
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:166 | https://doi.org/10.1038/s41598-022-25243-w

www.nature.com/scientificreports

Graph partitioning
MapReduce‑based algorithms
for counting triangles in large‑scale
graphs
Ahmed Sharafeldeen *, Mohammed Alrahmawy & Samir Elmougy

Counting number of triangles in the graph is considered a major task in many large‑scale graph
analytics problems such as clustering coefficient, transitivity ratio, trusses, etc. In recent years,
MapReduce becomes one of the most popular and powerful frameworks for analyzing large‑scale
graphs in clusters of machines. In this paper, we propose two new MapReduce algorithms based on
graph partitioning. The two algorithms avoid the problem of duplicate counting triangles that other
algorithms suffer from. The experimental results show a high efficiency of the two algorithms in
comparison with an existing algorithm, overcoming it in the execution time performance, especially in
very large‑scale graphs.

Over the last decade, the size of graphs used in social networks has grown significantly due to the increase in data
used in these networks. One of the most important problem in social networks is to analyze their large graphs
to extract useful information. Sequential algorithms can’t deal with large graphs due to limitations in memory
and processing capabilities. We can overcome those problems by applying parallel computing in analyzing these
networks. One of the most popular parallel computing methods is MapReduce1 which is the-state-of-the-art
for processing large scale graphs and is implemented on a cluster of machines using Hadoop2 which is an open
source framework provided by Apache.

One of the most major problems in graph analysis is to count the number of triangles in a graph, which is
called triangle counting. Triangle counting is considered the core in many graph analytic operations such as
measuring clustering coefficient3, transitivity ratio4, triangular connectivity, k-truss5, etc. Also, there are many
real-world applications based mainly on triangle counting such as spam detection, Facebook, and LinkedIn6.

In this paper, we propose two new MapReduce algorithms to count triangles in large scale graphs. Our
algorithms partition a large graph into sub-graphs, then count triangles in each sub-graph. After partitioning
the graph, every triangle in the graph is classified into one of three categories according to the number of the
partitioned sub-graphs containing that triangle. The three triangle categories are named Type-1, Type-2, and
Type-3 triangle.

We evaluate our two MapReduce algorithms locally in a single node running Hadoop, and also distributed in a
cluster of 15 nodes running Hadoop. Experimental results show that our two algorithms have better performance
in execution time than the existing algorithm, especially for very large-scale graphs.

Paper organization. Section “Related works“ discusses previous work related to triangle counting. Sec-
tion “MapReduce” describes MapReduce framework. Section “Triangles count” discusses the triangle counting
problem. Section “Our proposed algorithm” presents our proposed algorithms. Section “Experimental results”
shows the experimental results, and conclusions are described in “Conclusion” section .

Related works
There is a lot of research work for counting the number of triangles in a large-scale graph. Cohen algorithm7 was
the first MapReduce algorithm for counting triangles in a graph. In Cohen algorithm, all 2-path edges; e.g., (u, v) ,
and (u,w) ; are detected first, based on ordering of nodes (i.e. degree of nodes); then, a search is made for edges
that connect to this 2-path to form a triangle, e.g., (v,w) . The limitation of this algorithm is to cause network
overload and increase computation time. In Suri et al.8, a discussion of sequential algorithms (i.e., NodeIterator,

OPEN

Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt.
*email: sharafeldeen@mans.edu.eg

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-25243-w&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:166 | https://doi.org/10.1038/s41598-022-25243-w

www.nature.com/scientificreports/

and NodeIterator++) for counting triangles is presented; then, they show how to convert these algorithms to MapReduce
algorithms. In addition, they developed a MapReduce-based graph partitioning algorithm for counting the number of
triangle called GP algorithm. GP algorithm also causes network overload and increases computation time. Moreover, it
computes triangles redundantly if two or three nodes of the triangle exist in the same partition. Park et al.9 developed an
efficient algorithm, called Triangle Type Partition (TTP), for counting triangles in a graph. TTP algorithm enhances the
performance of GP algorithm as well as reducing the number of frequently computed triangles. However, TTP algorithm
computes triangle redundantly if a triangle three nodes exist in the same partition. In10, authors proposed a randomized
MapReduce algorithm for counting triangles in a large graph called Colored Triangle Type Partition (CTTP). The idea
of CTTP is partitioning the graph at hand into sub-graphs based on randomized coloring function. Another study by
Arifuzzaman et al.11 proposed a Message Passing Interface (MPI)-based distributed memory parallel algorithm for
counting triangles in massive network, called PATRIC. PATRIC algorithm is divided into two phases: Computing bal-
anced load, and Counting triangles. In the first phase, the graph is partitioned into sub-graphs based on the number of
processors; so that, computation is balanced between workers in the cluster. In the second phase, each worker counts the
triangles in it. After all workers count triangles in their own sub-graph, all counts from workers are merged into a single
count by MPI reduce function. Authors used their own modified sequential algorithm, called NodeIteratorN, which
is a modified version of NodeIterator++. A novel streaming parallel method, called REPT, to approximately compute
the number of triangles in large-scale graphs is proposed by Wang et. al.12. Randomly, it divides the graph into several
processors, then each processor computes the number of triangles in its sub-graph. Hu et all.13 presented a fine-grained
(i.e. little size) task distribution method for counting the number of triangles in the graph using GPU. This method
overcomes the both of load imbalance and inefficient memory access problems on GPU. In14, The authors proposed an
algorithm called TRUST, to count the number of triangles using GPU that is based on hashing as well as vertex-centric
approach. Another study, proposed by Ghosh et. al.15, employed MPI to count the number of triangles in the graph.
There is also a few researches in a problem that is similar to the triangle counting problem, called rectangle counting16–21.

MapReduce
MapReduce1 is a parallel distributed programming model for processing huge amounts of data (i.e. size is in
Terabytes or Petabytes) on large clusters of commodity machines. In this section, we give a brief overview of
MapReduce algorithm and how it works.

MapReduce is inspired from Map and Reduce operations in functional programming languages. Using
MapReduce, programmer can write a distributed application easily. The most characteristic that MapReduce pro-
vides is fault-tolerance, high scalability, and low cost. Hadoop2 is an open source framework for implementing a
MapReduce on cluster of machines. Hadoop has two major layers: Computation layer (MapReduce), and Storage
layer (Hadoop Distributed File System [HDFS]). Inputs and outputs of MapReduce are stored in ≺ key; value ≻
pairs. MapReduce model consists of three phases: Map, Shuffle, and Reduce. First, Map Phase is written by the
programmer. Each Map instance, also called Mapper, receives a line from an input file on HDFS in the form
of ≺ key; value ≻ pairs, where key is start position of line in the file, and value is line content. Output of Map
instance is a number of ≺ key; value ≻ pairs. However, Map instance may have no output if required. The Shuffle
Phase is not written by the programmer, as it is done automatically by the framework. The input of the Shuffle
phase is the output of Map phase. Shuffle Phase sorts the output of Map phase, and then merge all its elements
value; that have the same key as ≺ key; {value1, value2, . . . } ≻ . Finally, Reduce Phase is written by the program-
mer. Each Reduce instance, also called Reducer, receives one of the output pairs ≺ key; {value1, value2, . . . } ≻
of the Shuffle phase as its input. The output of Reduce phase is a number of ≺ key; value ≻ pairs that are stored
on HDFS. An example of how a MapReduce work is shown in Fig. 1.

Triangles count
List of notations used in this paper is shown in Table 1. Let G(V ,E) be an undirected graph, where V is set of verti-
ces, E is set of edges, n = |V | , and m = |E| . We define the set of Neighbors of vertex v as τ(v) = {u ∈ V |(v, u) ∈ E} ,
and the degree of vertex v as d(v) = |τ(v)| . A triangle, �(u, v,w) , in a graph G is any three vertices in the graph
which are connected to each other, i.e. (u, v), (v,w), (u,w) ∈ E . Counting the number of the triangles in the graph

Figure 1. An illustrative example of how MapReduce works.

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:166 | https://doi.org/10.1038/s41598-022-25243-w

www.nature.com/scientificreports/

is called triangle counting. There are many sequential algorithms to count triangles in the graph such as NodeIt-
erator algorithm8, NodeIterator++ algorithm8, Edge-Iterator algorithm22, Forward algorithm22, and Compact-
Forward algorithm22. NodeIterator algorithm is a simple algorithm which identifies neighbors of each vertex, then
counts the number of edges among vertex’s neighbors. The running time of NodeIterator is O

(
∑

v∈V (d(v))2
)

8.
While NodeIterator++ algorithm is a modified version of NodeIterator. The problem of NodeIterator is to count
triangle six times. When it passes by a vertex, it selects the edge connected to it, so each edge is selected two
times as it has two end vertices, so for a triangle the three edges are counted six times. NodeIterator++ avoids
this problem by using a total order on all of the vertices denoted by ≻ , e.g. u ≻ v if d(u) > d(v) . The running time
of NodeIterator++ is O

(

m3/2
)

8. Another triangle counting algorithm is Edge-Iterator algorithm which iterates
each edge (u, v) ∈ E , and computes the neighbors of source vertex u and target vertex v, then counts the common
neighbors of u and v. Forward algorithm is another sequential algorithm for counting triangles in the graph which
is an enhanced version of Edge-Iterator which doesn’t compare all neighbors of two adjacent vertices. The run-
ning time of Forward algorithm is O

(

m3/2
)

23 and its memory space has θ(3m+ 3n)23. An enhancement version
of Forward algorithm is Compact-Forward algorithm shown in23 that reduces memory space from θ(3m+ 3n)
to θ(2m+ 2n) . In another hand, there are many MapReduce algorithms to count triangles in an enormous graph
as mentioned in “Related work” section.

Our proposed algorithm
We propose two enhanced MapReduce algorithms to count the number of triangles in large-scale graphs. Those
algorithms avoid duplication problem in TTP algorithm. Before, we propose two algorithms, some terms are
required to understand those algorithms. In our work, each triangle in the graph �(u, v,w) can be classified
either Type-1, Type-2 or Type-3 where:

• Type-1 the three nodes of the triangle are in the same partition, e.g. �(1, 2, 3) shown in Fig. 2.
• Type-2 two nodes of a triangle are in the same partition, and the third node exists in a different partition, e.g.

�(2, 3, 4) shown in Fig. 2.
• Type-3 each of the three nodes of the triangle exists in different partitions, e.g. �(3, 4, 10) shown in Fig. 2.

Moreover, there are three types of partitioning a graph into a set of sub-graphs which are 1-partition, 2-par-
tition or 3-partition. These three types represent the three types of the triangle that can be defined as follows:

• 1-partition 1-partition graph is a sub-graph which is denoted by Gi = (Vi ,Ei) , where 1 ≤ i ≤ ρ ; i.e.
V =

⋃ρ
i=1 Vi . For every vertex v in this sub-graph, the partition number of this vertex, P(v) , equals i. For

example, for ρ = 4 , the 1-partition sub-graphs of the graph shown in Fig. 2 are G1 , G2 , G3 , and G4 as shown
in Fig. 3. In general, for any graph partitioned in ρ sub-graphs, there are ρ 1-partition sub-graphs.

• 2-partition 2-partition graph is denoted by Gij =
(

Vij ,Eij
)

 for 1 ≤ i < j ≤ ρ . This graph contains every vertex
v of the graph if the partition number of this vertex, P(v) , equals i or j. For example, for ρ = 4 , the 2-partition
sub-graphs of the graph shown in Fig. 2 are G12 , G13 , G14 , G23 , G24 , and G34 as shown in Fig. 4. In general, for

any graph divided into ρ sub-graphs, there are
(

ρ

2

)

 2-partition sub-graphs.
• 3-partition 3-partition sub-graph is denoted by Gijk =

(

Vijk ,Eijk
)

 for 1 ≤ i < j < k ≤ ρ which is a sub-graph
with partition number of every vertex in such graph, P(v) , equals to i, j or k. For example, for ρ = 4 , the
3-partition sub-graphs of the graph shown in Fig. 2 are G123 , G124 , G134 , and G234 as shown in Fig. 5. In gen-

eral, for any graph separated into ρ sub-graphs, there are
(

ρ

3

)

 3-partition sub-graphs.

Table 1. Notations used in this paper.

Symbol Description

G(V ,E) Undirected graph with |V | vertices, and |E| edges.

(u, v) An edge between u, v; (u, v) ∈ E.

n Number of vertices.

m Number of edges.

τ(u) Set of neighbors of a node u.

d(u) Number of neighbors of a node u.

ρ Number of partitions.

P(u) Partition number of a node u.

�(u, v,w) Triangle; i.e. (u, v), (u,w), (v,w) ∈ E.

Gi = (Vi ,Ei) Sub-graph of G with Vi vertices; 1-partition.

Gij =
(

Vij ,Eij
)

Sub-graph of G with Vij = Vi ∪ Vj , where i = j ; 2-partition.

Gijk =
(

Vijk ,Eijk
)

Sub-graph of G with Vijk = Vi ∪ Vj ∪ Vk , where i = j = k ; 3-partition

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:166 | https://doi.org/10.1038/s41598-022-25243-w

www.nature.com/scientificreports/

One three partition. Our first proposed MapReduce-based algorithm is One Three Partition (OTP). The
algorithm is shown in listing Algorithm 1. OTP algorithm partitions a graph into either 1-partition, or 3-parti-
tion sub-graphs. Then, it counts the number of triangles in each sub-graph.

Figure 2. Graph input and partition example, ρ = 4.

Figure 3. 1-partition of the graph in Fig. 2.

Figure 4. 2-partition of the graph in Fig. 2.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:166 | https://doi.org/10.1038/s41598-022-25243-w

www.nature.com/scientificreports/

An edge (u, v) is called inner-edge if both node u and v exist in the same partition; otherwise is called cross-
edge. As mentioned before, TTP algorithm processed Type-1 redundantly while Type-2, and Type-3 processed
only once. Type-3 only contains cross-edges while Type-2 contain inner-edges and cross-edges, and Type-1
contains only inner-edges. Hence, OTP avoids duplication problem by treating Type-1 and Type-2 at the same
time in 1-partition sub-graphs and Type-3 alone in 3-partition sub-graphs. OTP divides graph into ρ equal
sized sub-graphs. Since, Type-2 triangle contains one inner-edge and two cross-edges; where each cross-edge
is included in two sub-graphs. So, cross-edges are converted to inner-edges by duplicating cross-edges in both
two sub-graphs according to partition number of two vertices of those edges. Therefore, OTP algorithm treats
Type-2 triangle as Type-1 triangle where both types belong to 1-partition sub-graphs. For example, �(1, 2, 3) is
a Type-1 triangle, P(1) = P(2) = P(3) = 1 , so (1, 2) , (1, 3) , and (2, 3) are only in G1 ; while �(2, 3, 4) is a Type-2
triangle, where the inner-edge (2, 3) , P(2) = P(3) = 1 , presents only in G1 , and cross-edges (2, 4) and (3, 4)
[P(2) = P(3) = 1 and P(4) = 2] are in both G1 and G2 . So, we put each edge of Type-1 and Type-2 to a single
sub-graph according to partition number of the vertex and if partition number of two nodes are different, edge is
put in two sub-graphs as shown in Fig. 6. 3-partition sub-graphs of OTP algorithm contain only Type-3 triangles

Figure 5. 3-partition of the graph in Fig. 2.

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:166 | https://doi.org/10.1038/s41598-022-25243-w

www.nature.com/scientificreports/

(i.e. cross-edges only). For example, �(3, 4, 10) is a Type-3 triangle where the cross edges (3, 4) , (3, 10) , and (4, 10)
present only in G124 as shown in Fig. 7.

OTP algorithm consists of Map and Reduce functions. In the Map function (Lines 1–9), a graph is divided into 1-par-
tition and 3-partition sub-graphs. Each edge of the graph is sent to Map instance as input. If edge (u, v) is inner-edge,
the output pair of Map instance is ≺ P(u); (u, v) ≻ (Line 2), where P(u) returns an integer within [1, ρ] that refers to
partition number of a node u. This mean that the edge (u, v) is in GP(u) . If edge (u, v) is a cross-edge, then this edge may
be belonging to 1-partition or 3-partition sub-graph as explained earlier. So, we treat it as 1-partition and distribute this
edge to the two different 1-partition graphs (Line 2 and Line 4) and also distribute it as a 3-partition sub-graph (Line 9).
So, the output of Map instance will be ≺ P(u); (u, v) ≻ (Line 2), ≺ P(v); (u, v) ≻ (Line 4), and ≺

(

i, j, k
)

; (u, v) ≻ , if
{P(u), P(v)} belongs to Gijk for all 1 ≤ i < j < k ≤ ρ (Line 9). For example, in Fig. 2, if Map instance input is (2, 4) , where
P(2) = 1 and P(4) = 2 , the output will be ≺ 1; (2, 4) ≻ , ≺ 2; (2, 4) ≻ , ≺ (1, 2, 3); (2, 4) ≻ , and ≺ (1, 2, 4); (2, 4) ≻ .
The output of Map instance will be as ≺ key; value ≻ , where key refers to the graph number (1-partition or 3-parti-
tion) and value refers to the edge belonging to such graph. After all map instances complete, all values of map outputs
are combined together if they have the same key as mentioned in “MapReduce” section. In the reduce function (Lines
10–24), triangles are counted and identified in each sub-graph. The input of each reduce instance is a graph number
(1-partition or 3-partition) as a key and all edges belonging to this graph as a value. The function in the reduce step is
based on Compact-forward algorithm23 in which it is parallelized to enhance the performance time of the algorithm.
For each edge (u, v) in the graph, search for a common neighbor w for both u and v; i.e. w ∈ τ(u) and w ∈ τ(v) . The
output of reduce instance is ≺ (u,w, v); 1 ≻ ; if a common neighbor w is found between u and v (Lines 21–23) to avoid
processing the edges of triangle three times. To avoid the concurrency problem, we use the lock mechanism in Line 22 to
avoid race condition problem that may arise when two different iterations write their own result to the same location of
the file. For example, in Fig. 2, if the input of reduce instance is ≺ (1, 2, 4); {(2, 4), (3, 4), (3, 10), (4, 10)} ≻ , the output
will be ≺ (3, 4, 10); 1 ≻ only, not ≺ (4, 3, 10); 1 ≻ or ≺ (3, 10, 4); 1 ≻ . In lines 16–19, we search for the next minimum
neighbor of two nodes of the edge if this neighbor is not common between source and destination vertices of the edge.

Analysis.

Lemma 1 Each triangle in the graph is counted exactly once by OTP.
Proof Each of Type-1 and Type-2 triangles appears only once in one of the ith 1-partition sub-graph Gi .
Since, Type-1 (u,w, v) triangle, i.e. P(u) = P(w) = P(v) , appears only in GP(u) , i.e. u,w, v ∈ GP(u) , and Type-2
(u,w, v) triangle, i.e. P(u) = P(w) and P(w) = P(v) , appears only in GP(u) , i.e. (u,w), (w, v), (u, v) ∈ GP(u)
and (w, v), (u, v) ∈ GP(v) . Therefore, Type-1 and Type-2 triangles are counted correctly and only once.
Each one of Type-3 triangles appears only once in one of the 3-partition sub-graphs. Since, Type-3 (u,w, v)

Figure 6. 1-partition of the graph in Fig. 2 using OTP.

Figure 7. 3-partition of the graph in Fig. 2 using OTP.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:166 | https://doi.org/10.1038/s41598-022-25243-w

www.nature.com/scientificreports/

triangle, i.e. P(u) = P(w) = P(v) , appears only in GP(u)P(v)P(w) , where all of P(u), P(v), P(w) ∈ [1, ρ] ; i.e.
(u,w), (w, v), (u, v) ∈ GP(u)P(v)P(w) . Therefore, Type-3 triangles also are counted correctly and only once. Thus,
all triangles in the graph are counted exactly once. �

Lemma 2 Expected number of all map instances output of OTP is m
(

ρ − 1+ 1
ρ

)

= O(mρ).

Proof The proof consists of two consequent steps. In the first step, if a map instance input is an inner-edge, then
the output is Gi where i ∈ [1, ρ] and i is the partition number of this edge. Therefore, every inner-edge in the
graph appears only in one sub-graph. The probability that an edge is an inner-edge is 1

ρ
 . So, the probability of all

inner-edge in the graph is m
ρ

 . Therefore, the expect size of inner-edges output is:

In the second step, if a map instance input is a cross-edge, then the output is both Gi and Gijk , where
1 ≤ i < j < k ≤ ρ . Since, the output of every cross-edge for Gi is generated two times and the output of every
cross-edge for Gijk is (ρ − 2) times. So, the total output of every cross-edge is 2+ (ρ − 2) = ρ times. Hence, the
probability of cross-edge is

(

1− 1
ρ

)

m =
ρ−1
ρ

m . Therefore, the expected number of cross-edges output is:

From the above two steps, we include that the expected number of all map instances output of OTP is:

 �

Lemma 3 Expected number of each reduce instance input is O
(

m
ρ2

)

.

Proof Each reduce instance input is either ≺ (i);Ei ≻ or ≺
(

i, j, k
)

;Eijk ≻ . The probability that two nodes of the
edge are in a specific partition is 1

ρ
× 1

ρ
= 1

ρ2
 . For the 1-partition sub-graph, it contains inner-edges and cross-

edges of the graph. Since the expected number of two nodes of inner-edges in 1-partition sub-graph equals
1
ρ
× 1

ρ
= 1

ρ2
 , and the expected number of two nodes of cross-edges in the same partition equals

1
ρ
× 1

ρ
+ 1

ρ
× 1

ρ
= 2

ρ2
 . Hence, for m edges, the expected number of two nodes of the inner-edges (cross-edges)

in the same partition equals m× 1
ρ2

= m
ρ2

 (m× 2
ρ2

= 2m
ρ2

). Therefore, the expected number of edges in 1-parti-
tion is:

For the 3-partition, it contains cross-edge only. The number of two nodes of the edge in 3-partition equals
(

3
2

)

 ;

hence, the expected number of edges in 3-partition is:

From the above two equations, we include that for any input, reduce instance takes O
(

m
ρ2

)

 . �

Lemma 4 The running time of reduce instance of sparse graph is O(m).

Proof The running time of step 11 is O(m) , the running time of step 12 is O(lgm + the running time of steps
13-24), the running time of step 13 is O

(

k lg k
)

 (Assume, the number of neighbors is k; using Heap Sort Algo-
rithm), the running time of step 14 is O(1) , and the running time of steps 15-24 is O(k) . Therefore, the running
time of reduce instance is:

(1)
m

ρ
× 1 =

m

ρ

(2)
ρ − 1

ρ
m× ρ = (ρ − 1)m

(3)
m

ρ
+ (ρ − 1)m = m

(

ρ − 1+
1

ρ

)

= O(mρ)

(4)
m

ρ2
+

2m

ρ2
=

3m

ρ2
= O

(

m

ρ2

)

(5)
(

3
2

)

×
m

ρ2
=

3m

ρ2
= O

(

m

ρ2

)

m+ lgm+ k lg k + 1+ k ≤ m+m+ k lg k + 1+ k

= 2m+ k lg k + 1+ k

≤ 2m+ k lg k + 1+ k lg k, for k ≥ 2

= 2m+ 2k lg k + 1

≤ 2m+ 2k lg k +m, form ≥ 1

= O
(

m+ k lg k
)

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:166 | https://doi.org/10.1038/s41598-022-25243-w

www.nature.com/scientificreports/

For dense graph, k = m
2 , then the running time of reduce instance is O

(

m lgm
)

.
For sparse graph, k < m , then the running time of reduce instance is O(m).
From Lemma 3, reduce instance takes O

(

m
ρ2

)

 as input, and assume that the graph is a sparse graph; Therefore,

the running time of reduce instance is O
(

m
ρ2

)

 . �

Theorem 1 The running time of reduce instance of OTP algorithm is better than TTP algorithm.

Proof From Lemma 4 (Assume graph is a sparse graph), the running time of OTP algorithm is O
(

m
ρ2

)

 . TTP

algorithm also takes O
(

m
ρ2

)

 as input and the running time of reduce instance is O
(

m3/2
)

9. Hence, the running

time of reduce instance in TTP algorithm is O
(

(

m
ρ2

)3/2
)

 . Therefore, the running time of reduce instance of

OTP algorithm is better than TTP algorithm. �

Enhanced two three partition. Our second proposed MapReduce algorithm is called Enhanced Two
Three Partition (ETTP). The algorithm is shown in listing Algorithm 2. The algorithm partitions the graph into
number of equal sized sub-graphs in which each sub-graph can be either 2-partition, or 3-partition sub-graph.
Then, it counts and identifies triangles in each sub-graph.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:166 | https://doi.org/10.1038/s41598-022-25243-w

www.nature.com/scientificreports/

ETTP algorithm is an improved version of TTP algorithm which avoids the duplication problem, that TTP
algorithm suffers from, through counting Type-1 only once in the first 2-partition it belongs to, as will be shown
later. Since, Type-1 triangles are identified in 1-partition or 2-partition sub-graphs where the three vertices of
the triangle belong to. Therefore, ETTP algorithm treats Type-1 (i.e. inner-edges) and Type-2 (i.e. inner-edges
and cross-edges) triangles at the same time in the 2-partition sub-graphs while it treats Type-3 triangles alone in
3-partition sub-graphs. In ETTP algorithm, 2-partition sub-graph, Gij for 1 ≤ i < j ≤ ρ , contains edges (u, v) in
which partition number of two nodes of those edges equals i or j; i.e. {P(u), P(v)} ⊆ Gij . For example, �(1, 2, 3)
is a Type-1 triangle, P(1) = P(2) = P(3) = 1 , so (1, 2) , (1, 3) , and (2, 3) are in G12 , G13 and G14 ; while �(2, 3, 4)
is a Type-2 triangle, where inner-edge (2, 3) , P(2) = P(3) = 1 , is in G12 , G13 and G14 , and cross-edges (2, 4) , and
(3, 4) are in G12 ; as shown in Fig. 4. Moreover, 3-partition graph of ETTP, Gijk1 ≤ i < j < k ≤ ρ , contains only
cross-edges in which partition number of two nodes of these edges equals i, j, or k; i.e. {P(u), P(v)} ⊆ {i, j, k} . For
example, �(3, 4, 10) is a Type-3 triangle, where (3, 4) , (3, 10) , and (4, 10) present only in G124 as shown in Fig. 7.
Therefore, 3-partition graph of ETTP should be used to count Type-3 triangles of the graph.

ETTP consists of Map and Reduce functions. In the map function (Lines 1–11), a graph is divided into
both 2-partition and 3-partition sub-graphs. Each edge of the graph is sent to Map instance as input. If edge
(u, v) is an inner-edge, the output pair of Map instance is ≺

(

i, j
)

; (u, v) ≻ if {P(u), P(v)} belongs to Gij for all
1 ≤ i < j ≤ ρ (Lines 2–5). For example, in Fig. 2, if Map instance input is (2, 3) , where P(2) = P(3) = 1 , the
output is ≺ (1, 2); (2, 3) ≻ , ≺ (1, 3); (2, 3) ≻ and ≺ (1, 4); (2, 3) ≻ . If edge (u, v) is a cross-edge, then this edge
may be belonging to 2-partition or 3-partition graph. So, we treat it as 2-partition and distribute this edge to
all 2-partition sub-graphs to which it belongs and also distribute it as 3-partition graph. So, the output of Map
instance is ≺

(

i, j
)

; (u, v) ≻ if {P(u), P(v)} belongs to Gij for all 1 ≤ i < j ≤ ρ (Lines 2–5), and ≺
(

i, j, k
)

; (u, v) ≻
if {P(u), P(v)} belongs to Gijk for all 1 ≤ i < j < k ≤ ρ (Lines 7–11). For example, in Fig. 2, if Map instance input
is (2, 4) , where P(2) = 1,P(4) = 2 , the output is ≺ (1, 2); (2, 4) ≻ , ≺ (1, 2, 3); (2, 4) ≻ and ≺ (1, 2, 4); (2, 4) ≻ .
Thus, the output of Map instance is ≺ key; value ≻ , where key refers to the graph partition number (2-partition
or 3-partition) and value refers to the edge belonging to that graph. After all map instances complete, all values
of map outputs are aggregated together if they have the same key as mentioned in “MapReduce” section. In the
reduce function (Lines 12–31), triangles are counted and identified in each sub-graph. The input of each reduce
instance is the graph partition number (2-partition or 3-partition) as a key and all edges belonging to this graph as
a value. Reduce instance algorithm of ETTP is also based on Compact-forward algorithm. For each edge (u, v) in
the graph, search for a common neighbor w in τ(u) and τ(v) . If w’s id is between u’s and v’s ids (i.e. w ≺ u, v) (Line
23) and the triangle is a Type-1 triangle (Line 24), then it counts the triangle only once when the partition number
of vertex, P(u) , equals to i and

(

j = i + 1
)

 (i.e. the first 2-partition sub-graph belongs to it), or if this triangle exists
in the last partition [i.e. P(u) = ρ], then the triangle is counted and identified only in the last sub-graphs [i.e.
P(u) = ρ and j = i + 1] (Lines 25–27). So, Lines 24–27 of the algorithm count Type-1 triangle only once. For
example, in Fig. 2, although �(1, 2, 3) is a type-1 triangle that exists in G12 , G13 , and G14 , the algorithm considers
it only in G12 only. Also, �(10, 11, 12) is a type-1 triangle where the partition number of its three nodes is ρ in
which it exists in G14 , G24 , and G34 . The algorithm identifies it only in the last sub-graph G34 . If w’s id is between
u and v (i.e. w ≺ u, v) (Line 23) and the triangle is not Type-1 (Line 28), then it counts this triangle (Line 30). For
example, in Fig. 2, if the input of reduce instance is ≺ (1, 2); {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (4, 5), (5, 6)} ≻ , the
output will be ≺ (1, 2, 3); 1 ≻ (i.e. Type-1 triangle), and ≺ (2, 3, 4); 1 ≻ (i.e. Type-2 triangle); if the input of reduce
instance is ≺ (1, 2, 4); {(2, 4), (3, 4), (3, 10), (4, 10)} ≻ , the output will be ≺ (3, 4, 10); 1 ≻ (i.e. Type-3 triangle).

Analysis.

Lemma 5 Each triangle in the graph is counted exactly once by ETTP.
Proof Each Type-1 triangle, �(u, v,w) , appears in 2-partition graph. So, Type-1 triangle is counted only once
in the first sub-graph Gij it belongs, [j = i + 1 and i = P(u)] or in the last sub-graph when the partition number
of three nodes of the triangle belongs to the last partition [j = i + 1 and P(u) = ρ]. So those two conditions
allow Type-1 triangles to count only once. While, each one of Type-2 triangle, �(u, v,w) , appears only once in
2-partition, GP(u)P(w) , where P(u) < P(w) . Moreover, Type-2 triangle appears only in 2-partition sub-graph not
3-partition sub-graph because there is an inner-edge in the triangle of Type-2 that exists only in 2-partition sub-
graph. Therefore, Type-2 is counted correctly. On the other hand, Type-3 triangles appear only once in 3-partition
sub-graphs. Therefore, ETTP counts the triangles correctly and only once. �

Lemma 6 Expected number of all map instances output of ETTP is m(ρ − 1) = O(mρ).

Proof The proof consists of two consequent steps. First, if map instance input is an inner-edge (u, v) , then the
output is Gij where i, j ∈ [1, ρ], i �= j , and partition number of two nodes belongs to i or j. Therefore, the output
of every inner-edge is ρ − 1 time. The probability that an edge is inner-edge is 1

ρ
 . So, probability of all inner-edge

in the graph is m
ρ

 . Therefore, the expect size of inner-edges output is:

Second, if map instance input is cross-edge, then the output is both Gij and Gijk where i, j, k ∈ [1, ρ] and i = j = k .
Then, the output of every cross-edge for Gij is generated one time and the output of every cross-edge for Gijk is

(6)
m

ρ
× (ρ − 1)

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:166 | https://doi.org/10.1038/s41598-022-25243-w

www.nature.com/scientificreports/

(ρ − 2) times. So, total output of every cross-edge is 1+ (ρ − 2) = ρ − 1 times. The probability of cross-edge is
(

1− 1
ρ

)

m =
(ρ−1)

ρ
m . Therefore, the expected number of cross-edges output is:

From the above two steps, we include that the expected number of all map instances output of ETTP is:

 �

Lemma 7 Expected number of each reduce instance input is O
(

m
ρ2

)

.

Proof Reduce instance input is ≺
(

i, j
)

;Eij ≻ or ≺
(

i, j, k
)

;Eijk ≻ . The probability that two nodes of the edge are
in a specific partition is 1

ρ
× 1

ρ
= 1

ρ2
 . For the 2-partition, it contains inner-edges and cross-edges of the graph.

Since the expected number of two nodes of inner-edges in 2-partition equals 1
ρ2

+ 1
ρ2

= 2
ρ2

 , and the expected
number of two nodes of cross-edges in the same partition equals 1

ρ2
 . Hence, for m edges, the expected number

of two nodes of inner-edges in the same partition equals m× 2
ρ2

= 2m
ρ2

 , and the expected number of two nodes
of cross-edges in the same partition equals m× 1

ρ2
= m

ρ2
 . Therefore, the expected number of edges in 2-partition

equals:

For the 3-partition, it contains cross-edge only. The number of two nodes of the edge in 3- partition equals
(

3
2

)

 .

Hence, the expected number of edges in 3-partition equals:

From the above two equations, we include that for any input, reduce instance takes O
(

m
ρ2

)

 . �

Lemma 8 The running time of reduce instance of sparse graph is O(m).

Proof It’s already proofed in Lemma 4. From Lemma 7, reduce instance takes O
(

m
ρ2

)

 as input, and assume graph

is a sparse graph; Therefore, the running time of reduce instance is O
(

m
ρ2

)

 . �

Theorem 2 The running time of reduce instance of ETTP algorithm is better than TTP algorithm.

Proof From Lemma 8 (Assume graph is a sparse graph), the running time of ETTP algorithm is O
(

m
ρ2

)

 . TTP

algorithm also takes O
(

m
ρ2

)

 as input and running time of reduce instance is O
(

m3/2
)

9; hence, the running time

of reduce instance in TTP algorithm is O
(

(

m
ρ2

)3/2
)

 . Therefore, the running time of reduce instance of ETTP

algorithm is better than TTP algorithm. �

Experimental results
In this section, we present and discuss the experimental results of our algorithms. We ran our two algorithms
on a set of datasets found in SNAP24 and compared their running time with TTP algorithm. The experiments
are divided into two parts. In the first part, the three algorithms run locally on a single node running Hadoop
and in the second part, the three algorithms run in a distributed made on a cluster of machines having Hadoop
running on them. Table 2 shows the basic characteristic of the datasets used in the experiments.

Single node. In the first set of experiments, the three algorithms are run on a single machine with Intel Core
i5 processor, and 4GB RAM. This machine has Hadoop software running on it. Table 3 shows the running times
of our two algorithms and TTP algorithm on this single node using a fixed number of partitions (ρ = 20). From
Table 3, we notice that our two algorithms, OTP and ETTP, always have running times smaller than that of TTP
algorithm. In the case of big datasets with very high number of nodes and edges such as Brightkite_edges dataset,
we notice that our two algorithms are much clearly faster than TTP algorithm, while OTP algorithm has better

(7)
(ρ − 1)

ρ
m× (ρ − 1) =

(ρ − 1)2

ρ
m

(8)
m

ρ
(ρ − 1)+

(ρ − 1)2

ρ
m = m(ρ − 1)

(

1

ρ
−

ρ − 1

ρ

)

= m(ρ − 1) = O(mρ)

(9)
2m

ρ2
+

m

ρ2
=

3m

ρ2
= O

(

m

ρ2

)

(10)
(

3
2

)

×
m

ρ2
=

3m

ρ2
= O

(

m

ρ2

)

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:166 | https://doi.org/10.1038/s41598-022-25243-w

www.nature.com/scientificreports/

execution time than ETTP algorithm. Since, TTP algorithm takes 39.25 minutes, while ETTP algorithm takes
10.08 minutes, and OTP algorithm takes only 9.1 minutes. As can also be seen in the CA-CondMat dataset, OTP
algorithm has a better performance time than ETTP algorithm which improved by almost 11 minutes. Hence; as
expected, our two algorithms show remarkable improvement in running time as the OTP algorithm almost out-
performed the ETTP algorithm. Moreover, to demonstrate the robustness of the proposed algorithms compared
to TTP algorithm, we study the effect of different ρ values on the three algorithms on ca-HepTh dataset and ego-
Facebook dataset as shown in Fig. 8. From Fig. 8, we notice that the running times of TTP and ETTP algorithms
change when ρ changes while the running time of OTP is nearly constant. Moreover, the running time of OTP
algorithm outperformed ETTP and TTP algorithms using different ρ values while ETTP algorithm is better than
TTP algorithm. Thus, it can be concluded that OTP gives a better result than ETTP and TTP algorithms when
applied on bigger datasets running on a smaller cluster.

Multi node. In the second set of experiments, the three algorithms are run on a cluster of 15 nodes (one
master node and 14 slaves) running Hadoop framework. The 15 nodes are homogeneous and each node is a
machine with Intel Core Quad processor, and 3.7 GB RAM. We run our two algorithms on the cluster and
compare the results with TTP algorithm as shown in Table 4 with ρ = 20 . From Table 4, we notice that both our
two algorithms are better than TTP algorithm. In the case of big dataset such as soc-Epinions dataset shown in
Table 4, we notice that our two algorithms are much faster than TTP algorithm, and ETTP algorithm has better
performance time than OTP algorithm. Therefore, our experimental results show that our two algorithms are
faster than TTP algorithm, and OTP algorithm has better performance time than ETTP algorithm in smaller
cluster. Also, we study the effect of number of partitions on the running times of the three algorithms applied
in ca-HepTh dataset and wiki-Vote dataset as shown in Fig. 9. The figure shows that OTP and ETTP is more
efficient than TTP algorithm when applied with different ρ partitions.

Finally, we evaluate the workload of OTP, ETTP, and TTP as well in terms of the number of shuffles and the
number of reducers as shown in Fig. 10. The figure shows that OTP has less workload than both ETTP and TTP.
However, ETTP is better, as concluded earlier, and recommend to use in a large cluster of machines.

Conclusion
Triangle counting is used significantly in many applications especially in social network analytics. Many research-
ers presented algorithms to solve this problem, but those algorithms can’t solve the problem properly due to the
huge data. So, researchers use parallel algorithms over distributed frameworks (e.g. Hadoop MapReduce) to solve
the problem as it is hard to use sequential algorithms to solve the problem. We use parallel algorithms to solve the
problem, where we proposed two algorithms based on MapReduce parallel computing and graph partitioning
to significantly enhance the time performance. The two proposed algorithms, ETTP and OTP, avoid repeated
triangle counting by identifying each triangle only once in the graph. The experimental results show that ETTP
and OTP algorithms give better execution time than the previous MapReduce algorithms, where ETTP is much
better and recommended over OTP algorithm in a large cluster of machines. In the future, we plan to improve
the performance of the proposed algorithms as well as evaluating the proposed algorithms on large datasets.

Table 2. Characteristic of used datasets.

Dataset Nodes Edges Triangles

wiki-Vote 7115 103689 608389

ego-Facebook 4039 88234 1612010

p2p-Gnutella08 6301 20777 2383

AS-733 6474 13895 6584

ca-AstroPh 18772 396160 1351441

ca-HepTh 9877 51971 28339

CA-HepPh 12008 237010 3358499

Brightkite_edges 58228 428156 494728

Email-Enron 36692 367662 727044

p2p-Gnutella31 62586 147892 2024

soc-Epinions 75879 508837 1624481

CA-CondMat 23133 186936 173361

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:166 | https://doi.org/10.1038/s41598-022-25243-w

www.nature.com/scientificreports/

Table 3. Running times of all algorithms in a single node in Hadoop (min).

Dataset TTP OTP ETTP

wiki-Vote 2.3 1.43 1.47

ego-Facebook 29.18 1.15 1.37

p2p-Gnutella08 0.32 0.3 0.3

AS-733 0.42 0.37 0.37

ca-AstroPh 5.1 4.82 3.87

ca-HepTh 3.17 0.53 2

CA-HepPh 3.07 2.27 1.92

Brightkite_edges 39.25 9.1 10.08

Email-Enron 172.8 8.97 12.6

p2p-Gnutella31 3.45 2.27 2.97

CA-CondMat 54.05 2.87 14.33

Figure 8. The running time of three algorithms in a single node with different ρ size on: (a) ca-HepTh dataset,
and (b) ego-Facebook dataset.

Table 4. Running times of all algorithms in a multi node in Hadoop (min).

Dataset TTP OTP ETTP

wiki-Vote 0.63 0.5 0.63

ego-Facebook 8.03 0.47 0.53

p2p-Gnutella08 0.2 0.2 0.18

AS-733 0.5 0.32 0.38

ca-AstroPh 1.23 1.15 1

ca-HepTh 1.12 0.62 0.68

CA-HepPh 0.82 0.72 0.7

Brightkite_edges 7.38 2.77 1.8

Email-Enron 23.58 3.22 1.97

p2p-Gnutella31 0.78 0.62 0.62

soc-Epinions 282.15 12.25 8.22

CA-CondMat 6.68 2.17 2.77

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:166 | https://doi.org/10.1038/s41598-022-25243-w

www.nature.com/scientificreports/

Data availability
The datasets generated and/or analysed during the current study are available in http:// snap. stanf ord. edu/ data/,
accessed date: 9 April 2022.

Received: 6 June 2022; Accepted: 28 November 2022

References
 1. Dean, J. & Ghemawat, S. Mapreduce: Simplified data processing on large clusters. In OSDI’04: Sixth Symposium on Operating

System Design and Implementation 137–150 (2004).
 2. Apache. Apache hadoop. http:// hadoop. apache. org/. Accessed: 2022-04-09.
 3. Li, X., Chang, L., Zheng, K., Huang, Z. & Zhou, X. Ranking weighted clustering coefficient in large dynamic graphs. World Wide

Web 20, 855–883. https:// doi. org/ 10. 1007/ s11280- 016- 0420-2 (2016).
 4. Opsahl, T. & Panzarasa, P. Clustering in weighted networks. Soc. Netw. 31, 155–163. https:// doi. org/ 10. 1016/j. socnet. 2009. 02. 002

(2009).
 5. Chen, P.-L., Chou, C.-K. & Chen, M.-S. Distributed algorithms for k-truss decomposition. In 2014 IEEE International Conference

on Big Data (Big Data) (IEEE, 2014).https:// doi. org/ 10. 1109/ bigda ta. 2014. 70042 64.
 6. Tsourakakis, C. E. Counting triangles in real-world networks using projections. Knowl. Inf. Syst. 26, 501–520. https:// doi. org/ 10.

1007/ s10115- 010- 0291-2 (2010).
 7. Cohen, J. Graph twiddling in a MapReduce world. Comput. Sci. Eng. 11, 29–41. https:// doi. org/ 10. 1109/ mcse. 2009. 120 (2009).
 8. Suri, S. & Vassilvitskii, S. Counting triangles and the curse of the last reducer. In Proceedings of the 20th International Conference

on World Wide Web—WWW ’11 (ACM Press, 2011). https:// doi. org/ 10. 1145/ 19634 05. 19634 91.

Figure 9. The running time of three algorithms in a multi-node with different ρ size on: (a) ca-HepTh dataset,
and (b) wiki-Vote dataset.

Figure 10. The workload of OTP, ETTP, and TTP algorithms.

http://snap.stanford.edu/data/
http://hadoop.apache.org/
https://doi.org/10.1007/s11280-016-0420-2
https://doi.org/10.1016/j.socnet.2009.02.002
https://doi.org/10.1109/bigdata.2014.7004264
https://doi.org/10.1007/s10115-010-0291-2
https://doi.org/10.1007/s10115-010-0291-2
https://doi.org/10.1109/mcse.2009.120
https://doi.org/10.1145/1963405.1963491

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:166 | https://doi.org/10.1038/s41598-022-25243-w

www.nature.com/scientificreports/

 9. Park, H.-M. & Chung, C.-W. An efficient MapReduce algorithm for counting triangles in a very large graph. In Proceedings of the
22nd ACM International Conference on Conference on Information and Knowledge Management—CIKM ’13 (ACM Press, 2013).
https:// doi. org/ 10. 1145/ 25055 15. 25055 63.

 10. Park, H.-M., Silvestri, F., Kang, U. & Pagh, R. MapReduce triangle enumeration with guarantees. In Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge Management (ACM, 2014). https:// doi. org/ 10. 1145/ 26618
29. 26620 17.

 11. Arifuzzaman, S., Khan, M. & Marathe, M. PATRIC. In Proceedings of the 22nd ACM International Conference on Conference on
Information and Knowledge Management—CIKM ’13 (ACM Press, 2013). https:// doi. org/ 10. 1145/ 25055 15. 25055 45.

 12. Wang, P. et al. Rept: A streaming algorithm of approximating global and local triangle counts in parallel. In 2019 IEEE 35th Inter-
national Conference on Data Engineering (ICDE) 758–769 (IEEE, 2019).

 13. Hu, L., Guan, N. & Zou, L. Triangle counting on GPU using fine-grained task distribution. In 2019 IEEE 35th International Confer-
ence on Data Engineering Workshops (ICDEW) (IEEE, 2019). https:// doi. org/ 10. 1109/ icdew. 2019. 000-8.

 14. Pandey, S. et al. Trust: Triangle counting reloaded on GPUs. IEEE Trans. Parallel Distrib. Syst. 32, 2646–2660. https:// doi. org/ 10.
1109/ tpds. 2021. 30648 92 (2021).

 15. Ghosh, S. & Halappanavar, M. TriC: Distributed-memory triangle counting by exploiting the graph structure. In 2020 IEEE High
Performance Extreme Computing Conference (HPEC). (IEEE, 2020). https:// doi. org/ 10. 1109/ hpec4 3674. 2020. 92861 67.

 16. Zou, Z. Bitruss decomposition of bipartite graphs. In Database Systems for Advanced Applications 218–233. (Springer International
Publishing, 2016) https:// doi. org/ 10. 1007/ 978-3- 319- 32049-6_ 14.

 17. Zhu, R., Zou, Z. & Li, J. Fast rectangle counting on massive networks. In 2018 IEEE International Conference on Data Mining
(ICDM). (IEEE, 2018). https:// doi. org/ 10. 1109/ icdm. 2018. 00100.

 18. Sanei-Mehri, S.-V., Sariyuce, A. E. & Tirthapura, S. Butterfly counting in bipartite networks. In Proceedings of the 24th ACM SIG-
KDD International Conference on Knowledge Discovery and Data Mining. (ACM, 2018). https:// doi. org/ 10. 1145/ 32198 19. 32200
97.

 19. Sharafeldeen, A. T., Alrahmawy, M. F. & Elmougy, S. Enhanced algorithms for counting rectangles in large bipartite graphs using
mapreduce. Mansoura J. Comput. Inf. Sci. 14, 1–8 (2018).

 20. Wang, K., Lin, X., Qin, L., Zhang, W. & Zhang, Y. Vertex priority based butterfly counting for large-scale bipartite networks. Proc.
VLDB Endow. 12, 1139–1152. https:// doi. org/ 10. 14778/ 33394 90. 33394 97 (2019).

 21. Sheshbolouki, A. & Özsu, M. T. sGrapp: Butterfly approximation in streaming graphs. ACM Trans. Knowl. Discov. Data 16, 1–43.
https:// doi. org/ 10. 1145/ 34950 11 (2022).

 22. Schank, T. Algorithmic Aspects of Triangle-Based Network Analysis (2007).
 23. Latapy, M. Main-memory triangle computations for very large (sparse (power-law)) graphs. Theor. Comput. Sci. 407, 458–473.

https:// doi. org/ 10. 1016/j. tcs. 2008. 07. 017 (2008).
 24. Leskovec, J. Stanford Large Network Dataset Collection. http:// snap. stanf ord. edu/ data/. Accessed: 2022-04-09.

Author contributions
A.S., M.A., and S.E.: conceptualization, developing the proposed methodology for the analysis, and formal analy-
sis. A.S.: software, validation and visualization, and prepared initial draft. M.A., and S.E.: project administration.
M.A., and S.E.: project directors. All authors review and edit the revised version.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1145/2505515.2505563
https://doi.org/10.1145/2661829.2662017
https://doi.org/10.1145/2661829.2662017
https://doi.org/10.1145/2505515.2505545
https://doi.org/10.1109/icdew.2019.000-8
https://doi.org/10.1109/tpds.2021.3064892
https://doi.org/10.1109/tpds.2021.3064892
https://doi.org/10.1109/hpec43674.2020.9286167
https://doi.org/10.1007/978-3-319-32049-6_14
https://doi.org/10.1109/icdm.2018.00100
https://doi.org/10.1145/3219819.3220097
https://doi.org/10.1145/3219819.3220097
https://doi.org/10.14778/3339490.3339497
https://doi.org/10.1145/3495011
https://doi.org/10.1016/j.tcs.2008.07.017
http://snap.stanford.edu/data/
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Graph partitioning MapReduce-based algorithms for counting triangles in large-scale graphs
	Paper organization.
	Related works
	MapReduce
	Triangles count
	Our proposed algorithm
	One three partition.
	Analysis.

	Enhanced two three partition.
	Analysis.

	Experimental results
	Single node.
	Multi node.

	Conclusion
	References

