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A multi‑scale feature extraction 
fusion model for human activity 
recognition
Chuanlin Zhang 1,3, Kai Cao 2,3, Limeng Lu 2,3 & Tao Deng 1,2,3*

Human Activity Recognition (HAR) is an important research area in human–computer interaction 
and pervasive computing. In recent years, many deep learning (DL) methods have been widely used 
for HAR, and due to their powerful automatic feature extraction capabilities, they achieve better 
recognition performance than traditional methods and are applicable to more general scenarios. 
However, the problem is that DL methods increase the computational cost of the system and take 
up more system resources while achieving higher recognition accuracy, which is more challenging 
for its operation in small memory terminal devices such as smartphones. So, we need to reduce the 
model size as much as possible while taking into account the recognition accuracy. To address this 
problem, we propose a multi-scale feature extraction fusion model combining Convolutional Neural 
Network (CNN) and Gated Recurrent Unit (GRU). The model uses different convolutional kernel sizes 
combined with GRU to accomplish the automatic extraction of different local features and long-
term dependencies of the original data to obtain a richer feature representation. In addition, the 
proposed model uses separable convolution instead of classical convolution to meet the requirement 
of reducing model parameters while improving recognition accuracy. The accuracy of the proposed 
model is 97.18%, 96.71%, and 96.28% on the WISDM, UCI-HAR, and PAMAP2 datasets respectively. 
The experimental results show that the proposed model not only obtains higher recognition accuracy 
but also costs lower computational resources compared with other methods.

In recent years, human activity recognition has attracted great interest from an increasing number of researchers 
due to its wide applications in everyday life such as healthcare1, motion analysis2, intelligent monitoring system3, 
and smart home4. HAR focuses on analyzing the acquired human behavior information to understand and 
predict specific human behavior. The information is obtained in various ways, including accelerometer, infra-
red, RFID, and video. Different data patterns represent different ways of encoding human behavior, providing 
different values and sources of information. Currently, HAR can be broadly classified into two categories based 
on the source of data acquisition: video-based5–7 and sensor-based8–10. Video-based systems mainly use devices 
such as cameras to capture videos and images to recognize daily life activities and human behaviors through 
techniques in computer vision. Despite some good performance they show, they are susceptible to environmental 
factors such as lighting conditions and target occlusion, and they also exist privacy issues11. In contrast, sensor-
based systems use environmental or wearable sensors to identify human activity. Sensors are widely embedded 
in smart devices, such as smartphones and smartwatches. The ubiquity and indispensability of smart devices 
in our daily lives, coupled with their portability and computational power, have made sensor-based systems a 
major approach to HAR research.

Recognition accuracy is a constant goal, and over the past few decades, researchers have adopted many 
traditional machine learning (ML) methods, including support vector machine (SVM)12, random forest13, and 
k-nearest neighbors (kNN)14, to recognize different human activities using data obtained from smartphones or 
wearable sensors. The accuracy of these methods depends greatly on the quality of the extracted features. This 
requires researchers to not only have some prior knowledge to manually design the extracted features according 
to the application scenario, such as time15, frequency16, and time–frequency domain features, but also feature 
selection and dimensionality reduction to select the representative features. Besides, the extracted features are 
always restricted to the specific scene and fail to be used in other similar environments17.
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DL methods have been very mature and successful in computer vision (CV)18,19, target detection20,21, and 
natural language processing22. Now, DL is also being used more and more widely in HAR, because it could auto-
matically extract high-level features from the original data, effectively avoiding the complex and time-consuming 
manual feature extraction process, and could be applied to any case of HAR. Several DL methods, including 
CNN23, Recurrent Neural Networks (RNN)24, and Extreme Learning Machine (ELM), have been widely used to 
learn feature representations of sensor data and achieve better recognition results.

RNN were originally designed to process serial data, and the data collected by various types of sensors are 
basically one-dimensional time series25, so it is well suited for the study of sensor-based HAR. As the original 
RNN suffers from the gradient disappearance/explosion, GRU​26 and long short-term memory (LSTM) were 
introduced to solve this problem, and these two naturally become the mainstream27. Although RNN improves 
the accuracy of activity recognition, its unique mechanism that the computation of the later step depends on 
the result of the previous step and the computation order can only be performed sequentially leads to problems 
such as high number of model parameters and long training time compared to other methods, which is a chal-
lenge for terminal devices with limited memory and computational power like smartphones and smartwatches. 
Compared with RNN, CNN has local connectivity and weight-sharing mechanisms, which make the model 
have fewer parameters and faster training, thus a large number of studies on sensor-based activity recognition 
based on CNN have also emerged28. The feature extraction capability and recognition accuracy of CNN depend 
on the depth and width of the network. However, with the network getting wider and deeper, the feature extrac-
tion capability and recognition accuracy increase. This inevitably leads to an increase in the model parameters 
dramatically. Therefore, whatever method is chosen, we need to consider both the accuracy and the model size.

In this study, we propose a multi-scale feature extraction fusion model with different convolutional kernel 
sizes. Firstly, the proposed model uses different convolutional channels, of which each has a different convolu-
tional kernel size. Secondly, a separable convolution29 different from the classical convolution is used to reduce the 
model parameters and ensure its accuracy, and then each channel is connected with a GRU after the convolution 
operation to extract the local features and long-term dependencies of the original data, further enhancing the 
feature extraction capability of the network. Finally, the features extracted from each channel are concatenated 
as the final feature representation.

The main innovations and contributions of this work are:

1.	 The proposed model combines the functions of CNN and GRU to achieve the multi-dimensional automatic 
extraction of the spatio-temporal features of the original data.

2.	 Multiple feature extraction channels are used, and each channel uses convolution kernels of different sizes, 
which can realize the extraction of features of different scales and improve the richness of feature extraction.

3.	 The structure of the model is carefully designed, including the content and parameters of each layer, and 
the separable convolution is used to replace the classical convolution, improving the accuracy of model 
identification and reducing the model parameters.

The rest of this study is organized as follows. Section “Related work” presents related work on sensor-based 
HAR using traditional ML methods and DL methods. Section “Material and methods”  describes the datasets 
used in this study and the main stages of the HAR architecture, including data preprocessing, feature extraction, 
and the proposed model. The experiments and results are illustrated and discussed in Section “Experimental 
results”. Finally, Section “Conclusion” presents the conclusions drawn.

Related work
Traditional ML algorithms require domain expertise and tedious feature engineering to obtain feature represen-
tation of the raw sensor data and identify activities by classifiers such as decision trees30 or Naive Bayes31. For 
example, Lee et al.32 collected angular velocity data through a gyroscope attached to the foot and used a decision 
tree model to classify behaviors such as walking, running, upstairs, and downstairs. Ignatov et al.33 proposed 
an online time series segmentation method and achieved the classification of six behaviors with 94% accuracy 
using principal component analysis and KNN. Fleury et al.34 used accelerometers, magnetometers, and infrared 
sensors to collect data, conducted the principal component analysis on the extracted features to obtain 10 main 
features, and achieved the recognition of 35 behaviors by training called multi-SVM model with 86% accuracy.

In contrast, DL algorithms, such as CNN and RNN, do not require special consideration of specific settings, 
and automatically perform feature extraction and classification, with good results in various sensor-based HAR 
scenes35. Ignatov36 proposed a network architecture that combines local features extracted by CNNs with statisti-
cal features to capture the global features of sensory data and pass the feature set to the fully connected layer for 
classification. Zhang et al.37 mapped the motion sensor data captured by the wearable sensor into the single-pixel 
column, multi-channel images, which were then fed into a U-Net network to complete the pixel-level activity 
recognition function. In Ref.38, the authors designed a bidirectional LSTM model for HAR using time series 
data from the UCI-HAR dataset. To extract robust features from raw sensor data automatically and efficiently, 
Ronao and Cho39 proposed a model consisting of alternating convolutional and pooling layers. The extracted 
features are then passed to the fully connected layers and softmax layers to predict human activity. Murad et al.40 
proposed the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of 
capturing long-range dependencies in variable-length input sequences and compared them with methods such 
as KNN and SVM, and experiments showed that DRNNs can achieve better recognition results. Ronald et al.41 
proposed the iSPLInception, a DL model motivated by the Inception-ResNet architecture from Google, that not 
only achieves high predictive accuracy but also uses fewer device resources. Lohit et al.42 paid more attention 
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to the data processing stage and proposed a temporal transformer network (TTN) for the possible temporal 
dislocation in human activity analysis.

Another design paradigm, which is very popular now is that researchers have been combining the strengths 
of different networks to develop hybrid models. Ordonez and Roggen43 combined deep CNN and LSTM for 
the classification of 27 gestures and 5 actions. Xu et al.44 also introduced a multichannel structure, consisting of 
Google’s Inception network and LSTM in HAR to automatically extract richer features. Xia et al.45 proposed an 
LSTM-CNN model, made up of two LSTM layers, a convolutional layer, a global average pooling (GAP) layer, a 
batch normalization (BN) layer, and a softmax layer, and evaluated the model on three publicly available datasets. 
Karim et al.46 proposed transforming the existing univariate time series classification models, the Long Short 
Term Memory Fully Convolutional Network (LSTM-FCN) and Attention LSTM-FCN (ALSTM-FCN), into a 
multivariate time series classification model by augmenting the fully convolutional block with a squeeze-and-
excitation block to further improve accuracy.

Despite the good results DL methods have achieved in HAR, issues such as the extraction of richer and 
more effective features and balancing computational cost with recognition accuracy remain some of the major 
challenges in the HAR field today. This study proposes a fusion model capable of extracting features of different 
scales and types. Meanwhile, a separable convolution is used in the proposed model to minimize the model size.

Material and methods
Datasets.  In this work, we adopt three publicly available datasets: WISDM, UCI-HAR, and PAMAP2 data-
sets. The WISDM dataset is a single-sensor unbalanced dataset of a relatively larger number of samples. The 
UCI-HAR dataset has the same behavior category as the WISDM, but in uniform distribution of samples for 
behavior categories. The PAMAP2 dataset has the most activity categories among the three datasets. The basic 
information of the three datasets is shown in Table 1, and their details are as follows.

WISDM dataset24.  The WISDM dataset is a benchmark HAR dataset derived from the Wireless Sensor Data 
Mining Laboratory and contains a total of 1,098,207 samples. This is an activity recognition dataset collected 
for 36 users who perform daily activities, including the six behaviors of walking, sitting, jogging, downstairs, 
upstairs, and standing. These data were obtained by the experimental users with an Android phone in their front 
leg pocket, using the phone’s built-in accelerometer sensor with a sampling frequency of 20 Hz.

UCI‑HAR dataset11.  This data set was prepared by 30 volunteers between the ages of 19 and 48 years old via a 
waist-mounted (Samsung Galaxy SII) smartphone. Each person performs six activities (walking, upstairs, down-
stairs, sitting, standing, and laying) and the data is collected at a constant rate of 50 Hz using the smartphone’s 
built-in gyroscope and accelerometer. The raw data contained nine features coming from three-axis body accel-
eration, three-axis total acceleration, and three-axis angular velocity. These experiments were videotaped to 
manually label the data.

PAMAP2 dataset47.  The PAMAP2 collects various activities from 9 volunteers (1 female, 8 males), including 
12 protocol activities (lying, sitting, standing, walking, running, cycling, nordic walking, ironing, vacuum clean-
ing, rope jumping, ascending and descending stairs) and 6 optional activities (watching TV, computer work, 
car driving, folding laundry, house cleaning, playing soccer). The activity data were recorded by IMUs (inertial 
measurement units) sensors installed at different positions of the human body (hand, chest, and ankle). A total 
of 52 features were captured at a sampling rate of 100 Hz.

Proposed HAR system.  In this section, we have discussed the main phases of the proposed HAR system 
as illustrated in Fig. 1. The detailed description of the proposed network architecture is shown in Fig. 2. Firstly, 
the acquired raw data, which can not be fed into the HAR model directly, needs to go through a series of pre-
processing processes such as data cleaning, standardization, and data segmentation, to transform into the data 

Table 1.   Essential information of used datasets.

Datasets Volunteers Sensors Sampling rate (Hz) Activities Samples

WISDM 36 Accelerometer 20 6 1,098,207

UCI-HAR 30 Accelerometer, Gyroscope 50 6 748,406

PAMAP2 9 Accelerometer, Gyroscope, heart rate monitor 100 18 2,872,533

Figure 1.   Architecture of the proposed HAR system.
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acceptable to the network. Then the feature extraction network captures the effective feature representation of 
the data, and finally, the model recognizes and outputs the classification results of human behavior.

Data pre‑processing.  First of all, abnormal data such as noise and missing values will inevitably be generated 
during data acquisition due to the complex environment or unstable sampling rate. Filtering noise and linear 
interpolation are used to process these data, which helps the accuracy of model recognition. The data are then 
normalized (all values have a mean zero and standard deviation of one) and the normalized data are passed to 
the segmentation stage, which is a very important step in preparing the sensor data for the HAR model. For 
its simplicity and high computational efficiency, the sliding window method based on fixed length is used for 
data segmentation. The length of the sliding window is set to 128 with an overlap rate of 50% for the datasets of 
WISDM, UCI-HAR, and PAMAP2.

Feature extraction.  Feature extraction is the key step in the process of HAR and crucial to the subsequent 
classification result. A multi-scale feature extraction method is presented to extract the rich and deep level of 
features of the data. The method consists of three main feature extraction blocks, which have a similar structure 
and differ only in the size of the convolution kernel. The features extracted from each feature extraction block at 
different scales join together as the final feature representation.

The feature extraction block includes two convolutional layers, one pooling layer, one BN layer, and two GRU 
layers, which combines the advantages of CNN and GRU to complete the automatic extraction of spatio-temporal 
features of the original data, and its detailed structure is shown in the box in Fig. 2. As can be seen from the Fig. 2, 
the separable convolution instead of the classical convolution is used, because it can guarantee the recognition 
accuracy while reducing the computational cost. This meets the requirements of HAR for minimizing the num-
ber of parameters and the size of the model. The separable convolution, though has the same output dimension 
as classical convolution, differs greatly in the implementation process. It consists of two main stages: depthwise 
convolution and pointwise convolution, as shown in Fig. 3. In the first stage, one convolutional kernel responds 
to one channel, and the number of convolutional kernels is the same as the number of channels in the previous 
layer, thus the number of completed feature maps is the same as the number of channels in the input layer. This 
operation only performs the convolution operation for each channel independently, but fails to effectively utilize 
the feature information of different channels at the same spatial location. Therefore, the pointwise convolution 
stage is needed to make full use of the position information of different channels. The operations in the pointwise 
convolution stage are very similar to the classical convolution operations, with a convolution kernel of size 1 × 1 
× M (M is the number of channels in the previous layer). The convolution operation here will weigh the feature 
maps obtained in the previous stage in the depth direction to generate new feature maps.

Figure 2.   The network architecture of the proposed model.
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Human activity data collected through wearable sensors and smartphones are time series data, which means 
that adjacent variables are strongly correlated in time. CNN is able to capture short variations in time series 
signals by convolutional kernels, which considers each part of the sensor data as independent and extracts fea-
tures for these independent parts of the data without considering the temporal contextual information between 
the parts of the data. Thus, CNN is good at dealing with extracting short-term and local features. However, the 
data of HAR are long time series data, and it is essential to consider the temporal context between the parts 
of the data for identifying the activities more accurately. Conventional RNN are inefficient in capturing long-
term dependencies because the gradient may disappear or explode when it comes up with long sequence data. 
GRU, a variant of RNN, is well suited for processing long-time sequence data, and it can effectively address the 
problems of gradient disappearance and short-term memory existing in Conventional RNN. GRU integrates 
gating units into the conventional cyclic unit, enabling it to remember much earlier information and predict the 
current state based on information obtained from previous states. These gates help GRU to determine when and 
how much information from the past is sent to future states, and therefore, GRU is good at capturing long-term 
dependencies in time series data. As mentioned above, the combination of CNN and GRU has great advantages 
to extract local features and long-term dependencies of the data. The range of local feature extraction is controlled 
by adjusting the size of the convolutional kernels and affects the extraction of long-term temporal features. In 
the end, the channels with different sizes of convolutional kernels are connected to form the proposed model.

Proposed model.  The proposed model has three channels with different filter sizes, and each channel receives 
three-dimensional data including samples, timestamps, and channels, where samples represent the number of 
windows in the used dataset, timestamps represent the size of the sliding window, and channels represent the 
number of input features. The number of filters in the two convolutional layers of each channel are 64 and 128, 
and the filter sizes of different channels are 3, 5, and 7, respectively. A max pooling layer with a pool size of 2 
exists between the two convolutional layers. Then a BN layer is connected to speed up the training of the network 
and control overfitting. The feature output by the BN layer is then fed to two GRU layers, each of which contains 
128 units. The features captured by the three channels are concatenated and sent to the GAP layer to reduce the 
model parameters, and finally the softmax layer for recognition output.

Experimental results
Experimental setup.  The data set should be reasonably partitioned to evaluate the proposed model. If the 
variability of users is ignored and the entire data are randomly divided into training and test sets, the classifica-
tion model may see the same person’s activity in both the training and test sets. This may gain higher accuracy, 
but does not properly reflect the true performance of the model. Therefore, the data set should be partitioned 
by the user-id to make the model fit real-life situations. In the WISDM, the first 30 users’ data are selected as the 
training set, and the following 6 users’ data as the test set; In the UCI-HAR, the activity data of 21 volunteers 
are selected for training and the activity data of the other 9 volunteers are selected for testing; In the PAMAP2, 

Figure 3.   Separable convolution schematic.
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the data collected from the sixth and seventh subjects are used for testing, while the data from the other seven 
subjects for the training set. The details of the three datasets are shown in Table 2.

The proposed model is implemented on the Keras API of the TensorFlow backend. Adam optimizer is adopted 
for the training of the proposed model with a learning rate of 0.001. To measure the loss of the proposed classifi-
cation model, categorical cross-entropy is used. In all experiments, the model was trained on NVIDIA GeForce 
RTX 3060 GPU with batch sizes of 128 for 100 epochs. Table 3 shows the hyperparameters selected for the 
experiments, other parameters all use default values.

Performance metrics.  Four evaluation metrics of accuracy, precision, recall, and F1-score are used to eval-
uate the performance of the proposed model. These metrics are mathematically expressed as:

where TP = True Positives, FN = False Negatives, TN = True Negatives, and FP = False Positives. In addition to 
the above four evaluation indexes, a confusion matrix (CM) is also used to show the specific classification results 
of each category. The CM provides a clear understanding of the classification of unbalanced data and also can 
calculate the classification accuracy of each category quantitatively.

Results.  WISDM dataset results.  Table 4 shows the experimental outcome of the proposed model and the 
model using the classical convolution on the WISDM dataset. Both models have the same structure, and the 
only difference is that one uses the separable convolution, while the other adopts the classical convolution. 
The accuracy of our method reached 0.9718 whereas the precision, recall, and F1-score are 0.9726, 0.9718, and 
0.9717 respectively. As can be seen in Table 4, our method is not only better than the method using the classi-
cal convolution in recognition accuracy but also reduces the number of parameters by 13.8%. It shows that the 
separable convolution is superior to the classical convolution in processing one-dimensional time series signals.

Table 5 compares the accuracy and F1 score of the proposed model with existing models on the WISDM. 
Reference36 combined features automatically extracted by CNN with statistical features extracted manually to 

(1)Accuracy =
TP + TN

(TP + FP + FN + TN)

(2)Precision =
TP

(TP + FP)

(3)Recall =
TP

(TP + FN)

(4)F1− score =
2× Precision× Recall

Precision+ Recall

Table 2.   Instances of three public datasets.

WISDM UCI-HAR PAMAP2

Training set 14,035 7352 19,700

Test set 3121 2947 6727

Table 3.   List of hyperparameters used in this work.

Period Hyperparameters Values

Data preprocessing
Window size 128

Step 64

Feature extraction

Separable convolution_1
Kernel size 3/5/7

Filters 64

Maxpooling Pooling size 2

Separable convolution_2
Kernel size 3/5/7

Filters 128

GRU_1 neurons 128

GRU_2 neurons 128

Training

Optimizer Adam

Number of epochs 100

Batch size 128

Learning rate 0.001
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obtain richer features, while Ref.37 adopted the U-NET model more commonly used in the CV for the HAR 
system. Both43 and45 used a fusion model combining the advantages of feature extraction of CNN and LSTM, 
which mainly differ in the connection sequence of CNN and LSTM in network structure. As shown in Table 5, 
the proposed models show higher performance compared to the baseline experiments, as it not only extracts 
local features and long-term dependencies from the original data but also limits the range of extracted features 
by combining different convolutional kernel sizes. Thus, the proposed model could obtain more effective features 
and higher recognition accuracy.

The CM, shown in Fig. 4, is obtained by evaluating the trained proposed model on the test set. It can be found 
that static actions such as sitting and standing, and dynamic actions of jogging and walking have higher recogni-
tion rates. Compared with other movements, the misclassification rate of dynamic movements of the upstairs and 
the downstairs is higher. Nearly 12% of the upstairs is misclassified as the downstairs, while 3% of the downstairs 
is misclassified as the upstairs, this is because the upstairs is more similar to the downstairs in movement range.

UCI‑HAR dataset results.  Table 6 shows the classification results of the proposed model and the model using 
the classical convolution on the UCI-HAR dataset. Our method achieves an accuracy of 0.9671, precision of 
0.9683, recall of 0.9671, and F1-score of 0.9672 respectively on the test set. It also outperforms the model using 
the classical convolution in terms of recognition accuracy and model size.

The performance comparison of our model with other models is presented in Table 7. As shown in Table 7, 
our proposed model performs much better than InnoHAR and iSPLInception, both of which are branching 
structures, and it is the same as that of MLSTM-FCN, a hybrid model with a squeeze-and-excitation block 
that has the best performance in the comparison model. It can be illustrated that our method can extract more 
distinguishing features and obtain better recognition results in both cases of single-sensor and multi-sensor.

Table 4.   Performance comparison of the proposed model with the model using classical convolutions on the 
WISDM dataset.

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) Parameters

The model using the classical convolution 96.32 96.47 96.32 96.34 723,590

Proposed model 97.18 97.26 97.18 97.17 623,987

Table 5.   Performance comparison of the proposed model with various DL-based models on the WISDM 
dataset.

Models Accuracy (%) F1-score (%)

LSTM24 95.78 95.73

DeepConvLSTM43 – 93.01

LSTM + CNN45 – 95.85

CNN + Statistical features36 93.3 –

U-Net37 96.4 96.5

Proposed model 97.18 97.17

Figure 4.   Confusion matrices for the proposed model on the WISDM dataset.
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The CM is able to describe the classification results of different categories in detail, and the CM for this dataset 
is displayed in Fig. 5. The samples of different behavioral categories in this dataset are relatively balanced, and 
the sitting activities had the highest misclassification rate among all behavioral activities, with 7% being incor-
rectly identified as the standing, while 2% of the standing activities were predicted as the sitting, this is probably 
because the sitting is very similar to the standing.

PAMAP2 dataset results.  In this dataset, 11 protocol activities are selected for experiments except for rope 
jumping. That is because the rope jumping in protocol activities has very little recording time, and even some 
users did not perform this activity. The other activities are more balanced categories. The optional activities are 
not selected due to that only a small number of users perform these activities. Table 8 shows the experimental 

Table 6.   Performance comparison of the proposed model with the model using classical convolutions on the 
UCI-HAR dataset.

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) Parameters

The model using the classical convolution 96.03 96.10 96.03 96.03 729,350

Proposed model 96.71 96.83 96.71 96.72 625,229

Table 7.   Performance comparison of the proposed model with various DL-based models on the UCI-HAR 
dataset.

Models Accuracy (%) F1-score (%)

CNN28 92.71 92.93

Stacked-LSTM27 93.13 –

Res-BiLSTM38 93.6 93.5

InnoHAR44 – 94.5

LSTM + CNN45 – 95.78

MLSTM-FCN46 96.71 –

iSPLInception41 95.09 95

Proposed model 96.71 96.72

Figure 5.   Confusion matrices for the proposed model on the UCI-HAR dataset.

Table 8.   Performance comparison of the proposed model with the model using classical convolutions on the 
PAMAP2 dataset.

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) Parameters

The model using the classical convolution 95.76 95.92 95.76 95.71 771,275

Proposed model 96.28 96.37 96.28 96.27 634,775
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results of the proposed model and the model using the classical convolution on the PAMAP2 dataset. Table 9 
shows the comparison of the recognition performance of the proposed model and other models on PAMAP2, 
and it can be seen that the proposed model has a better recognition effect than the benchmark model.

The CM is shown in detail in Fig. 6. It can be seen from Fig. 6 that the behaviors of lying, sitting, running, 
and cycling are completely recognized correctly, while standing has the lowest recognition accuracy, and some 
samples are wrongly classified as ironing in which people are standing while their hands are performing actions.

Performance comparison of the models using different filter sizes.  A multichannel structure combing convolu-
tional kernels of different sizes with GRU is used to extract much richer features from the raw data during the 
training process, thus obtaining higher recognition accuracy. To explore the impact of multiple filter sizes used 
in the proposed model on classification performance, we compare the proposed model with the other three 
models with different single-size filters, shown in the small box in Fig. 2, and with the same multichannel model 
with different filter sizes. The three single-size filter models differ only in filter size, and the three filter sizes are 
3, 5, and 7, respectively. The same multichannel model has the same model structure as the proposed model in 
Fig. 2, except that the convolution kernel sizes of the three channels are changed to 3, 7, and 11. The comparison 
results are shown in Table 10. From Table 10, it is observed that the proposed model outperforms the models 
using single-size filters and multichannel models with different filter sizes, showing its effectiveness in the com-
bination of different filters size and its rationality of convolution kernel size setting.

Table 9.   Performance comparison of the proposed model with various DL-based models on the PAMAP2 
dataset.

Models Accuracy (%) F1-score (%)

BiLSTM28 89.52 89.40

CNN28 91.00 91.16

COND-CNN48 – 94.01

Proposed model 96.28 96.27

Figure 6.   Confusion matrices for the proposed model on the PAMAP2 dataset. 

Table 10.   Performance comparison of the proposed model with different filter sizes.

Models

WISDM UCI-HAR PAMAP2

Accuracy (%) F1-score (%) Accuracy (%) F1-score (%) Accuracy (%) F1-score (%)

Single-size filter model (filter size = 3) 93.34 93.53 94.74 94.68 94.20 94.18

Single-size filter model (filter size = 5) 94.55 94.63 95.08 95.05 94.80 94.76

Single-size filter model (filter size = 7) 94.78 94.78 95.32 95.33 95.05 95.00

Multichannel model (filter sizes = 3, 
7, 11) 95.77 95.81 95.93 95.92 95.24 95.18

Proposed model 97.18 97.17 96.71 96.72 96.28 96.27



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20620  | https://doi.org/10.1038/s41598-022-24887-y

www.nature.com/scientificreports/

Performance comparison of the models with different numbers of channels.  The proposed model uses a three-
channel structure with different filter sizes. To investigate the effect of models with different numbers of channels 
on the experiment, the proposed model is compared with three different number of channels models, such as 
the one-channel model with filter size 3, the two-channel model with filter sizes 3 and 5, and the four-channel 
model with filter sizes 3, 5, 7 and 9. The four models all use the same network structure, except for the different 
number of channels, and are trained with the same hyperparameters. Table 11 shows the performance compari-
son of the one-channel, two-channel, and four-channel models with the proposed model. From Table 11, it can 
be found that the number of parameters increases as the number of channels increases, and the proposed model 
obtains better recognition accuracy.

Performance comparison of the proposed model with hybrid models with other RNN variants.  The proposed 
model is a hybrid model combining CNN and GRU, which is a variant of RNN. To discuss the impact of other 
RNN variants on the experiment, the proposed model is also compared with the CNN-LSTM model and CNN-
BiLSTM model. The multichannel architectures of the CNN-LSTM and CNN-BiLSTM hybrid models are the 
same as that of the proposed multichannel CNN-GRU model except that the LSTM and BiLSTM layers are, 
respectively, used in the place of GRU layers. Likewise in the case of identical training environments, the experi-
mental results are shown in Table 12. It is obvious that the proposed model achieves higher accuracy with fewer 
parameters.

Statistical analysis.  To further verify a significant difference between the average performance of each test 
model, this study uses the non-parametric ranking-based Friedman test for verification. Friedman test firstly 
gives the corresponding ranking according to the performance of each method on each benchmark data set. In 
contrast to the references41 and46, which only provide test results of the iSPLInception and MLSTM-FCN on the 
UCI-HAR dataset, this work applies the iSPLInception and MLSTM-FCN above to the WISDM and PAMAP2 
datasets in the same experimental setting. The accuracy of the iSPLInception on the WISDM and PAMAP2 data-
sets is 94.84% and 94.93%, respectively, whereas the accuracy of MLSTM-FCN on the WISDM and PAMAP2 
datasets is 83.88% and 95.27%. According to the performance of the above test models, the ranking of each test 
model on the three datasets is shown in Table 13, and then the corresponding values are calculated based on the 
ranking. The statistic produced in this study is 22.92523, and the p-value is 0.01811. The p-value is less than 0.05, 
indicating that there is a significant difference between the measurement results of test models.

Table 11.   Performance comparison of the models with different number of channels.

Models

WISDM UCI-HAR PAMAP2

Accuracy (%) F1-score (%) Parameters Accuracy (%) F1-score (%) Parameters Accuracy (%) F1-score (%) Parameters

One-channel model 93.34 93.53 208,719 94.74 94.68 209,121 94.20 94.18 212,647

Two-channel model 95.23 95.19 416,286 95.86 95.87 417,102 94.78 94.74 423,595

Three-channel model (proposed) 97.18 97.17 623,987 96.71 96.72 625,229 96.28 96.27 634,775

Four-channel model 95.39 95.39 831,822 95.22 95.23 833,502 95.97 95.96 846,187

Table 12.   Performance comparison of the proposed model with hybrid models with other RNN variants.

Models

WISDM UCI-HAR PAMAP2

Accuracy 
(%)

F1-score 
(%) Parameters

Accuracy 
(%)

F1-score 
(%) Parameters

Accuracy 
(%)

F1-score 
(%) Parameters

CNN-LSTM 95.29 95.30 819,059 96.06 96.07 820,301 94.44 94.30 829,847

CNN-
BiLSTM 95.77 95.75 2,003,059 96.30 96.28 2,004,301 95.50 95.46 2,014,487

CNN-GRU 
(proposed) 97.18 97.17 623,987 96.71 96.72 625,229 96.28 96.27 634,775

Table 13.   Performance ranking of each test model on all benchmark datasets.

Model Proposed

With 
classical 
convolution

One 
channel-3

One 
channel-5

One 
channel-7

Three 
channels-3,7,11

Two 
channels

Four 
channels

CNN-
LSTM

CNN-
BiLSTM iSPLInception

MLSTM-
FCN

WISDM 1 2 11 10 9 3.5 7 5 6 3.5 8 12

UCI-HAR 1.5 5 12 11 8 6 7 9 4 3 10 1.5

PAMAP2 1 3 12 9 7 6 10 2 11 4 8 5
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Conclusion
In this study, we propose a multi-scale feature extraction fusion model for HAR, which combines the advantages 
of CNN and GRU to extract local spatial features as well as long-term dependencies in time series data, real-
izing the automatic extraction of spatio-temporal features from the original data. Meanwhile, three channels 
with different sizes of convolution kernels are designed for richer features by capturing local dependencies of 
different limited ranges. In addition, the lightweight recognition accuracy of the sensor-based HAR model is 
satisfied by carefully designing the architecture of the model and adopting separable convolutions instead of 
classical convolutions.

We conducted experiments on three benchmark datasets of WISDM, UCI-HAR, and PAMAP2. The results 
indicate that our method achieves higher recognition accuracy with fewer parameters compared to some existing 
HAR methods. However, it can be seen from the CM that the recognition accuracy of some activities still needs 
to be improved. This requires the designed network architecture to extract more accurate and salient features to 
adapt to different types of activities. Adjusting the DL architecture such as adding the attention mechanism is 
the focus of subsequent research, making the model run more robustly. Besides, a shallower model is adopted to 
maintain lower parameters and achieve higher efficiency, but the depth of the model is worth considering later.

Data availability
The datasets generated during and/or analyzed during the current study are available at https://​www.​cis.​fordh​
am.​edu/​wisdm/​datas​et.​php, http://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Human+​Activ​ity+​Recog​nition+​Using+​Smart​
phones and https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​pamap2+​physi​cal+​activ​ity+​monit​oring.
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