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Texture analysis and artificial 
neural networks for identification 
of cereals—case study: wheat, 
barley and rape seeds
Ł. Gierz1* & K. Przybył2

The scope of the research comprises an analysis and evaluation of samples of rape, barley and wheat 
seeds. The experiments were carried out using the author’s original research object. The air flow 
velocities to transport seeds, were set at 15, 20 and 25 m  s−1. A database consisting of images was 
created, which allowed to determine 3 classes of kernels on the basis of 6 research variants, including 
their transportation way via pipe and the speed of sowing. The process of creating neural models 
was based on multilayer perceptron networks (MLPN) in Statistica (machine learning). It should 
be added that the use of MLPN also allowed identification of rape seeds, wheat seeds and barley 
seeds transported via pipe II at 20 m  s−1, for which the lowest RMS was 0.05 and the coefficient of 
classification accuracy was 0.94.

One of the key agrotechnical treatments used for cereals and other cultivated plants determining their growth 
and satisfying crop is  sowing1. In Poland, sowing is carried out with the use of mechanical and pneumatic sow-
ers with working widths greater than 3 m. The development of sustainable agriculture in Europe and the world 
causes that agrotechnical processes, including sowing, are carried out more and more often by machines with 
huge working widths from 4 to 6 m or even up to 9 or 12  m1 with foldable frame  systems2–4. Currently, sowers and 
cultivation and sowing aggregates are the most commonly used sowing  machines5. By applying integrated soil 
 cultivation6 one can come across the problems related to quality control and sowing breaks caused by a coulter 
 blockage7 (blocked by wet soil or straw), which in turn may lead to blockage of the sowing pipe. The foldable 
frames of the sowers require application of pneumatic systems to transport the sowing material to the coulters.

In view of the above, machine operators face problems with installing pneumatical sowers, caused by insuf-
ficient evenness of seed division into separate  rows1,8–12. This problem can lead to seed transport delays and dif-
ficulties to control sowing in terms of detecting sowing brakes caused by blocked feed pipes (transporting seeds).

In recent years, one can observe the development of various sowing control systems, mainly those based on 
photoelectric sensors capable of detecting individual seeds. One of the most popular solutions devised by the 
Vaderstad company is a system known under the commercial name of “seed eye”13. So far it has not been widely 
used for controlling the movement of sowing material in mechanical or pneumatic  sowers14. The available struc-
tures, do not commonly use solutions such as placing sensors for blockages detection or sowing material count-
ing at the end of a sowing pipe or in a coulter. In addition, no research results have been found to provide new 
techniques for detecting kernels in sowing material in order to count them and detect blockage of sowing pipes.

However, in specialized literature one can find examples of application of optical sensors used as markers, 
which allow fast, non-destructive and reliable identification of the best doses of gamma radiation in order to 
stimulate the parameters of soya  growth15. What is more, one can also find research focusing on perceptibility of 
those  sensors16. There are also systems with piezoelectric sensors inside the sower distribution  head17 and on the 
outlet stub  pipes18 as well as cases of using capacity sensors U. S. Patent 4782282 A. Unfortunately, insufficient 
capacity changes possible with this solution, indicate poor future perspectives for this method. In view of the 
above, it seems justified to search for online solutions that will enable to detect blockages as well as count seeds 
that are sowed, that can eliminate the necessity of carrying the so called calibration test. It will allow efficient 
calibration of the sowing unit both in fertilizers and seed sowers and other cultivation  devices19.
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Lack of a cheap sowing control system of cereal kernels to indicate blocked pipes results in occurrence of 
sowing gaps, (breaks) and subsequently leaves some parts of acreage unsown (dominated by weeds). Application 
of secondary sowing in the unsown area is possible but expensive, and this solution is not used by farm owners 
in Poland or in  Europe20.

The aim of this study is to determine the velocity of kernels to be used for defining technical conditions and 
forces occurring when a kernel collides into the sensor, a bar equipped with a control system designed for the 
needs of the sensor construction, or a control bar used in mechanical and pneumatic sower units.

In standard multiple row sowers and automated  sowers21,22 for sowing corn and other cultivated plants, the 
above mentioned system could be applied in order to control blockages of sowing pipes. The potential of the 
above solution can be utilized for detecting blockages in pipes transporting seeds and fertilizers according to a 
method called strip-till. In order to provide a correct study of such a system it is crucial to obtain all necessary 
technical data to construct the sensor and the whole unit. The first step is to determine the velocity of kernels in 
order to estimate forces occurring when a kernel collides into a sensor or a control bar. Until now, there has been 
no database of velocity distribution of kernels in the sowing pipe outlet (air and seed), or a method determining 
velocity of objects (kernels).

Currently, there are attempts to find solutions, that will allow to control the velocity of objects (seeds) in real 
time.

In this study, the authors have used one of the artificial intelligence methods, i.e. artificial neural networks 
ANN whose functioning involves proper using of mathematical or programing  formulas23,24. Artificial neural 
networks are most often used for data with no ordered or simple computing  structure25,26. ANNs are mostly 
used in information including processing of image (bitmap)27–29, sound (acoustic wave)30,31 and text (numerical 
data)32–36. The simplest form of a neural model consists of layers of neurons, in which a neuron from one layer 
generates a signal constituting one of the arguments for each neuron of another layer.

A decision was made to examine the velocity of two medium size seeds (wheat and barley) and one fine-
grained seed (rape). It should be added that Multi-Layer Perceptron (MLP) neural networks were used in order to 
detect and count the number of kernels in the sowing material for the most popular varieties of cereals cultivated 
in Poland. The practical goal was to develop neural networks capable of fast identification of various types of 
cereal kernels. The use of an ultra-high-speed camera to register images for the needs of designing new sensors 
and sowing control systems can be viewed as an innovative approach.

Materials and methods
Preparation of samples. It should be said that for the needs of the research, the authors used varieties 
of cereals that are most commonly sown in Poland. It is also worth noting that, based on statistical data from 
2019, including the last ten years (https:// www. fao. org/ faost at/ en), Poland is ranked seventh in the global rank-
ing of rape production. The research material consisted of winter wheat seeds Elixer with the initial moisture 
level of 9.8%, winter barley seeds LG Veronika with the initial moisture level of 12.2% and winter rape seeds 
Kite with the initial moisture level of 9.0%. All the research material came from the Main Seed Warehouse Top 
Farms Seeds, Production Plant in Runów located in Greater Poland Province. Based on the announcement of 
the Marshal of the Sejm of the Republic of Poland about the Legal Protection of Plant Varieties of January 22, 
2021 (Journal of Laws of 2021, item 213) and the breeder’s declaration that the indicated varieties: Kite (rape), 
LG Veronika (barley) and Elixer (wheat) are protected by law by the breeder; the authors have received this per-
mission. The breeder agreed to provide the above-mentioned plant material, which complies with the national 
guidelines of the Main Seed Warehouse Top Farms Seeds, a production plant in Runów, located in the Greater 
Poland Province. With the breeder’s consent, the authors were allowed to use their plant material only for the 
purposes of scientific research, including carrying out tests of e.g. seeding simulation.

Prior to the experiment, the sowing dose (ration) was determined for each variety of cereals. The sowing 
dose (ration) was determined based on the most commonly used dose in Poland. For the needs of the research, 
a dose (ration) of 115 kg  ha−1 and 185 kg  ha−1 was established for wheat, a dose of 170 kg  ha−1 was established 
for barley and a dose of 4.4 kg  ha−1 was established for rape, respectively. A dose of 115 kg  ha−1 is used for wheat 
seeds in fertile soils, whereas a dose of 185 kg  ha−1 is used in medium fertile soils. It should be added that all 
kernels were properly selected prior to the research.

Next stage of the research involved adapting the stream of kernel mass transported via pneumatic pipe for 
selected structures: I and II. To check a possibility of controlling the sowing material movement in the sower 
elements, irrespectively of the seed dose, two dose levels were examined for wheat kernels, i.e. 280 seeds/m2 and 
450 seeds/m2 (structure I and II). In the case of barley and rape seeds, only one dose level was used. In terms of 
barley, sowing density was set at the level of 375 seeds/m2 (structure I and II). For rape, sowing density was set 
at the level of 80 seeds/m2 (structure I and II).

Test stand. In order to provide the seed blockage control system with real working conditions, the author’s 
original research stand was constructed, which consisted of (Fig. 1):

• Sowing unit consisting of seed crate, sowing rollers driven by electric engine with adjustable rotation speed 
(2a, 2b),

• Air and seed pipe with configuration I (2a),
• Air and seed pipe with configuration II (2b),
• Chronos camera 1.4. (3a),
• A tripod camera stands with adjustable height (4a),
• Screen with scale (10 mm) (5a),

https://www.fao.org/faostat/en
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• Two LED lamps with stabilization system (6a),
• Lamp stand with adjustable height (7a),
• Seed container (8a).
• Vacuum cleaner with blower and rotation regulation (9a),
• Air pipe (10a),
• Load-bearing construction of the stand (11a).

Like in the previous  research37, velocity of air stream transporting kernel in a pneumatic tube was 15, 20, 
25 m  s−1 (those values of air stream velocities are typically used in pneumatic sowers). It should be observed that 
various configurations of the pneumatic tube arrangements and lengths are used in pneumatic sowers. With 
reference to the earlier  research37, it was decided to compare the two most common seed-air tube configurations. 
The first of them (a) in the shape of extended “S” letter with the tube length of 1.5 m. and the second (b) in the 
shape of tightened “S” letter with the tube length of 2.0 m.

The kernel dispenser was devised and built according to the pattern of a standard dispenser used in sowers, 
which was described in an earlier  experiment37.

The tests involved providing the dispenser with proper rotation velocity in order to obtain sowing density, 
that is, 280 grains of wheat/m2 and 450 grains of wheat/m2 respectively, 375 grains of barley/m2 and 80 grains 
of rapeseed/m2.

As part of the control process of kernel transporting air stream velocity, A pressure Anemometer called 
VOLTCRAFT VPT−100 was used . The measuring range of the device is 1 to 80 m  s−1 and measuring accu-
racy + /− 2.5%. Air stream transporting seeds in a seed-air tube was generated by vacuum STANLEY SXVC20PTE 
with rated power of 1200 W, which has also the function of blower. The air stream velocity within the range from 
5 to 50 m  s−1 was regulated with potentiometer, which controlled the vacuum engine speed.

The following factors were accepted for the needs of this study:

Figure 1.  The scheme of the test stand by Gierz et al.31 (a) pipe configuration I, (b) pipe configuration II,, 1- 
drilling unit (a feeder), 2-seed pipe, 3- high-speed camera, 4- adjustable camera stand, 5—Screen with scale , 
6- LED lamps with stabilization system, 7- adjustable lamp stand, 8- seed container, 9-a vacuum cleaner with a 
blower function, 10- air pipe, 11- load-bearing construction of the stand.
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(a) Fixed:

• Dose of seeds to be sown: barley 526.50 g  min−1, which corresponds to 170.0 kg  ha−1 and rapeseed 13.85 g 
 min−1, which corresponds to 4.4 kg  ha−1;

• Sowing velocity: 15 km  h−1,
• Tube configuration: (a) and (b) (Fig. 2),

(b) Variable:

• Velocity of air stream: 15 m  s−1, 20 m  s−1, 25 m  s−1,
• Grain variety: wheat, barley, rapeseed
• Dose of seeds to be sown: wheat 359.0 g  min−1 , which corresponds to 115.0 kg  ha−1 and 575.65 g  min−1, 

which corresponds to 185.0 kg  ha−1

(c) Result factors:

• Kernel velocity m  s−1,
• Kernel acceleration m  s-2.

Movie acquisi�on in .im7 format

Impor�ng files (.im7) into Matlab 2021

Loading of The PIVMat Toolbox for Matlab

Loading the readimx-v2.1.9  library

Conver�ng .im7 files to .jpg

Image cropping

Convert 24-bit to 8-bit images

Loading the Haralick library

Extrac�ng texture descriptors from an image

Expor�ng numeric data to a .csv file

Impor�ng a .csv file into Sta�s�ca 13.3

Se�ng the learning parameters using the network designer

Learning Ar�ficial Neural Networks

Genera�ng MLPN

Figure 2.  The scheme of image processing and creation of Artificial Neural Networks.
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Preparation of research material with camera. Graphic data of wheat, barley and rapeseed with dif-
ferent variables (velocity and grain variety, configuration of seed-air tube) was acquired using a high-speed 
camera HighSpeedStar5, which is characterized by high image projection frequency. This device is equipped 
with an image converter of CMOS type. This fast device enables taking videos at 3000 frames per second, with 
the resolution of 1024 × 1024 and taking photos at 30,000 photos per second with the resolution of 256 × 256.

As a result, 18 videos in .im7 format were taken, for which data recording speed was about 9400 kb/s with 
the image resolution of 640 × 360. Six research variants were created in order to develop learning sets, and the 
next step was to design neural networks for them. Each research variant consisted of 3 videos with 3 classes of 
grain varieties (wheat, barley, rapeseed). The same parameters of image projection were used, i.e. 58 frames per 
second, to provide measuring repeatability of the results and compare velocities.

Image processing in MATLAB. At the first stage of the research, image conversion was carried out to 
obtain a 24-bitmap image with 1437 × 1253 resolution in .jpg format (Fig. 2). It should be added that the above 
conversion applied to each class (grain variety) consisting of 212 images in .im7 format. In order to do that the 
author used software called MATLAB 2021b, which enabled image conversion from .jm7 to .jpg. To acquire 
image in .jpg format, the author used software called The PIVMat Toolbox for MATLAB by Frederic Moisy 
(https:// www. mathw orks. com) and library readimx-v2.1.9 (https:// www. lavis ion. de). PIVMat Toolbox contains 
a set of functions enabling to import images in .im7 format. Library readimx allowed to read a given file format 
effectively with MATLAB. Another step was to crop the 24-bitmap 1437 × 1253 resolution images in jpg format 
to 931 × 931 resolution images.

The next stage was to process the images so as to highlight characteristics of the texture. The texture is used 
to interpret the image  details33,38,39, it carries information about its surface, color and other parameters related to 
the lighting model including: color of reflected and stray light, degree of transparency and light refraction coef-
ficient. An analysis of the texture was carried out using a grey-level co-occurrence matrix (GLCM)27,40. In order 
to apply GLCM to present details of the surface with procedural textures, it was necessary to carry out image 
conversion from 24-bitmap to 8-bitmap image depth in MATLAB. The prepared database consisting of 8-bitmap 
images was imported again to MATLAB in order to isolate 20 descriptors of texture from Haralick  library41–44: 
contrast (contr)45, correlation (corrm), cluster prominence (cprom), cluster shade (cshad), dissimilarity (dissi), 
angular second moment (energ)37, entropy (entro)37, homogeneity (homom), homop, maxiumum probability 
(maxpr), sum of square variance (sosvh), sum of average (savgh), sum of variance (svarh), sum of entropy (senth), 
difference variance (dvarh), difference entropy (denth), info. measure of correlation 1 (inf1h), info. measure of 
correlation 2 (inf21h), inverse difference normalized (indnc), inverse difference moment (idmnc).

Multilayer perceptron networks. The research included the process of network machine learning. 
Multi-Layer Perceptron (MLP) neural networks were designed. Each structure of Multi-Layer Perceptron Layer 
Network (MLPN) consisted of 20 neurons in the input layer, 15 neurons in the hidden layer and 3 neurons in 
the output layer (Fig. 3). The input layer of MLPN defined 20 texture descriptors and determined classes of ker-
nels (variety of grain). Each class of the learning set included 212 learning cases. In the end, the set consisted of 
636 cases (Table 2). Six neural networks were prepared for the comparison process to assess the effectiveness of 

Figure 3.  Artificial Neural Network used for the experimental data.

https://www.mathworks.com
https://www.lavision.de
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velocity distribution recognition for the selected classes of kernels. The configurations of networks with different 
kernel transporting air stream velocities (15 m  s−1, 20 m  s−1, 25 m  s−1) and type of the seed-air tube (p1, p2) are 
presented in Table 1.

Statistical analysis. A statistical analysis was carried out for individual texture descriptors, and Tukey test 
was carried out for p value of 0.05. It should be added that Statistica 13.3 software was applied in order to carry 
out a statistical analysis.

Results and discussion
Machine learning. According to the research on determination of the number of the network hidden lay-
ers, 15 hidden layers were identified. After aggregation of the input data including weights, it was also necessary 
to determine the summary signal of stimulation. In order to obtain high effectiveness of the kernel class recogni-
tion, a hyperbolic tangent was selected as an activation function for neurons in the output layer. Wag reduction 
was also applied for neurons in the output layer. 1000 epochs were determined in order to train the network. 
Determining the number of epochs allows to present all cases for a given network, one after another. The output 
values will be compared with the assumed values by determining an error value. A simulation of the designed 
networks was carried out in Statistica v.13.3. software. In the process of learning, an adequate neural model was 
selected for each research variant, which was characterized by the highest classification capability. The research 
results obtained for the remaining networks are presented in Table 2. It should be added that Broyden–Fletcher-
Goldfarb–Shanno (BFGS)46 algorithm was used in the prepared networks like in the case of the research on rec-
ognizing a raspberry powder carrier. According to the research results, BFGS algorithm becomes quite effective 
for the functions used in the author’s previous original  research33. The lowest Root Mean Square Error (RMSE)47 
at the level of 0.050 for the sets: training, testing and validation was reached by MLP-p2_20 with the seed-air 
tube type II. The lowest RMSE at the level of 0.060 was reached by MLP-p1_15 with the seed-air tube of type 1. 
The research on  triticale37 indicates that the use of the seed-air time of type 1 along with an increase in the veloc-
ity of kernel transporting air stream (rapeseed, wheat and barley), leads to an observable increase in the network 
error, which in turn leads to deterioration of classification effectiveness. Like in the previous research, classifica-
tion accuracy of most results (Table 2) achieved for the tested set was above 0.9037. It is worth highlighting that in 
the case of wheat kernels, barley kernels and rapeseed kernels, classification accuracy was found to be excellent 
for the air stream flow level of 15 and 20 m  s−1 in the seed-air tube type 1.

One of the difficulties to be coped with is distinguishing between the classes of kernels. It results from the fact 
that grains of different classes differ in sizes. The above translated into the results of network training, taking into 
consideration MLP-p1_25 and MLP-p2_25, for which RMSE reached 0.146 and 0.10, respectively. Unfortunately, 
these results are less satisfying. However, it should be said that the highest effectiveness in cereal kernel recogni-
tion was achieved for the seed-air tube type 2 (MLP-p2_20). In this solution the classification coefficient for air 
stream at the working level of 20 m  s−1 was 0.92.

As already mentioned, when designing each network variant, the same parameters were determined, i.e. 20 
texture descriptors, number of epochs, number of hidden layers and the output layer activation function. As a 

Table 1.  Configuration of Artificial Neural Networks based on air velocity and position of the seminal-air 
tube.

Type 15 [m  s−1] 20 [m  s−1] 25 [m  s−1]

p1 MLP-p1_15 MLP-p1_20 MLP-p1_25

p2 MLP-p2_15 MLP-p2_20 MLP-p2_25

Table 2.  Results of training process Artificial Neural Networks.

Name ANN MLP-p1_15 MLP-p1_20 MLP-p1_25 MLP-p2_15 MLP-p2_20 MLP-p2_25

Structure MLPN 20-15-3 20–15-3 20-15-3 20-15-3 20-15-3 20-15-3

Training error 0.054 0.085 0.124 0.045 0.040 0.096

Validation error 0.063 0.095 0.245 0.158 0.063 0.126

Testing error 0.054 0.074 0.149 0.137 0.084 0.095

Quality of learning 0.946 0.915 0.876 0.955 0.960 0.904

Quality of validation 0.937 0.905 0.755 0.821 0.937 0.874

Quality of testing 0.941 0.926 0.851 0.863 0.916 0.905

RMSE 0.060 0.085 0.146 0.079 0.050 0.101

Accuracy 0.941 0.915 0.827 0.880 0.938 0.894

Learning cases 636 636 636 636 636 636

Activation function in output layer Exp/Tanh Log/Tanh Tanh/Tanh Tanh/Tanh Tanh/Tanh Tanh/Tanh

Training algorithm BFGS 269 BFGS 89 BFGS BFGS 352 BFGS 349 BFGS 111
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result, high effectiveness was obtained for 3 network variants. It turns out that the optimal solution for cereal 
kernel image recognition can be obtained with air stream velocity at the level of 20 m  s−1, for the proposed con-
figuration I and II of the seed-air tubes.

Statistical analysis. Tables 3, 4, 5, 6, 7, 8 present an analysis of variants (ANOVA) of 20 texture descriptors 
for 9 kernel classes, which differ in terms of the seed-air tube structure used. The analysis allowed to compare 
different classes of cereal kernels on the basis of texture descriptors (indirectly acquired from digital images). 
When analyzing variables Contr, Corrm, Cprom, Dissi, Entro, Senth, Dvarh, Denth and inf21h, one can observe 
a similarity between the classes of wheat kernels transported with the air stream velocity at the level of 15 
m  s-1 (Table 3) and 20 m  s−1 (Table 4) via the seed-air time of type 1. In the case of variables such as Cshad, 
Energ, Homom, Homop, Maxpr, Sosvh, Svarh, Savgh, inf1h, Indnc and Idmnc, an analysis of variance showed 
similarity between the classes of barley for the seed-air tube of type 1, transporting kernels with the velocity of 
air stream at the level of 20 m  s-1 (Table 4) and 25 m  s−1 (Table 5). By carrying out a statistical comparison of 
texture descriptors, one can observe similarities in the research groups containing medium size kernels of wheat 
and barley.

Similarity measured for the seed-air tube of type II occurred for variables: contr, corrm, cprom, dissi, entro, 
senth and dvarh between research classes in rapeseed when the air stream velocity was set at 15 m  s-1 (Table 6), 
20 m  s-1 (Table 7), 25 m  s−1 (Table 8). In the case of variables cshad, energ, homom, homop, maxpr, sosvh, savgh, 
svarh, indnc and idmnc it was observed that the most significant research group was barely with the type II 
tube, for air stream velocity equal to 15 m  s−1. A statistical comparison of texture descriptors (Tables 6, 7, 8) for 
the seed-air tube of type II, made it possible to find similarities between fine-grained kernels of rapeseed and 
medium size barley kernels.

Taking into consideration the seed-air tubes of type I and II it can be concluded that, according to the texture 
descriptors, the biggest similarity occurred in the research group including medium size kernels i.e. barley. It is 
worth noting that the air stream velocity has the major influence on the image object recognition. Comparing 
the results of the research, for the needs of which artificial neural networks were used to identify the sowing 
material (triticale) contamination and taking into consideration velocity of the sowing material, it was possible 

Table 3.  Texture analysis of kernels while measuring selected air stream velocities (15 m  s−1) and the position 
of the seed-air tube type I. a–e: the differences between mean values with the same letter in columns were 
statistically insignificant (p < 0.05).

contr corrm cprom

wheat_p1_15 1.792 ± 0.105 a 0.451 ± 0.010 a 261.146 ± 25.388 a

barley_p1_15 2.264 ± 0.106 d 0.485 ± 0.009 c 370.350 ± 29.510 d

rapeseed_p1_15 1.997 ± 0.110 b 0.464 ± 0.009 b 304.604 ± 27.348 b

cshad dissi energ

wheat_p1_15 − 27.234 ± 2.274 e 0.634 ± 0.032 a 0.440 ± 0.022 e

barley_p1_15 − 36.848 ± 2.466 b 0.775 ± 0.030 d 0.345 ± 0.019 b

rapeseed_p1_15 − 31.120 ± 2.375 d 0.698 ± 0.033 b 0.395 ± 0.022 d

entro homom homop

wheat_p1_15 1.692 ± 0.073 a 0.809 ± 0.009 e 0.810 ± 0.783 e

barley_p1_15 2.014 ± 0.069 d 0.770 ± 0.008 b 0.772 ± 0.739 b

rapeseed_p1_15 1.838 ± 0.073 b 0.790 ± 0.009 d 0.792 ± 0.762 d

maxpr sosvh savgh

wheat_p1_15 0.657 ± 0.017 e 56.501 ± 0.495 e 14.845 ± 0.083 e

barley_p1_15 0.578 ± 0.017 b 54.117 ± 0.566 b 14.441 ± 0.097 b

rapeseed_p1_15 0.621 ± 0.018 d 55.500 ± 0.531 d 14.677 ± 0.090 d

svarh senth  dvarh

wheat_p1_15 187.489 ± 3.306 e 1.327 ± 0.053 a 1.792 ± 0.105 a

barley_p1_15 172.468 ± 3.355 b 1.561 ± 0.050 d 2.264 ± 0.106 d

rapeseed_p1_15 180.899 ± 3.392 d 1.433 ± 0.053 b 1.997 ± 0.110 b

denth inf1h inf21h

wheat_p1_15 1.032 ± 0.032 a − 0.094 ± 0.003 c 0.392 ± 0.012 a

barley_p1_15 1.167 ± 0.027 d − 0.102 ± 0.003 a 0.441 ± 0.012 d

rapeseed_p1_15 1.097 ± 0.031 b − 0.096 ± 0.003 b 0.411 ± 0.011 b

indnc idmnc

wheat_p1_15 0.940 ± 0.003 e 0.977 ± 0.001 e

barley_p1_15 0.928 ± 0.003 b 0.971 ± 0.001 b

rapeseed_p1_15 0.934 ± 0.003 d 0.975 ± 0.001 d
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to recognize the kernel contamination classes on the basis of an  image37. Analyzing the degree of difficulty in fast 
identification of wheat, barley and rape kernels, like in the analysis of triticale  contamination37 , velocity variants 
and different devices supporting transport of seeds were taken into consideration. Apart from kernel variants, 
the techniques that were used supported by MLPN allowed to obtain satisfying results characterized by high 
coefficient of classification, especially for sowing velocity equal to 20 m  s−1. ANN created during the research can 
be a useful device supporting measurement of velocity of kernels transported pneumatically.

Other studies have proven that the machine learning technique allows to evaluate effectively filamentous 
fungus affected fine-grained kernels (rapeseed) by using the microscopic  technique48. Thanks to further and 
deeper analyses it was noticed that high classification effectiveness was also possible for various food products 
and different grain  varieties28,48. Properties of kernels properly determined on the basis of a bitmat including: 
thousand grain mass, geometrical diameter, coefficient of spherical shape, surface area, porosity, color and tex-
ture, enable fast and non-invasive assessment of the grain class for a given velocity of sowing.

Conslusions
MLPNs capable of noninvasive recognition of wheat, barley and rape kernels were devised based on texture 
descriptors. The tests were performed using the author’s original test stand, which was supposed to emulate real 
conditions of the sowing process. Only 2 structural solutions of transporting kernels via a seed-air tube were 
tested.

It was found that an increase in air stream velocity had a negative impact on the effectiveness in recognizing 
individual classes of kernels transported via seed-air tubes with the use of structures I and II. It turned out that, 
the most optimal air stream velocity for kernels transported via the pipe (for solution I) was equal to15 m  s−1. 
It should be added that the most optimal MLP was MLP-p1_15, which reached RMSE value of 0.060 and clas-
sification accuracy coefficient at the level of 0.94. In the case of II type air and seed pipe, the best MLP turned 
out to be MLP-p2_20, which reached the best result for RMSE value of 0.050.

An analysis of variations allowed to group effectively all research classes. It also allowed to determine the 
impact of texture variables for individual grain varieties including the air stream velocity and the type of air and 
seed pipe. In the future, the obtained results can be used for further research on the author’s original system for 
detecting and measuring the amount of sowing material.

Table 4.  Texture analysis of kernels for selected air stream velocities (20 m  s−1) and the position of the seed-
air tube type I. a–e: the differences between mean values with the same letter in columns were statistically 
insignificant (p < 0.05).

contr corrm cprom

wheat_p1_20 1.770 ± 0.106 a 0.448 ± 0.009 a 252.796 ± 24.047 a

barley_p1_20 2.386 ± 0.138 e 0.487 ± 0.007 c 395.250 ± 31.025 e

rapeseed_p1_20 2.039 ± 0.098 bc 0.467 ± 0.008 b 314.162 ± 24.650 bc

cshad dissi energ

wheat_p1_20 − 26.518 ± 2.163 e 0.628 ± 0.032 a 0.444 ± 0.022 e

barley_p1_20 − 38.874 ± 2.588 a 0.811 ± 0.039 e 0.325 ± 0.023 a

rapeseed_p1_20 − 31.964 ± 2.127 cd 0.711 ± 0.029 bc 0.387 ± 0.018 cd

entro homom homop

wheat_p1_20 1.678 ± 0.071 a 0.810 ± 0.009 e 0.812 ± 0.785 e

barley_p1_20 2.085 ± 0.084 e 0.760 ± 0.010 a 0.762 ± 0.728 a

rapeseed_p1_20 1.867 ± 0.063 bc 0.787 ± 0.008 cd 0.788 ± 0.758 cd

maxpr sosvh savgh

wheat_p1_20 0.660 ± 0.017 e 56.605 ± 0.479 e 14.863 ± 0.080 e

barley_p1_20 0.559 ± 0.021 a 53.557 ± 0.701 a 14.344 ± 0.121 a

rapeseed_p1_20 0.614 ± 0.015 cd 55.294 ± 0.471 cd 14.643 ± 0.080 cd

svarh senth dvarh

wheat_p1_20 188.166 ± 3.229 e 1.317 ± 0.052 a 1.770 ± 0.106 a

barley_p1_20 169.094 ± 4.106 a 1.612 ± 0.060 e 2.386 ± 0.138 e

rapeseed_p1_20 179.581 ± 2.962 cd 1.454 ± 0.046 bc 2.039 ± 0.098 bc

denth inf1h inf21h

wheat_p1_20 1.026 ± 0.032 a − 0.093 ± 0.002 d 0.388 ± 0.011 a

barley_p1_20 1.198 ± 0.033 e − 0.101 ± 0.002 a 0.446 ± 0.012 e

rapeseed_p1_20 1.109 ± 0.027 bc − 0.096 ± 0.002 b 0.415 ± 0.010 bc

indnc idmnc

wheat_p1_20 0.941 ± 0.003 e 0.977 ± 0.001 e

barley_p1_20 0.924 ± 0.003 a 0.970 ± 0.002 a

rapeseed_p1_20 0.933 ± 0.003 cd 0.974 ± 0.001 cd
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Table 5.  Texture analysis of kernels for selected air stream velocities (25 m  s−1) and the position of the seed-
air tube type I. a–e: the differences between mean values with the same letter in columns were statistically 
insignificant (p < 0.05).

contr corrm cprom

wheat_p1_25 2.020 ± 0.108 b 0.466 ± 0.008 b 311.372 ± 24.739 bc

barley_p1_25 2.344 ± 0.107 e 0.487 ± 0.008 c 384.668 ± 28.773 e

rapeseed_p1_25 2.076 ± 0.110 c 0.467 ± 0.009 b 319.313 ± 27.743 c

 cshad dissi energ

wheat_p1_25 − 31.734 ± 2.165 cd 0.703 ± 0.032 b 0.393 ± 0.021 d

barley_p1_25 − 38.047 ± 2.394 a 0.798 ± 0.030 e 0.331 ± 0.018 a

rapeseed_p1_25 − 32.427 ± 2.394 c 0.722 ± 0.032 c 0.380 ± 0.021 c

entro homom homop

wheat_p1_25 1.848 ± 0.072 b 0.789 ± 0.009 d 0.791 ± 0.761 d

barley_p1_25 2.063 ± 0.066 e 0.764 ± 0.008 a 0.765 ± 0.732 a

rapeseed_p1_25 1.889 ± 0.073 c 0.784 ± 0.009 c 0.786 ± 0.755 c

maxpr sosvh savgh

wheat_p1_25 0.619 ± 0.018 d 55.415 ± 0.527 d 14.662 ± 0.089 d

barley_p1_25 0.565 ± 0.017 a 53.725 ± 0.558 a 14.374 ± 0.097 a

rapeseed_p1_25 0.608 ± 0.018 c 55.131 ± 0.554 c 14.615 ± 0.094 c

svarh senth dvarh

wheat_p1_25 180.386 ± 3.348 d 1.440 ± 0.052 b 2.020 ± 0.108 b

barley_p1_25 170.118 ± 3.264 a 1.596 ± 0.048 e 2.344 ± 0.107 e

rapeseed_p1_25 178.563 ± 3.450 c 1.469 ± 0.053 c 2.076 ± 0.110 c

 denth inf1h inf21h

wheat_p1_25 1.101 ± 0.031 b − 0.097 ± 0.002 b 0.413 ± 0.011 bc

barley_p1_25 1.187 ± 0.026 e − 0.102 ± 0.003 a 0.446 ± 0.011 e

rapeseed_p1_25 1.119 ± 0.030 c − 0.096 ± 0.003 b 0.417 ± 0.012 c

indnc idmnc

wheat_p1_25 0.934 ± 0.003 d 0.974 ± 0.001 d

barley_p1_25 0.926 ± 0.003 a 0.970 ± 0.001 a

rapeseed_p1_25 0.932 ± 0.003 c 0.974 ± 0.001 c
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Table 6.  Texture analysis of kernels for selected air stream velocities (15 m  s−1) and the position of the seed-air 
tube of type II. a–e: the differences between mean values with the same letter in columns were statistically 
insignificant (p < 0.05).

contr corrm cprom

rapeseed_p2_15 0.120 ± 0.014 a 0.183 ± 0.016 a 3.982 ± 1.038a

barley_p2_15 0.294 ± 0.076 e 0.249 ± 0.023 e 15.056 ± 5.901e

wheat_p2_15 0.220 ± 0.058 c 0.226 ± 0.022 c 9.772 ± 4.285c

cshad dissi energ

rapeseed_p2_15 − 0.693 ± 0.123 e 0.053 ± 0.006 a 0.940 ± 0.006e

barley_p2_15 − 2.246 ± 0.769 a 0.124 ± 0.030 d 0.866 ± 0.030a

wheat_p2_15 − 1.534 ± 0.561 c 0.094 ± 0.023 c 0.896 ± 0.024c

entro homom homop

rapeseed_p2_15 0.204 ± 0.019 a 0.982 ± 0.002 e 0.980 ± 0.002e

barley_p2_15 0.423 ± 0.087 e 0.959 ± 0.010 a 0.954 ± 0.011a

wheat_p2_15 0.335 ± 0.069 c 0.969 ± 0.007 c 0.965 ± 0.008c

maxpr sosvh savgh

rapeseed_p2_15 0.970 ± 0.003 e 63.330 ± 0.048 e 15.938 ± 0.007e

barley_p2_15 0.930 ± 0.017 a 62.692 ± 0.283 a 15.842 ± 0.043a

wheat_p2_15 0.946 ± 0.013 c 62.965 ± 0.212 c 15.883 ± 0.032c

svarh senth

rapeseed_p2_15 248.558 ± 0.694 e 0.178 ± 0.016 a 0.120 ± 0.014a

barley_p2_15 240.271 ± 3.357 a 0.358 ± 0.071 e 0.294 ± 0.076e

wheat_p2_15 243.625 ± 2.653 c 0.286 ± 0.057 c 0.220 ± 0.058c

denth inf1h inf21h

rapeseed_p2_15 0.167 ± 0.014 a − 0.045 ± 0.004 e 0.097 ± 0.007a

barley_p2_15 0.325 ± 0.060 g − 0.057 ± 0.004 a 0.156 ± 0.021 g

wheat_p2_15 0.263 ± 0.049 e − 0.053 ± 0.004 c 0.135 ± 0.018e

indnc idmnc

rapeseed_p2_15 0.995 ± 0.001 e 0.998 ± 0.000 e

barley_p2_15 0.988 ± 0.003 a 0.996 ± 0.001 a

wheat_p2_15 0.991 ± 0.002 c 0.997 ± 0.001 c
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Table 7.  Texture analysis of kernels for selected air stream velocities (20 m  s−1) and the position of the seed-air 
tube of type II. a–e: the differences between mean values with the same letter in columns were statistically 
insignificant (p < 0.05).

contr corrm cprom

rapeseed_p2_20 0.123 ± 0.012 a 0.184 ± 0.014 a 4.082 ± 0.881 a

barley_p2_20 0.182 ± 0.025 b 0.212 ± 0.013 b 7.167 ± 1.727 b

wheat_p2_20 0.214 ± 0.063 c 0.224 ± 0.023 c 9.540 ± 4.604 c

cshad dissi energ

rapeseed_p2_20 − 0.713 ± 0.105 e 0.054 ± 0.005 a 0.939 ± 0.006 e

barley_p2_20 − 1.176 ± 0.225 d 0.079 ± 0.010 b 0.912 ± 0.010 d

wheat_p2_20 − 1.493 ± 0.611 c 0.091 ± 0.025 c 0.899 ± 0.026 c

entro homom homop

rapeseed_p2_20 0.209 ± 0.017 a 0.982 ± 0.002 e 0.979 ± 0.002 e

barley_p2_20 0.289 ± 0.031 b 0.973 ± 0.003 d 0.970 ± 0.004 d

wheat_p2_20 0.326 ± 0.075 c 0.969 ± 0.008 c 0.966 ± 0.009 c

maxpr sosvh savgh

rapeseed_p2_20 0.969 ± 0.003 e 63.318 ± 0.044 e 15.936 ± 0.007 e

barley_p2_20 0.955 ± 0.006 d 63.104 ± 0.089 d 15.904 ± 0.013 d

wheat_p2_20 0.948 ± 0.014 c 62.989 ± 0.231 c 15.887 ± 0.035 c

svarh senth dvarh

rapeseed_p2_20 248.382 ± 0.636 e 0.182 ± 0.014 a 0.123 ± 0.012 a

barley_p2_20 245.388 ± 1.161 d 0.248 ± 0.025 b 0.182 ± 0.025 b

wheat_p2_20 243.950 ± 2.883 c 0.279 ± 0.062 c 0.214 ± 0.063 c

denth inf1h inf21h

rapeseed_p2_20 0.171 ± 0.013 bc − 0.045 ± 0.003 e 0.098 ± 0.006 bc

barley_p2_20 0.230 ± 0.022 d − 0.051 ± 0.003 d 0.122 ± 0.009 d

wheat_p2_20 0.257 ± 0.053 e − 0.053 ± 0.005 c 0.133 ± 0.020 e

indnc idmnc

rapeseed_p2_20 0.995 ± 0.001 e 0.998 ± 0.000 e

barley_p2_20 0.992 ± 0.001 d 0.998 ± 0.000 d

wheat_p2_20 0.991 ± 0.002 c 0.997 ± 0.001 c
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