoop, and also distributed in a 
cluster of 15 nodes running Hadoop. Experimental results show that our two algorithms have better performance 
in execution time than the existing algorithm, especially for very large-scale graphs.

Paper organization. Section “Related works“ discusses previous work related to triangle counting. Sec-
tion “MapReduce” describes MapReduce framework. Section “Triangles count” discusses the triangle counting 
problem. Section “Our proposed algorithm” presents our proposed algorithms. Section “Experimental results” 
shows the experimental results, and conclusions are described in “Conclusion” section .

Related works
There is a lot of research work for counting the number of triangles in a large-scale graph. Cohen  algorithm7 was 
the first MapReduce algorithm for counting triangles in a graph. In Cohen algorithm, all 2-path edges; e.g., (u, v) , 
and (u,w) ; are detected first, based on ordering of nodes (i.e. degree of nodes); then, a search is made for edges 
that connect to this 2-path to form a triangle, e.g., (v,w) . The limitation of this algorithm is to cause network 
overload and increase computation time. In Suri et al.8, a discussion of sequential algorithms (i.e., NodeIterator, 
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and NodeIterator++) for counting triangles is presented; then, they show how to convert these algorithms to MapReduce 
algorithms. In addition, they developed a MapReduce-based graph partitioning algorithm for counting the number of 
triangle called GP algorithm. GP algorithm also causes network overload and increases computation time. Moreover, it 
computes triangles redundantly if two or three nodes of the triangle exist in the same partition. Park et al.9 developed an 
efficient algorithm, called Triangle Type Partition (TTP), for counting triangles in a graph. TTP algorithm enhances the 
performance of GP algorithm as well as reducing the number of frequently computed triangles. However, TTP algorithm 
computes triangle redundantly if a triangle three nodes exist in the same partition.  In10, authors proposed a randomized 
MapReduce algorithm for counting triangles in a large graph called Colored Triangle Type Partition (CTTP). The idea 
of CTTP is partitioning the graph at hand into sub-graphs based on randomized coloring function. Another study by 
Arifuzzaman et al.11 proposed a Message Passing Interface (MPI)-based distributed memory parallel algorithm for 
counting triangles in massive network, called PATRIC. PATRIC algorithm is divided into two phases: Computing bal-
anced load, and Counting triangles. In the first phase, the graph is partitioned into sub-graphs based on the number of 
processors; so that, computation is balanced between workers in the cluster. In the second phase, each worker counts the 
triangles in it. After all workers count triangles in their own sub-graph, all counts from workers are merged into a single 
count by MPI reduce function. Authors used their own modified sequential algorithm, called NodeIteratorN, which 
is a modified version of NodeIterator++. A novel streaming parallel method, called REPT, to approximately compute 
the number of triangles in large-scale graphs is proposed by Wang et. al.12. Randomly, it divides the graph into several 
processors, then each processor computes the number of triangles in its sub-graph. Hu et all.13 presented a fine-grained 
(i.e. little size) task distribution method for counting the number of triangles in the graph using GPU. This method 
overcomes the both of load imbalance and inefficient memory access problems on GPU.  In14, The authors proposed an 
algorithm called TRUST, to count the number of triangles using GPU that is based on hashing as well as vertex-centric 
approach. Another study, proposed by Ghosh et. al.15, employed MPI to count the number of triangles in the graph. 
There is also a few researches in a problem that is similar to the triangle counting problem, called rectangle  counting16–21.

MapReduce
MapReduce1 is a parallel distributed programming model for processing huge amounts of data (i.e. size is in 
Terabytes or Petabytes) on large clusters of commodity machines. In this section, we give a brief overview of 
MapReduce algorithm and how it works.

MapReduce is inspired from Map and Reduce operations in functional programming languages. Using 
MapReduce, programmer can write a distributed application easily. The most characteristic that MapReduce pro-
vides is fault-tolerance, high scalability, and low cost.  Hadoop2 is an open source framework for implementing a 
MapReduce on cluster of machines. Hadoop has two major layers: Computation layer (MapReduce), and Storage 
layer (Hadoop Distributed File System [HDFS]). Inputs and outputs of MapReduce are stored in ≺ key; value ≻ 
pairs. MapReduce model consists of three phases: Map, Shuffle, and Reduce. First, Map Phase is written by the 
programmer. Each Map instance, also called Mapper, receives a line from an input file on HDFS in the form 
of ≺ key; value ≻ pairs, where key is start position of line in the file, and value is line content. Output of Map 
instance is a number of ≺ key; value ≻ pairs. However, Map instance may have no output if required. The Shuffle 
Phase is not written by the programmer, as it is done automatically by the framework. The input of the Shuffle 
phase is the output of Map phase. Shuffle Phase sorts the output of Map phase, and then merge all its elements 
value; that have the same key as ≺ key; {value1, value2, . . . } ≻ . Finally, Reduce Phase is written by the program-
mer. Each Reduce instance, also called Reducer, receives one of the output pairs ≺ key; {value1, value2, . . . } ≻ 
of the Shuffle phase as its input. The output of Reduce phase is a number of ≺ key; value ≻ pairs that are stored 
on HDFS. An example of how a MapReduce work is shown in Fig. 1.

Triangles count
List of notations used in this paper is shown in Table 1. Let G(V ,E) be an undirected graph, where V is set of verti-
ces, E is set of edges, n = |V | , and m = |E| . We define the set of Neighbors of vertex v as τ(v) = {u ∈ V |(v, u) ∈ E} , 
and the degree of vertex v as d(v) = |τ(v)| . A triangle, �(u, v,w) , in a graph G is any three vertices in the graph 
which are connected to each other, i.e. (u, v), (v,w), (u,w) ∈ E . Counting the number of the triangles in the graph 

Figure 1.  An illustrative example of how MapReduce works.
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is called triangle counting. There are many sequential algorithms to count triangles in the graph such as NodeIt-
erator  algorithm8, NodeIterator++  algorithm8, Edge-Iterator  algorithm22, Forward  algorithm22, and Compact-
Forward  algorithm22. NodeIterator algorithm is a simple algorithm which identifies neighbors of each vertex, then 
counts the number of edges among vertex’s neighbors. The running time of NodeIterator is O

(
∑

v∈V (d(v))2
)

8. 
While NodeIterator++ algorithm is a modified version of NodeIterator. The problem of NodeIterator is to count 
triangle six times. When it passes by a vertex, it selects the edge connected to it, so each edge is selected two 
times as it has two end vertices, so for a triangle the three edges are counted six times. NodeIterator++ avoids 
this problem by using a total order on all of the vertices denoted by ≻ , e.g. u ≻ v if d(u) > d(v) . The running time 
of NodeIterator++ is O

(

m3/2
)

8. Another triangle counting algorithm is Edge-Iterator algorithm which iterates 
each edge (u, v) ∈ E , and computes the neighbors of source vertex u and target vertex v, then counts the common 
neighbors of u and v. Forward algorithm is another sequential algorithm for counting triangles in the graph which 
is an enhanced version of Edge-Iterator which doesn’t compare all neighbors of two adjacent vertices. The run-
ning time of Forward algorithm is O

(

m3/2
)

23 and its memory space has θ(3m+ 3n)23. An enhancement version 
of Forward algorithm is Compact-Forward algorithm shown  in23 that reduces memory space from θ(3m+ 3n) 
to θ(2m+ 2n) . In another hand, there are many MapReduce algorithms to count triangles in an enormous graph 
as mentioned in “Related work” section.

Our proposed algorithm
We propose two enhanced MapReduce algorithms to count the number of triangles in large-scale graphs. Those 
algorithms avoid duplication problem in TTP algorithm. Before, we propose two algorithms, some terms are 
required to understand those algorithms. In our work, each triangle in the graph �(u, v,w) can be classified 
either Type-1, Type-2 or Type-3 where:

• Type-1 the three nodes of the triangle are in the same partition, e.g. �(1, 2, 3) shown in Fig. 2.
• Type-2 two nodes of a triangle are in the same partition, and the third node exists in a different partition, e.g. 

�(2, 3, 4) shown in Fig. 2.
• Type-3 each of the three nodes of the triangle exists in different partitions, e.g. �(3, 4, 10) shown in Fig. 2.

Moreover, there are three types of partitioning a graph into a set of sub-graphs which are 1-partition, 2-par-
tition or 3-partition. These three types represent the three types of the triangle that can be defined as follows:

• 1-partition 1-partition graph is a sub-graph which is denoted by Gi = (Vi ,Ei) , where 1 ≤ i ≤ ρ ; i.e. 
V =

⋃ρ
i=1 Vi . For every vertex v in this sub-graph, the partition number of this vertex, P(v) , equals i. For 

example, for ρ = 4 , the 1-partition sub-graphs of the graph shown in Fig. 2 are G1 , G2 , G3 , and G4 as shown 
in Fig. 3. In general, for any graph partitioned in ρ sub-graphs, there are ρ 1-partition sub-graphs.

• 2-partition 2-partition graph is denoted by Gij =
(

Vij ,Eij
)

 for 1 ≤ i < j ≤ ρ . This graph contains every vertex 
v of the graph if the partition number of this vertex, P(v) , equals i or j. For example, for ρ = 4 , the 2-partition 
sub-graphs of the graph shown in Fig. 2 are G12 , G13 , G14 , G23 , G24 , and G34 as shown in Fig. 4. In general, for 

any graph divided into ρ sub-graphs, there are 
(

ρ

2

)

 2-partition sub-graphs.
• 3-partition 3-partition sub-graph is denoted by Gijk =

(

Vijk ,Eijk
)

 for 1 ≤ i < j < k ≤ ρ which is a sub-graph 
with partition number of every vertex in such graph, P(v) , equals to i, j or k. For example, for ρ = 4 , the 
3-partition sub-graphs of the graph shown in Fig. 2 are G123 , G124 , G134 , and G234 as shown in Fig. 5. In gen-

eral, for any graph separated into ρ sub-graphs, there are 
(

ρ

3

)

 3-partition sub-graphs.

Table 1.  Notations used in this paper.

Symbol Description

G(V ,E) Undirected graph with |V | vertices, and |E| edges.

(u, v) An edge between u, v; (u, v) ∈ E.

n Number of vertices.

m Number of edges.

τ(u) Set of neighbors of a node u.

d(u) Number of neighbors of a node u.

ρ Number of partitions.

P(u) Partition number of a node u.

�(u, v,w) Triangle; i.e. (u, v), (u,w), (v,w) ∈ E.

Gi = (Vi ,Ei) Sub-graph of G with Vi vertices; 1-partition.

Gij =
(

Vij ,Eij
)

Sub-graph of G with Vij = Vi ∪ Vj , where i  = j ; 2-partition.

Gijk =
(

Vijk ,Eijk
)

Sub-graph of G with Vijk = Vi ∪ Vj ∪ Vk , where i  = j  = k ; 3-partition
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One three partition. Our first proposed MapReduce-based algorithm is One Three Partition (OTP). The 
algorithm is shown in listing Algorithm 1. OTP algorithm partitions a graph into either 1-partition, or 3-parti-
tion sub-graphs. Then, it counts the number of triangles in each sub-graph.

Figure 2.  Graph input and partition example, ρ = 4.

Figure 3.  1-partition of the graph in Fig. 2.

Figure 4.  2-partition of the graph in Fig. 2.
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An edge (u, v) is called inner-edge if both node u and v exist in the same partition; otherwise is called cross-
edge. As mentioned before, TTP algorithm processed Type-1 redundantly while Type-2, and Type-3 processed 
only once. Type-3 only contains cross-edges while Type-2 contain inner-edges and cross-edges, and Type-1 
contains only inner-edges. Hence, OTP avoids duplication problem by treating Type-1 and Type-2 at the same 
time in 1-partition sub-graphs and Type-3 alone in 3-partition sub-graphs. OTP divides graph into ρ equal 
sized sub-graphs. Since, Type-2 triangle contains one inner-edge and two cross-edges; where each cross-edge 
is included in two sub-graphs. So, cross-edges are converted to inner-edges by duplicating cross-edges in both 
two sub-graphs according to partition number of two vertices of those edges. Therefore, OTP algorithm treats 
Type-2 triangle as Type-1 triangle where both types belong to 1-partition sub-graphs. For example, �(1, 2, 3) is 
a Type-1 triangle, P(1) = P(2) = P(3) = 1 , so (1, 2) , (1, 3) , and (2, 3) are only in G1 ; while �(2, 3, 4) is a Type-2 
triangle, where the inner-edge (2, 3) , P(2) = P(3) = 1 , presents only in G1 , and cross-edges (2, 4) and (3, 4) 
[ P(2) = P(3) = 1 and P(4) = 2 ] are in both G1 and G2 . So, we put each edge of Type-1 and Type-2 to a single 
sub-graph according to partition number of the vertex and if partition number of two nodes are different, edge is 
put in two sub-graphs as shown in Fig. 6. 3-partition sub-graphs of OTP algorithm contain only Type-3 triangles 

Figure 5.  3-partition of the graph in Fig. 2.
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(i.e. cross-edges only). For example, �(3, 4, 10) is a Type-3 triangle where the cross edges (3, 4) , (3, 10) , and (4, 10) 
present only in G124 as shown in Fig. 7.

OTP algorithm consists of Map and Reduce functions. In the Map function (Lines 1–9), a graph is divided into 1-par-
tition and 3-partition sub-graphs. Each edge of the graph is sent to Map instance as input. If edge (u, v) is inner-edge, 
the output pair of Map instance is ≺ P(u); (u, v) ≻ (Line 2), where P(u) returns an integer within [1, ρ] that refers to 
partition number of a node u. This mean that the edge (u, v) is in GP(u) . If edge (u, v) is a cross-edge, then this edge may 
be belonging to 1-partition or 3-partition sub-graph as explained earlier. So, we treat it as 1-partition and distribute this 
edge to the two different 1-partition graphs (Line 2 and Line 4) and also distribute it as a 3-partition sub-graph (Line 9). 
So, the output of Map instance will be ≺ P(u); (u, v) ≻ (Line 2), ≺ P(v); (u, v) ≻ (Line 4), and ≺

(

i, j, k
)

; (u, v) ≻ , if 
{P(u), P(v)} belongs to Gijk for all 1 ≤ i < j < k ≤ ρ (Line 9). For example, in Fig. 2, if Map instance input is (2, 4) , where 
P(2) = 1 and P(4) = 2 , the output will be ≺ 1; (2, 4) ≻ , ≺ 2; (2, 4) ≻ , ≺ (1, 2, 3); (2, 4) ≻ , and ≺ (1, 2, 4); (2, 4) ≻ . 
The output of Map instance will be as ≺ key; value ≻ , where key refers to the graph number (1-partition or 3-parti-
tion) and value refers to the edge belonging to such graph. After all map instances complete, all values of map outputs 
are combined together if they have the same key as mentioned in “MapReduce” section. In the reduce function (Lines 
10–24), triangles are counted and identified in each sub-graph. The input of each reduce instance is a graph number 
(1-partition or 3-partition) as a key and all edges belonging to this graph as a value. The function in the reduce step is 
based on Compact-forward  algorithm23 in which it is parallelized to enhance the performance time of the algorithm. 
For each edge (u, v) in the graph, search for a common neighbor w for both u and v; i.e. w ∈ τ(u) and w ∈ τ(v) . The 
output of reduce instance is ≺ (u,w, v); 1 ≻ ; if a common neighbor w is found between u and v (Lines 21–23) to avoid 
processing the edges of triangle three times. To avoid the concurrency problem, we use the lock mechanism in Line 22 to 
avoid race condition problem that may arise when two different iterations write their own result to the same location of 
the file. For example, in Fig. 2, if the input of reduce instance is ≺ (1, 2, 4); {(2, 4), (3, 4), (3, 10), (4, 10)} ≻ , the output 
will be ≺ (3, 4, 10); 1 ≻ only, not ≺ (4, 3, 10); 1 ≻ or ≺ (3, 10, 4); 1 ≻ . In lines 16–19, we search for the next minimum 
neighbor of two nodes of the edge if this neighbor is not common between source and destination vertices of the edge.

Analysis. 

Lemma 1 Each triangle in the graph is counted exactly once by OTP.
Proof Each of Type-1 and Type-2 triangles appears only once in one of the ith 1-partition sub-graph Gi . 
Since, Type-1 (u,w, v) triangle, i.e. P(u) = P(w) = P(v) , appears only in GP(u) , i.e. u,w, v ∈ GP(u) , and Type-2 
(u,w, v) triangle, i.e. P(u) = P(w) and P(w)  = P(v) , appears only in GP(u) , i.e. (u,w), (w, v), (u, v) ∈ GP(u) 
and (w, v), (u, v) ∈ GP(v) . Therefore, Type-1 and Type-2 triangles are counted correctly and only once. 
Each one of Type-3 triangles appears only once in one of the 3-partition sub-graphs. Since, Type-3 (u,w, v) 

Figure 6.  1-partition of the graph in Fig. 2 using OTP.

Figure 7.  3-partition of the graph in Fig. 2 using OTP.
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triangle, i.e. P(u)  = P(w)  = P(v) , appears only in GP(u)P(v)P(w) , where all of P(u), P(v), P(w) ∈ [1, ρ] ; i.e. 
(u,w), (w, v), (u, v) ∈ GP(u)P(v)P(w) . Therefore, Type-3 triangles also are counted correctly and only once. Thus, 
all triangles in the graph are counted exactly once.   �

Lemma 2 Expected number of all map instances output of OTP is m
(

ρ − 1+ 1
ρ

)

= O(mρ).

Proof The proof consists of two consequent steps. In the first step, if a map instance input is an inner-edge, then 
the output is Gi where i ∈ [1, ρ] and i is the partition number of this edge. Therefore, every inner-edge in the 
graph appears only in one sub-graph. The probability that an edge is an inner-edge is 1

ρ
 . So, the probability of all 

inner-edge in the graph is m
ρ

 . Therefore, the expect size of inner-edges output is:

In the second step, if a map instance input is a cross-edge, then the output is both Gi and Gijk , where 
1 ≤ i < j < k ≤ ρ . Since, the output of every cross-edge for Gi is generated two times and the output of every 
cross-edge for Gijk is (ρ − 2) times. So, the total output of every cross-edge is 2+ (ρ − 2) = ρ times. Hence, the 
probability of cross-edge is 

(

1− 1
ρ

)

m =
ρ−1
ρ

m . Therefore, the expected number of cross-edges output is:

From the above two steps, we include that the expected number of all map instances output of OTP is:

  �

Lemma 3 Expected number of each reduce instance input is O
(

m
ρ2

)

.

Proof Each reduce instance input is either ≺ (i);Ei ≻ or ≺
(

i, j, k
)

;Eijk ≻ . The probability that two nodes of the 
edge are in a specific partition is 1

ρ
× 1

ρ
= 1

ρ2
 . For the 1-partition sub-graph, it contains inner-edges and cross-

edges of the graph. Since the expected number of two nodes of inner-edges in 1-partition sub-graph equals 
1
ρ
× 1

ρ
= 1

ρ2
 , and the expected number of two nodes of cross-edges in the same partition equals 

1
ρ
× 1

ρ
+ 1

ρ
× 1

ρ
= 2

ρ2
 . Hence, for m edges, the expected number of two nodes of the inner-edges (cross-edges) 

in the same partition equals m× 1
ρ2

= m
ρ2

 ( m× 2
ρ2

= 2m
ρ2

 ). Therefore, the expected number of edges in 1-parti-
tion is:

For the 3-partition, it contains cross-edge only. The number of two nodes of the edge in 3-partition equals 
(

3
2

)

 ; 

hence, the expected number of edges in 3-partition is:

From the above two equations, we include that for any input, reduce instance takes O
(

m
ρ2

)

 .   �

Lemma 4 The running time of reduce instance of sparse graph is O(m).

Proof The running time of step 11 is O(m) , the running time of step 12 is O(lgm + the running time of steps 
13-24), the running time of step 13 is O

(

k lg k
)

 (Assume, the number of neighbors is k; using Heap Sort Algo-
rithm), the running time of step 14 is O(1) , and the running time of steps 15-24 is O(k) . Therefore, the running 
time of reduce instance is:

(1)
m

ρ
× 1 =

m

ρ

(2)
ρ − 1

ρ
m× ρ = (ρ − 1)m

(3)
m

ρ
+ (ρ − 1)m = m

(

ρ − 1+
1

ρ

)

= O(mρ)

(4)
m

ρ2
+

2m

ρ2
=

3m

ρ2
= O

(

m

ρ2

)

(5)
(

3
2

)

×
m

ρ2
=

3m

ρ2
= O

(

m

ρ2

)

m+ lgm+ k lg k + 1+ k ≤ m+m+ k lg k + 1+ k

= 2m+ k lg k + 1+ k

≤ 2m+ k lg k + 1+ k lg k, for k ≥ 2

= 2m+ 2k lg k + 1

≤ 2m+ 2k lg k +m, form ≥ 1

= O
(

m+ k lg k
)
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For dense graph, k = m
2  , then the running time of reduce instance is O

(

m lgm
)

.
For sparse graph, k < m , then the running time of reduce instance is O(m).
From Lemma 3, reduce instance takes O

(

m
ρ2

)

 as input, and assume that the graph is a sparse graph; Therefore, 

the running time of reduce instance is O
(

m
ρ2

)

 .   �

Theorem 1 The running time of reduce instance of OTP algorithm is better than TTP algorithm.

Proof From Lemma 4 (Assume graph is a sparse graph), the running time of OTP algorithm is O
(

m
ρ2

)

 . TTP 

algorithm also takes O
(

m
ρ2

)

 as input and the running time of reduce instance is O
(

m3/2
)

9. Hence, the running 

time of reduce instance in TTP algorithm is O
(

(

m
ρ2

)3/2
)

 . Therefore, the running time of reduce instance of 

OTP algorithm is better than TTP algorithm.   �

Enhanced two three partition. Our second proposed MapReduce algorithm is called Enhanced Two 
Three Partition (ETTP). The algorithm is shown in listing Algorithm 2. The algorithm partitions the graph into 
number of equal sized sub-graphs in which each sub-graph can be either 2-partition, or 3-partition sub-graph. 
Then, it counts and identifies triangles in each sub-graph.



9

Vol.:(0123456789)

Scientific Reports |          (2023) 13:166  | https://doi.org/10.1038/s41598-022-25243-w

www.nature.com/scientificreports/

ETTP algorithm is an improved version of TTP algorithm which avoids the duplication problem, that TTP 
algorithm suffers from, through counting Type-1 only once in the first 2-partition it belongs to, as will be shown 
later. Since, Type-1 triangles are identified in 1-partition or 2-partition sub-graphs where the three vertices of 
the triangle belong to. Therefore, ETTP algorithm treats Type-1 (i.e. inner-edges) and Type-2 (i.e. inner-edges 
and cross-edges) triangles at the same time in the 2-partition sub-graphs while it treats Type-3 triangles alone in 
3-partition sub-graphs. In ETTP algorithm, 2-partition sub-graph, Gij for 1 ≤ i < j ≤ ρ , contains edges (u, v) in 
which partition number of two nodes of those edges equals i or j; i.e. {P(u), P(v)} ⊆ Gij . For example, �(1, 2, 3) 
is a Type-1 triangle, P(1) = P(2) = P(3) = 1 , so (1, 2) , (1, 3) , and (2, 3) are in G12 , G13 and G14 ; while �(2, 3, 4) 
is a Type-2 triangle, where inner-edge (2, 3) , P(2) = P(3) = 1 , is in G12 , G13 and G14 , and cross-edges (2, 4) , and 
(3, 4) are in G12 ; as shown in Fig. 4. Moreover, 3-partition graph of ETTP, Gijk1 ≤ i < j < k ≤ ρ , contains only 
cross-edges in which partition number of two nodes of these edges equals i, j, or k; i.e. {P(u), P(v)} ⊆ {i, j, k} . For 
example, �(3, 4, 10) is a Type-3 triangle, where (3, 4) , (3, 10) , and (4, 10) present only in G124 as shown in Fig. 7. 
Therefore, 3-partition graph of ETTP should be used to count Type-3 triangles of the graph.

ETTP consists of Map and Reduce functions. In the map function (Lines 1–11), a graph is divided into 
both 2-partition and 3-partition sub-graphs. Each edge of the graph is sent to Map instance as input. If edge 
(u, v) is an inner-edge, the output pair of Map instance is ≺

(

i, j
)

; (u, v) ≻ if {P(u), P(v)} belongs to Gij for all 
1 ≤ i < j ≤ ρ (Lines 2–5). For example, in Fig. 2, if Map instance input is (2, 3) , where P(2) = P(3) = 1 , the 
output is ≺ (1, 2); (2, 3) ≻ , ≺ (1, 3); (2, 3) ≻ and ≺ (1, 4); (2, 3) ≻ . If edge (u, v) is a cross-edge, then this edge 
may be belonging to 2-partition or 3-partition graph. So, we treat it as 2-partition and distribute this edge to 
all 2-partition sub-graphs to which it belongs and also distribute it as 3-partition graph. So, the output of Map 
instance is ≺

(

i, j
)

; (u, v) ≻ if {P(u), P(v)} belongs to Gij for all 1 ≤ i < j ≤ ρ (Lines 2–5), and ≺
(

i, j, k
)

; (u, v) ≻ 
if {P(u), P(v)} belongs to Gijk for all 1 ≤ i < j < k ≤ ρ (Lines 7–11). For example, in Fig. 2, if Map instance input 
is (2, 4) , where P(2) = 1,P(4) = 2 , the output is ≺ (1, 2); (2, 4) ≻ , ≺ (1, 2, 3); (2, 4) ≻ and ≺ (1, 2, 4); (2, 4) ≻ . 
Thus, the output of Map instance is ≺ key; value ≻ , where key refers to the graph partition number (2-partition 
or 3-partition) and value refers to the edge belonging to that graph. After all map instances complete, all values 
of map outputs are aggregated together if they have the same key as mentioned in “MapReduce” section. In the 
reduce function (Lines 12–31), triangles are counted and identified in each sub-graph. The input of each reduce 
instance is the graph partition number (2-partition or 3-partition) as a key and all edges belonging to this graph as 
a value. Reduce instance algorithm of ETTP is also based on Compact-forward algorithm. For each edge (u, v) in 
the graph, search for a common neighbor w in τ(u) and τ(v) . If w’s id is between u’s and v’s ids (i.e. w ≺ u, v ) (Line 
23) and the triangle is a Type-1 triangle (Line 24), then it counts the triangle only once when the partition number 
of vertex, P(u) , equals to i and 

(

j = i + 1
)

 (i.e. the first 2-partition sub-graph belongs to it), or if this triangle exists 
in the last partition [i.e. P(u) = ρ ], then the triangle is counted and identified only in the last sub-graphs [i.e. 
P(u) = ρ and j = i + 1 ] (Lines 25–27). So, Lines 24–27 of the algorithm count Type-1 triangle only once. For 
example, in Fig. 2, although �(1, 2, 3) is a type-1 triangle that exists in G12 , G13 , and G14 , the algorithm considers 
it only in G12 only. Also, �(10, 11, 12) is a type-1 triangle where the partition number of its three nodes is ρ in 
which it exists in G14 , G24 , and G34 . The algorithm identifies it only in the last sub-graph G34 . If w’s id is between 
u and v (i.e. w ≺ u, v ) (Line 23) and the triangle is not Type-1 (Line 28), then it counts this triangle (Line 30). For 
example, in Fig. 2, if the input of reduce instance is ≺ (1, 2); {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (4, 5), (5, 6)} ≻ , the 
output will be ≺ (1, 2, 3); 1 ≻ (i.e. Type-1 triangle), and ≺ (2, 3, 4); 1 ≻ (i.e. Type-2 triangle); if the input of reduce 
instance is ≺ (1, 2, 4); {(2, 4), (3, 4), (3, 10), (4, 10)} ≻ , the output will be ≺ (3, 4, 10); 1 ≻ (i.e. Type-3 triangle).

Analysis. 

Lemma 5 Each triangle in the graph is counted exactly once by ETTP.
Proof Each Type-1 triangle, �(u, v,w) , appears in 2-partition graph. So, Type-1 triangle is counted only once 
in the first sub-graph Gij it belongs, [ j = i + 1 and i = P(u) ] or in the last sub-graph when the partition number 
of three nodes of the triangle belongs to the last partition [ j = i + 1 and P(u) = ρ ]. So those two conditions 
allow Type-1 triangles to count only once. While, each one of Type-2 triangle, �(u, v,w) , appears only once in 
2-partition, GP(u)P(w) , where P(u) < P(w) . Moreover, Type-2 triangle appears only in 2-partition sub-graph not 
3-partition sub-graph because there is an inner-edge in the triangle of Type-2 that exists only in 2-partition sub-
graph. Therefore, Type-2 is counted correctly. On the other hand, Type-3 triangles appear only once in 3-partition 
sub-graphs. Therefore, ETTP counts the triangles correctly and only once.   �

Lemma 6 Expected number of all map instances output of ETTP is m(ρ − 1) = O(mρ).

Proof The proof consists of two consequent steps. First, if map instance input is an inner-edge (u, v) , then the 
output is Gij where i, j ∈ [1, ρ], i �= j , and partition number of two nodes belongs to i or j. Therefore, the output 
of every inner-edge is ρ − 1 time. The probability that an edge is inner-edge is 1

ρ
 . So, probability of all inner-edge 

in the graph is m
ρ

 . Therefore, the expect size of inner-edges output is:

Second, if map instance input is cross-edge, then the output is both Gij and Gijk where i, j, k ∈ [1, ρ] and i  = j  = k . 
Then, the output of every cross-edge for Gij is generated one time and the output of every cross-edge for Gijk is 

(6)
m

ρ
× (ρ − 1)
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(ρ − 2) times. So, total output of every cross-edge is 1+ (ρ − 2) = ρ − 1 times. The probability of cross-edge is 
(

1− 1
ρ

)

m =
(ρ−1)

ρ
m . Therefore, the expected number of cross-edges output is:

From the above two steps, we include that the expected number of all map instances output of ETTP is:

  �

Lemma 7 Expected number of each reduce instance input is O
(

m
ρ2

)

.

Proof Reduce instance input is ≺
(

i, j
)

;Eij ≻ or ≺
(

i, j, k
)

;Eijk ≻ . The probability that two nodes of the edge are 
in a specific partition is 1

ρ
× 1

ρ
= 1

ρ2
 . For the 2-partition, it contains inner-edges and cross-edges of the graph. 

Since the expected number of two nodes of inner-edges in 2-partition equals 1
ρ2

+ 1
ρ2

= 2
ρ2

 , and the expected 
number of two nodes of cross-edges in the same partition equals 1

ρ2
 . Hence, for m edges, the expected number 

of two nodes of inner-edges in the same partition equals m× 2
ρ2

= 2m
ρ2

 , and the expected number of two nodes 
of cross-edges in the same partition equals m× 1

ρ2
= m

ρ2
 . Therefore, the expected number of edges in 2-partition 

equals:

For the 3-partition, it contains cross-edge only. The number of two nodes of the edge in 3- partition equals 
(

3
2

)

 . 

Hence, the expected number of edges in 3-partition equals:

From the above two equations, we include that for any input, reduce instance takes O
(

m
ρ2

)

 .   �

Lemma 8 The running time of reduce instance of sparse graph is O(m).

Proof It’s already proofed in Lemma 4. From Lemma 7, reduce instance takes O
(

m
ρ2

)

 as input, and assume graph 

is a sparse graph; Therefore, the running time of reduce instance is O
(

m
ρ2

)

 .   �

Theorem 2 The running time of reduce instance of ETTP algorithm is better than TTP algorithm.

Proof From Lemma 8 (Assume graph is a sparse graph), the running time of ETTP algorithm is O
(

m
ρ2

)

 . TTP 

algorithm also takes O
(

m
ρ2

)

 as input and running time of reduce instance is O
(

m3/2
)

9; hence, the running time 

of reduce instance in TTP algorithm is O
(

(

m
ρ2

)3/2
)

 . Therefore, the running time of reduce instance of ETTP 

algorithm is better than TTP algorithm.   �

Experimental results
In this section, we present and discuss the experimental results of our algorithms. We ran our two algorithms 
on a set of datasets found in  SNAP24 and compared their running time with TTP algorithm. The experiments 
are divided into two parts. In the first part, the three algorithms run locally on a single node running Hadoop 
and in the second part, the three algorithms run in a distributed made on a cluster of machines having Hadoop 
running on them. Table 2 shows the basic characteristic of the datasets used in the experiments.

Single node. In the first set of experiments, the three algorithms are run on a single machine with Intel Core 
i5 processor, and 4GB RAM. This machine has Hadoop software running on it. Table 3 shows the running times 
of our two algorithms and TTP algorithm on this single node using a fixed number of partitions ( ρ = 20 ). From 
Table 3, we notice that our two algorithms, OTP and ETTP, always have running times smaller than that of TTP 
algorithm. In the case of big datasets with very high number of nodes and edges such as Brightkite_edges dataset, 
we notice that our two algorithms are much clearly faster than TTP algorithm, while OTP algorithm has better 

(7)
(ρ − 1)

ρ
m× (ρ − 1) =

(ρ − 1)2

ρ
m

(8)
m

ρ
(ρ − 1)+

(ρ − 1)2

ρ
m = m(ρ − 1)

(

1

ρ
−

ρ − 1

ρ

)

= m(ρ − 1) = O(mρ)

(9)
2m

ρ2
+

m

ρ2
=

3m

ρ2
= O

(

m

ρ2

)

(10)
(

3
2

)

×
m

ρ2
=

3m

ρ2
= O

(

m

ρ2

)
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execution time than ETTP algorithm. Since, TTP algorithm takes 39.25 minutes, while ETTP algorithm takes 
10.08 minutes, and OTP algorithm takes only 9.1 minutes. As can also be seen in the CA-CondMat dataset, OTP 
algorithm has a better performance time than ETTP algorithm which improved by almost 11 minutes. Hence; as 
expected, our two algorithms show remarkable improvement in running time as the OTP algorithm almost out-
performed the ETTP algorithm. Moreover, to demonstrate the robustness of the proposed algorithms compared 
to TTP algorithm, we study the effect of different ρ values on the three algorithms on ca-HepTh dataset and ego-
Facebook dataset as shown in Fig. 8. From Fig. 8, we notice that the running times of TTP and ETTP algorithms 
change when ρ changes while the running time of OTP is nearly constant. Moreover, the running time of OTP 
algorithm outperformed ETTP and TTP algorithms using different ρ values while ETTP algorithm is better than 
TTP algorithm. Thus, it can be concluded that OTP gives a better result than ETTP and TTP algorithms when 
applied on bigger datasets running on a smaller cluster.

Multi node. In the second set of experiments, the three algorithms are run on a cluster of 15 nodes (one 
master node and 14 slaves) running Hadoop framework. The 15 nodes are homogeneous and each node is a 
machine with Intel Core Quad processor, and 3.7 GB RAM. We run our two algorithms on the cluster and 
compare the results with TTP algorithm as shown in Table 4 with ρ = 20 . From Table 4, we notice that both our 
two algorithms are better than TTP algorithm. In the case of big dataset such as soc-Epinions dataset shown in 
Table 4, we notice that our two algorithms are much faster than TTP algorithm, and ETTP algorithm has better 
performance time than OTP algorithm. Therefore, our experimental results show that our two algorithms are 
faster than TTP algorithm, and OTP algorithm has better performance time than ETTP algorithm in smaller 
cluster. Also, we study the effect of number of partitions on the running times of the three algorithms applied 
in ca-HepTh dataset and wiki-Vote dataset as shown in Fig. 9. The figure shows that OTP and ETTP is more 
efficient than TTP algorithm when applied with different ρ partitions.

Finally, we evaluate the workload of OTP, ETTP, and TTP as well in terms of the number of shuffles and the 
number of reducers as shown in Fig. 10. The figure shows that OTP has less workload than both ETTP and TTP. 
However, ETTP is better, as concluded earlier, and recommend to use in a large cluster of machines.

Conclusion
Triangle counting is used significantly in many applications especially in social network analytics. Many research-
ers presented algorithms to solve this problem, but those algorithms can’t solve the problem properly due to the 
huge data. So, researchers use parallel algorithms over distributed frameworks (e.g. Hadoop MapReduce) to solve 
the problem as it is hard to use sequential algorithms to solve the problem. We use parallel algorithms to solve the 
problem, where we proposed two algorithms based on MapReduce parallel computing and graph partitioning 
to significantly enhance the time performance. The two proposed algorithms, ETTP and OTP, avoid repeated 
triangle counting by identifying each triangle only once in the graph. The experimental results show that ETTP 
and OTP algorithms give better execution time than the previous MapReduce algorithms, where ETTP is much 
better and recommended over OTP algorithm in a large cluster of machines. In the future, we plan to improve 
the performance of the proposed algorithms as well as evaluating the proposed algorithms on large datasets.

Table 2.  Characteristic of used datasets.

Dataset Nodes Edges Triangles

wiki-Vote 7115 103689 608389

ego-Facebook 4039 88234 1612010

p2p-Gnutella08 6301 20777 2383

AS-733 6474 13895 6584

ca-AstroPh 18772 396160 1351441

ca-HepTh 9877 51971 28339

CA-HepPh 12008 237010 3358499

Brightkite_edges 58228 428156 494728

Email-Enron 36692 367662 727044

p2p-Gnutella31 62586 147892 2024

soc-Epinions 75879 508837 1624481

CA-CondMat 23133 186936 173361
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Table 3.  Running times of all algorithms in a single node in Hadoop (min).

Dataset TTP OTP ETTP

wiki-Vote 2.3 1.43 1.47

ego-Facebook 29.18 1.15 1.37

p2p-Gnutella08 0.32 0.3 0.3

AS-733 0.42 0.37 0.37

ca-AstroPh 5.1 4.82 3.87

ca-HepTh 3.17 0.53 2

CA-HepPh 3.07 2.27 1.92

Brightkite_edges 39.25 9.1 10.08

Email-Enron 172.8 8.97 12.6

p2p-Gnutella31 3.45 2.27 2.97

CA-CondMat 54.05 2.87 14.33

Figure 8.  The running time of three algorithms in a single node with different ρ size on: (a) ca-HepTh dataset, 
and (b) ego-Facebook dataset.

Table 4.  Running times of all algorithms in a multi node in Hadoop (min).

Dataset TTP OTP ETTP

wiki-Vote 0.63 0.5 0.63

ego-Facebook 8.03 0.47 0.53

p2p-Gnutella08 0.2 0.2 0.18

AS-733 0.5 0.32 0.38

ca-AstroPh 1.23 1.15 1

ca-HepTh 1.12 0.62 0.68

CA-HepPh 0.82 0.72 0.7

Brightkite_edges 7.38 2.77 1.8

Email-Enron 23.58 3.22 1.97

p2p-Gnutella31 0.78 0.62 0.62

soc-Epinions 282.15 12.25 8.22

CA-CondMat 6.68 2.17 2.77
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Data availability
The datasets generated and/or analysed during the current study are available in http:// snap. stanf ord. edu/ data/, 
accessed date: 9 April 2022.
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