
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19120  | https://doi.org/10.1038/s41598-022-23857-8

www.nature.com/scientificreports

Data fusion of electronic noses 
and electronic tongues aids 
in botanical origin identification 
on imbalanced Codonopsis Radix 
samples
Shuying Wang1,3, Zhaozhou Lin1,3, Bei Zhang1, Jing Du1, Wen Li2* & Zhibin Wang1*

Codonopsis Radix (CR) is an edible food and traditional Chinese herb medicine in China. Various 
varieties of Codonopsis Radix have different tastes. To make the flavor of processed food stable, two 
kinds of electronic sensory devices, electronic nose and electronic tongue, were used to establish a 
discrimination model to identify the botanical origin of each sample. The optimal model built on the 
88 batches of samples was selected from the models trained with all combination of two pretreatment 
methods and three classification methods. A comparison were performed on the models trained on 
the data collected by electronic nose and electronic tongue. The results showed that the model trained 
on the fused dataset outperformed the models trained separately on the electronic nose data and 
electronic tongue data. The two preprocessing approaches could improve the prediction performance 
of all classification methods. Classification and Regression Tree approach performed better than 
Partial Least Square Discriminant Analysis and Linear Discriminant Analysis in terms of accuracy. 
But Classification and Regression Tree tends to assign the samples of minority class to the majority 
class. Meanwhile, Partial Least Square Discriminant Analysis keeps a good balance between the 
identification requirements of all the two groups of samples. Taking all the results above, the model 
built using the Partial Least Square Discriminant Analysis method on the fused data after z-score was 
used to identify the botanical origin of Codonopsis Radix.

Codonopsis Radix is a family of plants used mainly in China and East Asian countries, such as Korea and Japan, 
to replenish vital energy, or  qi1,2. The dried roots of Codonopsis pilosula (Franch.) Nannf, Codonopsis pilosula 
Nannf. var. modesta (Nannf.) L. T. Shen and Codonopsis tangshen Oliv. are all used as  Codonopsis3. Tradition-
ally, doctors of Chinese medicine prescribe Codonopsis Radix to strengthen spleen, tonify lung, nourish blood 
and generate fluid. Besides, Codonopsis Radix is utilized as a nutraceutical component in conventional foods, 
functional foods, and dietary  supplements4. The roots are also used in Chinese tonic teas and soups, as well as 
being roasted with millet, eaten raw, baked, or pickled in  miso5. However Codonopsis with different sources 
has different flavor. The roots of Codonopsis pilosula Nannf. var. modesta (Nannf.) L. T. Shen have tight skin, 
thick striate, firm root strips, and sweet-tasting. What’s more, Codonopsis is widely cultivated in Gansu, Shanxi, 
Shaanxi, Hubei, Sichuan, Jilin province of China, which further diversifies its  flavor6. Thus, it is necessary to 
figure out the botanical origin of Codonopsis to keep the taste of foods stable.

The majority of botanical origin identification currently relies on experiential detection, or used in conjunc-
tion with laboratory physicochemical  detection7. However, the subjectivity and insufficient quantitative charac-
terization limit the spread of experiential methods. Although the thin layer chromatography, liquid chromatog-
raphy, and other methods of laboratory physicochemical detection are frequently used to identify the botanical 
origin of traditional Chinese medicine (TCM), these methods often come with complex pre-processing processes 
and protracted detection  times8.

Thanks to the advancements in sensor manufacturing, it is possible to identify the botanical origin of foods 
using electronic sensory instruments such as electronic nose and electronic  tongue9–13. Electronic nose is also 
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known as odor fingerprint  technology14,15. It functions by simulating the human nose’s ability to detect, evalu-
ate, and assess scents. The advantages of simple, fast, and easy pretreatment make it useful for rapid evaluation 
of complex volatile gas mixtures. The electronic tongue, also known as taste fingerprint technology, is a multi-
sensor detection system that analyzes and identifies "taste" by simulating human taste  organs16. It can accurately 
and specifically identify the taste, namely sour, bitter, salty, fresh, astringent, and sweet. All the aforementioned 
electronic sensory equipment have been reported to identify the geographical origin, source, grade of  honey16, 
 Kiwifruit17, Pseudostellariae  Radix18,19 and Fritillariae Cirrhosae  Bulbus20. But it remains unclear whether data 
fusion can improve the classification performance of common classification methods on imbalanced data, such 
as the botanical origin of Codonopsis Radix.

Upsampling or downsampling the minority or majority class are two techniques to handle imbalanced data 
for a classification problem. But these two types of methods are unfriendly to the majority of analysts, since they 
all need some programming skills. In this work, both electronic tongue and nose techniques were employed 
to gather sensory information about the smell and taste of the Codonopsis samples. To accurately identify the 
botanical origin of Codonopsis Radix, three classification methods were separately trained on the individual 
data and the fused one. Data preprocessing method were also employed to eliminate the negative influence cause 
by data magnitude. The optimal model built on the e-tongue data performs comparable to that on the e-nose 
data. The results also showed that combining the two different sensors increased the prediction performance 
on imbalanced data. Even so, there is still much work to be done before a model is ready for usage in industry.

Materials and methods
Codonopsis Radix samples. The samples of Codonopsis Radix were gathered from a number of cities in 
China such as Longnan (Gansu Province), Dingxi (Gansu Province), Changzhi (Shanxi) provinces. A total of 
88 samples were dried, crushed and then sifted using a 60 mesh screen. The original plants of the samples were 
identified by Prof. Hu Fangdi from Lanzhou University. The detailed information of each Codonopsis Radix 
sample were shown in Supplement Table 1. The experiments for this study were conducted in conformity with 
the pertinent guidelines and regulations established by the Ministry of Agriculture and Rural Affairs of the Peo-
ple’s Republic of China.

Electronic nose. The PEN3 Electronic Nose system (Airsense Analytics GmBH, Schwerin, Germany) was 
used in this investigation to detect the smell of the sample. The E-nose system comprise a sampling device, a sen-
sor array and a system software for data acquisition and storage. The sensor array, which is the most important 
component, is made up of 10 MOS sensors, each of which is sensitive to particular volatile substances (Table 1). 
The  article17 defines the primary applications and detection limitations of the 10 MOS sensors.

Electronic tongue. Electronic tongue (e-tongue) measurements were performed with Taste-Sensing Sys-
tem SA 402B (Intelligent Sensor Technology Co., Ltd., Atsugi, Japan), which was designed for the determination 
of taste of liquid samples. Similar to e-noses, signals from nonspecific sensors were used to mimic the functions 
of human taste receptors. The five basic flavors of sour, sweet, bitter, salty, and fresh as well as astringent were 
measured through detecting the changes of membrane potential caused by electrostatic or hydrophobic interac-
tion between flavor substance and artificial lipid membrane. The sensor set includes six sensors, namely AAE, 
CT0, C00, AE1, CA0, GL1, which stand for umami, saltiness, bitterness, astringency, sourness, and sweetness, 
 respectively21. Table 2 details the relationship between the sensors of SA 402B and their physiological meaning.

Electronic nose detection. For the method, 3.0 g of each sample was used and put in sample chamber 
before being tested with the PEN3 electronic nose. Prior to measurement, a sensor check was done to make sure 
the sensors were operating within the proper voltage range. Each sample was then incubated at 30 ℃ for 60 min 
in order to reach headspace equilibrium. To normalize the sensor signal, the gas chamber was first cleaned 
with gas filtered by active charcoal. After each injection and data collection, the sensor self-cleaning time was 
extended to 120 s to re-establish a stable instrument baseline. The operation parameters were set as following: 

Table 1.  Characteristics of MOS sensors utilized in PEN3 electronic nose.

Sensor number Sensor name Sensitive substance

S1 W1C Aromatic constituents, benzene

S2 W5S Nitroxides

S3 W3C Ammonia, aromatic ingredients

S4 W6S Hydrides

S5 W5C Alkane aromatics

S6 W1S Short-chain alkanes such as methane

S7 W1W Inorganic sulfides

S8 W2S Alcohols, ethers, aldehydes, ketones

S9 W2W Aromatic component, organic sulfide

S10 W3S Alkanes, long-chain alkanes
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Sample interval [s]: 1.0; Flush time [s]: 80.0; Zero point trim time: 5.0; Presampling time [s]: 5.0; Measurement 
time: 80.0; Chamber flow (mL/min): 400; Initial injection flow: 400.

To reduce the sampling error, each sample was measured in triplicate. The data collected at 70 s of the profile 
were used for the statistical analysis to ensure that the electronic nose reached the adsorption equilibrium. Finally, 
each sample was represented by a 10-bit vector.

Electronic tongue detection. For the measurements, 100 mL of each sample filtrate was utilized. The 
electrodes were conditioned in accordance with the developers’ instructions before commencing the experi-
ment. In the beginning, it was necessary to perform a sensor check to make sure all the sensors were operating 
within the proper voltage range. Every sample measurement began with a cleaning procedure: the sensors were 
washed for 90 s with the positive and negative cleaning solutions, and then for 120 s with a standard cleaning 
solution. By measuring the potential of the reference solution after cleaning, the stability of the lipid membrane 
potential was recorded (Vr). When the sensor response was stable (deviation less than 0.5 mV) during the meas-
urement, the sample solution was examined for 30 s (Vs). The sensor output for taste was formed by the differ-
ence between Vr and Vs. After a quick cleaning procedure, the membrane potential was measured once more in 
standard solution to assess the samples’ aftertaste, or CPA (change in membrane potential owing to adsorption). 
The five fundamental taste signals were measured four times, with the final three results typically being used to 
guarantee data stability. For the sweetness, one more time was measured.

In addition to the five fundamental taste, three aftertastes of umami, bitterness, and astringency were also 
recorded. As a result, in a duplication, 9 values will be generated for each sample.

Data analysis. For the e-nose data, the vectors of duplicate measurements were averaged to reduce meas-
urement variance. Meanwhile, the vector of the last three observations was averaged for each sample of the 
e-tongue data.

Linear Discriminant Analysis (LDA), or discriminant function analysis is a generalization of Fisher’s linear 
discriminant, a method used in statistics and other fields, to find a linear combination of features that character-
izes or separates two or more classes of  objects22. For the plain LDA method, there is no parameter that need to 
be optimized, LDA models were directly developed to classify the botanical origin of Codonopsis.

Classification and Regression Trees (CART) is a common classification algorithm that is required to build a 
decision tree on the basis of Gini’s impurity index. Specifically, the CART algorithm split the nodes into subnodes 
by searching for the best homogeneity for the subnodes with the help of the Gini  index23. By default, the decision 
tree model is allowed to grow to its full depth, which will run the risk of overfitting the training data. In order 
to prevent this from happening, the decision tree must be pruned. In this study, ten-fold inner cross-validation 
was used to find the best pruning level.

Partial Least Square-Discriminant Analysis (PLS-DA) is a versatile algorithm commonly used for predictive 
and descriptive modelling. Over the past two decades, PLS-DA has demonstrated great success in modelling 
high-dimensional  datasets24. Despite this, success can still be achieved in low- to middle-dimensional datasets, 
provided collinearity exists. There are several parameters needs to be optimized before reaching reliable and 
valid outcomes. One of the most important parameter is the number of latent variables. To provide a trustworthy 
estimation on the impact of the number of latent variables, eight-fold cross-validation was used.

For binary classification, evaluation metrics including accuracy, precision, sensitivity, specificity, and F1 score 
are frequently  utilized25. However, classification accuracy fails for imbalanced class distributions. Thus, the error 
rate redefined as Eq. (1) was used.

All the calculation was performed in MATLAB with classification toolbox (Ver. 6.0) developed by Milano 
Chemometrics and QSAR Research  Group26.

(1)error rate = 1− mean
(

sensitivity
)

Table 2.  Sensors of SA 402B electronic tongue and typical food substances.

Sensor name

Evaluable taste

Basic flavor (relative value) Aftertaste (CPA value)

Umami sensor (AAE) Umami (caused by amino acids or nucleic acids) Umami richness (sustainable perceived umami)

Saltiness sensor (CT0) saltiness (caused by inorganic salts) None

Sourness sensor (CA0) Sourness (caused by acetic acid, citric acid, tartaric acid, etc.) None

Bitterness Sensor (C00) Bitterness (caused by bitter substances, it is perceived to be richness at low 
concentrations) Bitter aftertaste (the bitterness of general foods such as beer and coffee)

Astringency sensor (AE1) Astringency (caused by astringent substances, it is perceived as a pungent 
aftertaste at low concentrations) Astringent aftertaste (the astringent taste of tea, red wine, etc.)

Sweetness sensor (GL1) Sweetness (caused by sugar or sugar alcohols) None
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Results
Identification the botanical origins of Codonopsis with electronic nose. Figure  1 displays the 
magnitude and range of different sensors of e-nose (a) and e-tongue (b). The response values of both techniques 
range from a few tenths to tens. Thus, pre-processing techniques must be utilized to reduce the negative effect 
brought on by the magnitude of various sensors. Scaling to unit length and Z-score Normalization are two com-
monly used methods in the literature. The aim of scaling to unit length is to scale the components of a feature 
vector such that the complete vector has length one. This means dividing each component by the Euclidean 
length of the vector (Unitlength). Standardization, a.k.a autoscaling, makes the values of each feature in the data 
have zero mean and unit variance (Z-score). Figure 2 shows the distribution of data preprocessed by the above 
two methods. Both preprocessing method align the responses of each sensor to the same level. But the magni-
tude of data preprocessed by Z-score is ten times larger than that of Unitlength.

From the overlay plot in Fig. 1c, it can be observed that it is hard to clearly distinguish the two group of sam-
ples on any sensor of E-nose and E-tongue. Thus, after data pre-processing, three binary classification models 
were built using CART, LDA and PLS-DA, separately. The results of the optimal model are showed in Table 3. 
All the metrics were estimated by five-fold cross-validation. For CART in the classification toolbox, the best 

Figure 1.  An overview of raw data before variable preprocessing: (a) the magnitude and range of different 
sensors of e-nose; (b) the magnitude and range of different sensors of e-tongue; (c) the overlay plot of 88 
samples.

Figure 2.  Data distributions after variable preprocessing.
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pruning level was determined automatically by an inner ten-fold cross-validation for each train set in the five-
fold cross-validation. But the best pruning level of each train set was not output in the final results. While the 
number of latent variables in the PLSDA model was optimized by an independent eight-fold cross-validation. 
The extra cross-validation was used to alleviate the concerns about the potential overly optimistic estimation of 
the prediction performance.

The error rate in this table illustrate that the prediction performance can be improved obviously following 
pretreatment. The same conclusion can be obtained in terms of accuracy. Based on error rate, the comparison 
of the models’ performances reveals that PLSDA performs better than LDA and CART. However, with respect 
to their accuracy, the conclusion is reversed. From the confusion matrix (Fig. 3), it can be seen that CART tends 
to assign the sample to Codonopsis pilosula (Franch.) Nannf (the majority class), while PLSDA model tends to 
classify the sample as Codonopsis pilosula Nannf. var. modesta (Nannf.) L. T. Shen (the minority class). In fact, 
the sample size of the two groups is unbalanced. If all the samples were classified as Codonopsis pilosula (Franch.) 
Nannf, the model accuracy rate could reach 83%.

Identification the botanical origin of Codonopsis Radix with electronic tongue. Similar to the 
electronic nose data, data preprocessing was executed on the electronic tongue data to eliminate the influence 
caused by data range across sensors. Undoubtedly, the prediction performance of these models can be improved 
more or less after pretreatment. As is shown in Table 4, no method is always performed better than the others. 

Table 3.  The cross validation results of botanical origin identification based on electronic nose. n.lvs in the 
parenthesis denotes the number of latent variables optimized by eight-fold cross-validation.

Methods

Error rate (%) Accuracy (%)

Raw Autoscaling Unitlength Raw Autoscaling Unitlength

CART 37 31 31 86 89 89

LDA 33 33 33 85 85 85

PLSDA (n.lvs) 30 (5) 28 (2) 28 (2) 81 (5) 76 (2) 76 (2)

Figure 3.  The confusion matrix of CART and PLSDA on the electronic nose data.

Table 4.  The cross validation results of botanical origin identification based on electronic tongue.

 Methods

Error rate (%) Accuracy(%)

Raw Autoscaling Unitlength Raw Autoscaling Unitlength

CART 47 37 47 80 86 80

LDA 33 33 33 84 85 84

PLSDA 38 28 16 64 76 88
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The LDA model outperformed CART model in terms of both error rate and accuracy. Compared with LDA, the 
error rate of PLSDA was reduced significantly after preprocessing. While the accuracy of PLSDA model on the 
z-score data exhibited a different trend.

To appreciate how these diverse results arose, the prediction details were summarized in Table 5. There is a 
huge difference between the number of samples not assigned to any group predicted by PLSDA and LDA. But 
the number of samples not assigned could not explain the performance of PLSDA on the Z-score data. Taking 
the results presented in Table 3 into consideration, the reason can be attributed to the preference of the two 
classification methods.

Identification the botanical origin of Codonopsis Radix with electronic nose and electronic 
tongue. The results obtained on the electronic tongue data and electronic nose data both demonstrated that 
preprocessing could improve the prediction performance of classification methods. However, since the number 
of samples not assigned to the data preprocessed by Unitlength is larger than that of z-score in Table 5, data 
fusion was directly executed on the data preprocessed by z-score.

From the raw data extracted from the electronic nose (X1) and electronic tongue (X2), it can be observed 
that there are few variables extracted (X1 has 10 variables and X2 has 9 variables). Thus, the two datasets were 
augmented first to pursue possible improvement in the classification model. The hyperparameters of CART, LDA, 
and PLSDA were tuned using cross-validation. The final result was presented in Table 6.

Table 5.  The classification results of LDA and PLSDA on electronic tongue data. auto stands for Autoscaling; 
unil stands for Unitlength; CP is short for Codonopsis pilosula (Franch.) Nannf; LT is short for Codonopsis 
pilosula Nannf. var. modesta (Nannf.) L. T. Shen; the number in the parenthesis denotes the number of latent 
variables optimized by eight-fold cross-validation.

Methods Real

Predicted

CP LT Not assigned

LDA

Raw
CP 68 5 0

LT 9 6 0

auto
CP 69 4 0

LT 9 6 0

unil
CP 68 5 0

LT 9 6 0

PLSDA

Raw(2)
CP 31 17 25

LT 4 6 5

auto(5)
CP 56 16 1

LT 5 10 0

unil(5)
CP 61 7 5

LT 3 11 1

Table 6.  The classification performance of CART, LDA and PLSDA on data fused with two different strategies. 
CP is short for Codonopsis pilosula (Franch.) Nannf; LT is short for Codonopsis pilosula Nannf. var. modesta 
(Nannf. ) L. T. Shen; the number in the parenthesis denotes the number of latent variables optimized by eight-fold 
cross-validation.

Methods Real

Predicted

Error rate (%) Accuracy rate (%)CP LT Not assigned

CART 

Augment
CP 72 1 0

37 86
LT 11 4 0

PCA
CP 68 5 0

50 78
LT 14 1 0

LDA

Augment
CP 64 9 0

29 82
LT 7 8 0

PCA
CP 69 4 0

49 80
LT 14 1 0

PLSDA

Augment(12)
CP 62 11 0

14 85
LT 2 13 0

PCA(1)
CP 46 27 0

42 61
LT 7 8 0
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Taking the cross-validation accuracy as an index, the three classification models rank as follows: 
CART > PLSDA > LDA. While ranked with respect to the error rate of cross-validation, the three models are 
ordered in the opposite sequence. In fact, it is evident from the confusion matrix that CART outperforms PLSDA 
by a small margin, but with a stronger trend to classify the sample of Codonopsis pilosula Nannf. var. modesta 
(Nannf.) L. T. Shen as Codonopsis pilosula (Franch.) Nannf. While, the PLSDA model not only maintains high 
prediction accuracy but also strikes a balance between the need to correctly distinguish the two groups of Codo-
nopsis Radix. Therefore, based on the aforementioned findings, PLSDA should be chosen as the final modeling 
approach on the augmented data.

Comparing the results of PLSDA model in Tables 3, 4 and 6, it can be observed that augmenting the electronic 
nose data with the electronic tongue data could enhance the classification performance. Previous  studies27 have 
demonstrated that PCA is an effective data presentation learning method and the features learned could meet 
the general requirements of mid-level data fusion methods. But it remains unclear whether PCA works for the 
data when the number of samples is larger than the number of variables. Thus, principle components (PCs) 
were learned from the electronic nose data and the electronic tongue data separately. Then, the PCs were used 
in conjunction to train a classification model.

The number of PCs was chosen as the PCs whose cumulating contribution rate was greater than 90%. For 
the e-tongue data, the first three PCs explained 93.43% of total variance. Meanwhile, the first two PCs explained 
98.57% of total variance of e-nose data. The PCs were merged into a matrix Xpc of size (88, 5). Then, the CART, 
LDA, and PLSDA models were trained on the feature matrix Xpc.

The variance of the explained of the first three principal components of e-tongue was 93.43%, and the cumu-
lative contribution of the first two principal components of e-nose was 98.57%. The new matrix Xpc (88*5) was 
obtained by combining the principal component scores of the two types of data, and then classification models 
were established with CART, LDA and PLSDA respectively. The results were shown in Table 6.

As shown in Table 6, the models built on Xpc performed worse than their corresponding model on the raw 
data. Both CART and LDA still prone to identify the samples as Codonopsis pilosula (Franch.) Nannf. Although 
the performance of PLSDA was worse than CART and LDA, it reserve the ability to discern sample of Codonopsis 
pilosula Nannf. var. modesta (Nannf.) L. T. Shen. Even though, there are no samples not assigned to any group. In 
short, the data fusion strategy based on PCA is not suitable for our data. However, whether this conclusion can 
be extended to the data that the number of samples is larger than the number of variables remains to be verified.

Discussion
The results of models trained with different classification methods before and after data preprocessing showed 
that data pretreatment could enhance the classification performance of models built on the data of both e-nose 
and e-tongue. Although the classification methods used in this study are diverse in their theoretical background, 
none performed better than the other two in all metrics. From the boxplot in Fig. 2, it was observed that both 
z-score and Unitlength aligned the responses of different sensors to the same level. By doing so, the contribution 
of sensors with slower responses will be amplified. That might explain the improvement of data pretreatment 
on classification models.

Generally, PLSDA is generally used in cases with more variables than  samples28. The PLSDA methods were 
used in this study since collinearity problem existed in e-nose and e-tongue data. Collinearity introduces the risk 
of over-fitting when using the classification method based on the inverse of the Matrix. When applying LDA to 
e-tongue and e-nose separately and fused data, the prediction error rate and accuracy of the resubmission test 
are much better than that of cross validation.

Although merging the data of multi-sensors is simple, it is an effective data fusion  method29. The results 
obtained in this study demonstrated that augmenting the e-tongue data with e-nose data could improve the 
model’s ability to distinguish the samples of Codonopsis pilosula Nannf. var. modesta (Nannf. ) L. T. Shen from 
Codonopsis pilosula (Franch.) Nannf. However, in the Codonopsis Radix dataset, the majority class is much larger 
than the minority class. Both CART and LDA failed to train an impartial model; they all tended to assign samples 
to the majority class. While PLSDA keeps a good balance between the two classes. Further research is required to 
determine whether PLSDA can fulfill the requirement of minority class classification for other imbalanced data.

Conclusions
In this study, 88 batches of Codonopsis Radix sample were measured by electronic nose and electronic tongue. 
The collected data was used separately or in conjunction to create a classification model capable of correctly 
determine the botanical origin of each sample. The results showed that by merging the electronic nose data and 
electronic tongue data into a single data set could assist the PLSDA method in building a usable classification 
model even if the dataset is highly imbalanced. Specifically, the error rate reduced to 14% from 28% on e-nose 
or 16% on e-tongue. Moreover, it was found that both pretreatment methods used in this study could improve 
the prediction performance of the models. In other words, the magnitude and range of electronic sensors have 
a great influence on the prediction ability of the model. But data fusion based on features extract by PCA failed 
to further improve the prediction performance. More effort should be made to make it clear what the cause of 
this phenomenon is.

Data availability
The raw data generated during the current study are not publicly available due to privacy restrictions, but the 
derived data supporting the findings of this study are available from the corresponding author on reasonable 
request. Sample collection: The authors declare that they have a license to collect two varieties of Codonopsis 
Radix (Codonopsis pilosula (Franch.) Nannf, Codonopsis pilosula Nannf. var. modesta (Nannf.) L. T. Shen). The 
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authors declare that they comply with the IUCN Policy Statement on Research Involving Species at Risk of 
Extinction and the Convention on the Trade in Endangered Species of Wild Fauna and Flora.
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