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Overall structural seismic damage 
rapid assessment method based 
on period and displacement 
response characteristics
Mingzhen Wang1,2,3,4*, Lin Gao2,4 & Zailin Yang1,4

The seismic damage state of building structure can be rapidly evaluated by coupling effect of 
structural displacement response and periodic characteristics. Firstly, the fundamental period 
calculation formula that adapts to the deformation pattern and distribution mode of horizontal 
seismic action for reinforced concrete frame structure is derived. Secondly, the seismic damage 
assessment standard of building structure considering period variation is established. Then, the 
seismic damage assessment method of building structure is constructed. Finally, the seismic damage 
example is used to verify the established evaluation method. The results show that the established 
research method has high accuracy and good engineering practicability.

Compared with displacement-based structural damage assessment method, coefficient-based method with con-
sideration of structural vibration characteristics has obvious advantages of high evaluation efficiency and inde-
pendent of manual judgment. When structural vibration characteristics are used to evaluate building damage, the 
commonly used parameters include period (or frequency), vibration mode, damping ratio, frequency response 
function, curvature mode, modal flexibility, modal strain energy, Ritz vector and residual stress vector. The four 
parameters of natural vibration period (or frequency), vibration mode, damping ratio and frequency response 
function can be obtained not only by dynamic characteristics test, but also by numerical simulation analysis of 
finite element model. For the four parameters of curvature mode, modal flexibility, modal strain energy, residual 
stress vector, they can only be obtained by numerical simulation analysis.

Affected by uncertain factors such as material properties, contact connection and boundary conditions, the 
established finite element model is difficult to accurately simulate the real situation of the building structure. 
Therefore, when the curvature mode, modal flexibility, modal strain energy, residual stress vector and other 
parameters are used to evaluate the building damage, the results are easy to deviate from the actual situation. 
With the development of test instruments and signal analysis tools, natural vibration period, vibration mode, 
damping ratio and other parameters can be obtained only by analyzing the actual measured structural response 
data. Moreover, compared with the structural dynamic characteristics such as vibration mode and damping ratio, 
the natural vibration period has the obvious characteristics of easy acquisition and high identification efficiency. 
Therefore, the natural vibration period is usually selected as the main parameter to quickly evaluate the overall 
damage of the structure.

In the process of establishing structural seismic damage assessment method based on natural vibration period, 
it is necessary to focus on two problems. (a) It should be established a fundamental period estimation formula 
which is simplexes and clear physical significance as well as have relatively accurate estimation results. (b) It 
should be constructed a functional relationship between fundamental period and structural seismic damage. 
For the above, the relevant researchers have conducted a lot of research and achieved certain research results.

Gilles et al.1 analyzed the theoretical basis of the seismic action calculation in the equivalent static method 
of NBCC standard, and researched the differences of base shear calculation results for different height buildings 
between using experience fundamental period formula and standard methodology. The results show that when 
the fundamental period is calculated by empirical formula for estimating results, the base shear of the structure 
is lowered by 3.5 times.
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Sofi et al.2 focused on analyzing the mechanical principles and main characteristics of various fundamental 
period computational formulas, and analyzed the impact of masonry infilled wall, concrete or cement block 
partition wall on the fundamental period.

Sangamnerkar and Dubey3 analyzed 36 reinforced concrete frame structures with different underlying dimen-
sions and shaft-spacing structures. And influencing factors on the fundamental period are researched such as the 
underlying width, the column cross-section size and the stiffness of the structural basis. The results show that 
the growth ratio of structural fundamental period is proportional to the underlying width growth.

Young and Adeli4 designed 12 eccentric cantilever steel frame structures with different heights, spans and 
spatial stiffness distributions, and used ETABS to analyze the fundamental periods of different structures. Com-
paring to ASCE7-10 formula, Raylei formula and ETABS analysis results, the recommendation fundamental 
period calculation formula for different types of eccentric cantilever steel frame structures are given.

Wang et al.5 analyzed 414 high-rise, super-high-rise reinforced concrete structures and mixed structures. 
The main influencing factors of the fundamental period are comprehensively analyzed, and the fundamental 
period calculation formula for high-rise building structure is fitted. And 15 shake table test data, 27 pulsation 
tests, wind test data and Chinese standardized calculation formula calculate results are used to verify the fitted 
formula. After the correction, the fundamental period calculation formula and the first three-order cycle ratio 
relationship for high-rise and supper-high-rise building are given.

Based on 90 fundamental period data of steel plate shear wall structures collected in literatures, Jiang et al.6 
determined a new calculation formula according to the multi-freedom structure dynamic characteristics calcula-
tion theory. And the research formula is verified by the shake table tests.

In response to the shortcomings of the fundamental period of shear wall structures in the Indian seismic 
code, Mandanka et al.7 selected 23 irregular shear walls considering the stiffness regular with different planar 
dimension, structural height, shear wall size, etc., and analyzed the fundamental period of these buildings by 
using ETABS software. Based on the numerical simulation analysis data, a new fundamental period estimation 
formula for the stiffness irregular reinforced concrete shear wall structure is fitted considering influencing factors 
such as total structural height, structural width, and inertial moments.

Elfath and Elhout8 applied the Egyptian code to design 36 steel frame structures with different structural 
height, seismic intensity and elastic story-drift angle, and the change pattern of fundamental period was analyzed 
focusing on the changes of structural stiffness and height distribution. It is believed that the fundamental period 
of the bending frame structure is closely related to the seismic intensity and story-drift angle.

For the coupling relationship between the fundamental period and the structural seismic damage, the relevant 
researchers have been researched.

Eleftheriadou and Karabinis9 statistically analyzed the damage data of 164,135 buildings in the Parnitha 5.9 
earthquake in 1999. The relationships between the range of different fundamental periods and the damage ratio 
of buildings corresponding to different damage levels have been focused on.

Based on 300,000 nonlinear seismic response time history analysis data, Katsanos and Sextos10 used the theory 
of elastoplastic response spectrum to study the calculation method of the period elongation of the building struc-
ture under the seismic damage state. Research results shows that the periodic elongation rate of damaged struc-
tures is significantly affected by the period of structural elasticity and the rate of structural stiffness degradation.

Sarno and Amiri11 established a nonlinear single-degree-of-freedom structural system for reinforced concrete 
structures, taking into account structural factors such as structural ductility coefficient and stiffness degrada-
tion rate, and used OpenSees software input to consider the ground motion of the main aftershock sequence for 
nonlinear time history analysis. The relationship between the period extension rate after structural failure and 
the epicenter distance, the main aftershock PGA ratio, site type, duration, elastic fundamental period, ductility 
coefficient, stiffness degradation rate, cumulative damage and other factors has been emphatically studied, and 
the final period extension rate estimation formula is given.

The structural failure factor is established according to the structural dynamic equation by Gunawan12. The 
structural failure factor iterative calculation method is constructed using the high-order Runge–Kutta method, 
and the sensitivity assessment of the structural failure factor was verified using single-degree-of-freedom and 
double-degree-of-freedom system.

Gunawan et al.13 applied Euler–Bernoulli beam theory to construct a structural damage assessment formula 
that taking structural natural vibration period as the dominant factor.

According to the above research literature, it is known that necessary research has been carried out in the 
calculation of structural fundamental period and structural damage assessment based on periodic changes. 
However, most of the existing period calculation formulas are based on empirical formulas, and most of the 
formulas use the height of the structure or the number of floors to directly estimate the fundamental period of 
the structure. Although a fewer independent variables can increase the convenience of formula application, it 
also sacrifices the accuracy of the formula for calculating the fundamental period of complex and diverse struc-
tures, which is unfavorable for structural damage assessment based on periodic changes. At the same time, the 
existing research results mostly focus on the structural period extension ratio after the structure is completely 
destroyed. While the relative research results on the period change interval corresponding to different damage 
levels including slight damage, moderate damage, severe damage, and destroy are few. In this paper, aiming at the 
shortcomings of the existing research work, the mechanical analysis of the generalized single degree of freedom 
system is carried out by using the structural dynamics theory, and the fundamental period estimation formula 
of the structure based on displacement is obtained. Using the direct coupling relationship of structural damage, 
structural displacement response, structural stiffness degradation and structural periodic change, the estimation 
interval of structural periodic change factor corresponding to different failure levels is established. Finally, the 
seismic damage example is used to verify the research method.
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Fundamental period calculation formula
As a complex multi-degree-of-freedom structural dynamic system, the dynamic characteristics of the building 
structure are closely related to the structural stiffness and mass distribution. For the building structure with 
uniform mass and stiffness distribution, it can be simplified as a generalized single-degree-of-freedom system in 
the analysis of structural dynamic characteristics. That is, assuming that the lateral displacement of the building 
structure is in a single deformation form under external loads such as earthquake and wind load, the structure 
has only one degree of freedom in the sense of structural dynamics. For the generalized single degree of freedom 
system, the generalized mass Mz and the generalized stiffness Kz associated with the single degree of freedom 
should be determined first in the process of calculating the natural vibration period14.

For the building structure with bending deformation, the calculation diagram and the main vibration mode 
curve are shown in Fig. 1.

Figure 1c shows the main vibration mode, assuming its shape function is Eq. (1).

where, H is structural total height.
Then Eqs. (2) and (3) can be obtained.

So the formula for calculating the fundamental period of structure is Eq. (4).

Let w = mg and gravity acceleration g = 9.8 m/s2. And let wH
4

8EI = �n is the vertex displacement of the structure 
under uniform load w, then Eq. (5) is obtained.

Theoretical hypothesis of structural damage assessment
For reinforced concrete structures, the lateral load–displacement relationship is shown in Fig. 2.

It can be seen from Fig. 2 that when the deformation curve of the structure under external load is in the O–A 
stage, it is considered that the structural stiffness is equal to the initial stiffness in the elastic stage, and the struc-
ture is basically intact. When the curve is in the A–B stage, the structural stiffness degenerates, the fundamental 
period becomes longer, and the structural failure state is slight damaged. When the curve is in the B–C stage, the 
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Figure 1.   Mechanical diagram and main vibration mode curve diagram of building structure.
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structural stiffness is further degraded, the fundamental period continues to grow, and the structural failure state 
is moderate damage. When the curve is in the C–D stage, the structural stiffness continues to degenerate, and 
the structural failure state is serious damage. When the curve is in D–F stage, the structure collapses. In short, 
in the process of stiffness degradation, the structural displacement response and the structural fundamental 
period are increasing.

The failure state of the structure under horizontal load is usually measured by the change of inter-story 
displacement angle. Taking reinforced concrete frame structure as an example, Table 1 lists the corresponding 
relationship between common displacement angles and different failure states.

Since FEMA273 and ATC40 code adopt the one-stage design method to check the seismic action, the struc-
tural deformation in elastic stage is not directly constrained. Through the comparative analysis of 80 typical RC 
structures, Han et al.20 considered that the limit value of elastic inter-story displacement angle of RC structure 
should be 1/500. For the convenience of analysis, the elastic inter-story displacement angle corresponding to 
FEMA273 and ATC40 code is set as 1/500 in this paper.

According to Eq. (1), when the structure is in elastic state, that is, assuming that the structure is in basically 
intact state, the maximum inter-story displacement angle of the structure corresponding to the fundamental 
period T0 is approximately equal to δe,n =

qH3

6EI  , and the corresponding maximum displacement is �e,n =
qH4

8EI  , 
which can be considered as δe,n =

4
3H�e,n.

Define λ as the structural damage factor, namely

where, δx is the inter-story displacement angle of after structural damage, δy is the inter-story displacement angle 
of in the yielding state, �x refers to the corresponding vertex displacement after structural damage, and �y is 
refers to the corresponding vertex displacement in the yielding state.

The damage state of the structure is determined according to Eq. (6). According to the value of λ, the damage 
state of the structure is determined, as showing in Table 2.

For the computed results of λ to different seismic damage classification standard as showing in Table 2, the 
interval distribution under different damage states is obviously different. Therefore, the structural damage factor 
interval of different damage states should be verified according to the earthquake damage examples.

The Eq. (5) shows that the fundamental period of the structure is related to the structure vertex displacement 
under specific lateral horizontal load, as shown in Eq. (7).
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Figure 2.   Force–displacement curve of reinforced concrete structure.

Table 1.   Seismic damage classification standard of reinforced concrete frame structure.

References Intactness-slight damage
Slight damage-moderate 
damage

Moderate damage-severe 
damage Severe damage-destroy

Chinese seismic design 
code15 1/550 1/250 1/120 1/60

FEMA27316 – 1/100 1/50 1/25

Vision 2000 17 1/500 1/200 1/67 1/40

ATC40 18 – 1/100 1/50 1/33

Lu Xilin19 1/500 1/300 1/150 1/50
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Structural damage factor λ can be transformed to Eq. (8).

where, T ′

1 is the fundamental period of the structure suffered by seismic action.
Combined with the relevant limits in Table 2, Eq. (8) can be directly applied to structural damage assessment.

Verification of the seismic damage examples
After the Tangshan M7.8 earthquake on July 28, 1976 in China, most areas of Tianjin suffered an intensity of 8 
degree. The inpatient department building of Tianjin Hospital (hereinafter building A) and the Tianjin Friendship 
Hotel building (hereinafter building B) in Tianjin City are affected by strong earthquakes21. The fundamental 
periods of the structure before and after the earthquake were measured by the seismic receiver installed in two 
buildings. The section and measuring point layout of the two structures are detailed in Figs. 3 and 4. The basic 
situation, seismic damage characteristics and fundamental period changes of the two structures are shown in 
Table 3. ‘BE’ in Table 3 represents before the earthquake, and ‘AE’ in Table 3 represents after the earthquake.

The parameter λ in Table 3 is calculated by Eq. (8). According to the calculation results of λ in Table 3 and 
the actual seismic damage level of the structure, the damage state assessment interval determined by different 
seismic damage classification standards in Table 2 is compared. It is shown that the damage state assessment 
interval determined by FEMA273 and ATC40 is reasonable, and the damage state assessment standard in Table 2 
is basically in line with the actual seismic damage performance. Therefore, the structural seismic damage assess-
ment method established in this paper based on the fundamental period change of structure has good assessment 
results and high engineering application value.

Zembaty et al.22 carried out shaking table tests on a full-scale reinforced concrete frame structure and moni-
tored the fundamental periods of the two structures before and after failure. The monitoring results and damage 
factor calculation results are shown in Table 4.

The calculation results in Table 4 show that the seismic damage state of building determined by Formula 8 and 
Table 2 is basically consistent with the test results. At the same time, the damage factor intervals corresponding 
to different damage state determined by FEMA273 and ATC40 have better matching results.
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Table 2.   Structural damage factor interval for different damage states.

References Elastic threshold Slight damage Moderate damage Severe damage Destroy

Chinese seismic design code 1/550 1 ≤ λ < 2.2 2.2 ≤ λ < 4.58 4.58 ≤ λ < 9.17 9.17 ≤ λ

FEMA273 1/500 1 ≤ λ < 5 5 ≤ λ < 10 10 ≤ λ < 20 20 ≤ λ

Vision 2000 1/500 1 ≤ λ < 2.5 2.5 ≤ λ < 7.46 7.46 ≤ λ < 12.5 12.5 ≤ λ

ATC40 1/500 1 ≤ λ < 5 5 ≤ λ < 10 10 ≤ λ < 15.15 15.15 ≤ λ

LU Xilin 1/500 1 ≤ λ < 1.667 1.667 ≤ λ < 3.333 3.333 ≤ λ < 10 10 ≤ λ
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Figure 3.   Section and measuring point layout of the building A.
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Conclusions
In this paper, the repaid seismic damage assessment of overall building structures based on fundamental period 
is studied. The results are summarized as follows.

(1)	 The fundamental period calculation formula of generalized single-degree-of-freedom system based on 
fixed-point displacement calculation is established by using the conversion mass method, selecting the 
appropriate vibration mode function and the distribution mode of horizontal seismic action.

(2)	 According to the relationship curve between force and displacement of reinforced concrete structure, the 
mapping relationship between fundamental period of structure and structural damage factor is established 
with displacement response as intermediate variable.
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Figure 4.   Section and measuring point layout of the building B.

Table 3.   Overview of two buildings in Tianjin, China.

Serial 
number Building name

Storey 
number Height

Seismic precautionary 
intensity

Encountered 
intensity Damage level

Fundamental 
period

λBE AE

S1 Building A 8 33.4 Non-fortification 8 degree Slight damage 0.55 0.61 1.23

S2 East Section of building B 8 37.4 7 degree 8 degree Slight damage 0.5 0.85 2.89

S3 West Section of building B 11 47.3 7 degree 8 degree Slight damage 0.5 0.67 1.80

Table 4.   Calculation results of the frame.

The damage state Elastic threshold Slight damage Slight damage Slight damage Moderate damage

Frame
Direction X 1.29 1.59 2.52 2.99 3.71

Direction Y 1.05 1.33 1.90 2.21 2.76

λ
1.51 3.83 5.38 7.24

1.61 3.29 4.44 6.95
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(3)	 Combined with the seismic damage assessment standard of building structure based on inter-story dis-
placement angle, the seismic damage assessment criterion of building structure with fundamental period 
change is established.

(4)	 Seismic damage examples are used to verify the established seismic damage assessment method of building 
structures. The verification results show that the established method in this paper has good assessment 
results and high engineering application value.

The rapid assessment method for seismic damage of the overall structure established in this paper can provide 
technical reference for the safety identification and health monitoring of building structures. Considering that 
the change of the fundamental period of the structure is insensitive to the local damage of the structure, the influ-
ence of the high-order period on the seismic damage assessment of the structure should be studied in the future.
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