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Generative adversarial network 
based data augmentation for CNN 
based detection of Covid‑19
Rutwik Gulakala, Bernd Markert & Marcus Stoffel*

Covid-19 has been a global concern since 2019, crippling the world economy and health. Biological 
diagnostic tools have since been developed to identify the virus from bodily fluids and since the virus 
causes pneumonia, which results in lung inflammation, the presence of the virus can also be detected 
using medical imaging by expert radiologists. The success of each diagnostic method is measured by 
the hit rate for identifying Covid infections. However, the access for people to each diagnosis tool can 
be limited, depending on the geographic region and, since Covid treatment denotes a race against 
time, the diagnosis duration plays an important role. Hospitals with X-ray opportunities are widely 
distributed all over the world, so a method investigating lung X-ray images for possible Covid-19 
infections would offer itself. Promising results have been achieved in the literature in automatically 
detecting the virus using medical images like CT scans and X-rays using supervised artificial neural 
network algorithms. One of the major drawbacks of supervised learning models is that they require 
enormous amounts of data to train, and generalize on new data. In this study, we develop a Swish 
activated, Instance and Batch normalized Residual U-Net GAN with dense blocks and skip connections 
to create synthetic and augmented data for training. The proposed GAN architecture, due to the 
presence of instance normalization and swish activation, can deal with the randomness of luminosity, 
that arises due to different sources of X-ray images better than the classical architecture and generate 
realistic-looking synthetic data. Also, the radiology equipment is not generally computationally 
efficient. They cannot efficiently run state-of-the-art deep neural networks such as DenseNet and 
ResNet effectively. Hence, we propose a novel CNN architecture that is 40% lighter and more accurate 
than state-of-the-art CNN networks. Multi-class classification of the three classes of chest X-rays 
(CXR), ie Covid-19, healthy and Pneumonia, is performed using the proposed model which had an 
extremely high test accuracy of 99.2% which has not been achieved in any previous studies in the 
literature. Based on the mentioned criteria for developing Corona infection diagnosis, in the present 
study, an Artificial Intelligence based method is proposed, resulting in a rapid diagnostic tool for Covid 
infections based on generative adversarial and convolutional neural networks. The benefit will be a 
high accuracy of lung infection identification with 99% accuracy. This could lead to a support tool that 
helps in rapid diagnosis, and an accessible Covid identification method using CXR images.

Infections caused by the Covid-19 strain were upgraded to pandemic status in 2020 after it was declared a world-
wide emergency1. As of 16 September 2022, there are over 600,328,548 confirmed cases of Coivd-19 including 
6,501,469 deaths as reported by WHO and John Hopkins university Covid-19 dashboards2,3. Subsequently, tech-
niques for diagnosing coronavirus infections were developed, including the polymerase chain reaction (PCR) 
test4 and the reverse transcription polymerase (RT-PCR) chain reaction test5,6. As an alternative to traditional 
diagnostic techniques, a lung screening procedure gained popularity in the literature since it could quickly 
spot signs of Covid-19 infections using X-ray image recognition5,7,8. Applications for convolutional neural net-
works (CNN) are numerous and varied. They are mostly utilized in image analysis9,10, for eg. mechanobiologi-
cal applications11, but they are also used in complex regression problems12–14, for eg. function approximation 
in experimental investigations15,16. CNNs can therefore discriminate between lung scans that are infected and 
those that are not. However, these networks require a significant amount of training data, or X-ray images, in 
order to achieve high accuracy and compete with biological evaluations for this sense. The neural network 
must extract significant information from lung X-rays in order to find disease markers. Because of this, CNNs 
and autoencoders were suggested in the literature17. In18, various CNN topologies were also suggested as a way 
to increase classification accuracy. For the same reason, researchers looked into different architectures of AI, 
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including Scalable Vector Machines (SVM)17,19. In20, a CNN was used to distinguish between infected lungs, 
non-infected lungs, and common pneumonia. Artificial neural networks that have been further developed and 
are capable of detecting lung illnesses have also been used, for example, to diagnose tuberculosis21. The quantity 
of data available for training the CNN determines how well neural network classification techniques perform. 
Due to the scarcity of Covid-19 chest X-ray images, data augmentation techniques were used to boost the train-
ing dataset. Generative learning based methods were also proposed in the literature to augment training data 
and generate synthetic data thereby boosting the training dataset. CovidGAN is one such architecture, proposed 
in22 to improve the accuracy of neural network classifications of lung scans, boosting the accuracy up to 95%.

Most of the models proposed in the literature perform binary classification of Covid-19 positive and negative 
classes and the very few multi-class classification models that are available in the literature for Covid studies, 
don’t have very high test accuracy. Many studies in the literature have used a standalone GAN to perform the 
classification of chest X-Rays instead of using CNNs. To perform multiclass classification, some studies have 
coupled two different GAN architectures to achieve this. Not only is this computationally extensive to train and 
deploy, but also doesn’t achieve very high accuracy. Therefore, in this study, we propose a decoupled approach 
to maximize accuracy and make the models deployable on radiology equipment. Since the X-ray images used in 
this study are collected from different sources, and the public data banks have images compiled from different 
hospitals and they are not captured using the same kind of machines with the same settings. This results in ran-
domness in the luminosity of the X-ray images and this can cause problems during training. Also, the radiology 
equipment cannot run state-of-the-art CNN architectures like ResNet and DenseNet effectively since they have 
millions of parameters. To overcome these limitations, a novel CNN architecture is proposed to perform multi-
class classification of Covid-19, healthy and pneumonia classes, that is 40% lighter and can deal with randomness 
in luminosity better, leading to better accuracy than state-of-the-art models. With a combined GAN-based data 
augmentation and a CNN-based classification by introducing a Residual U-Net GAN for generating synthetic 
chest X-ray pictures, followed by CNN training, an accuracy of 99% has been achieved by the proposed method.

Related work
In recent years, several studies have been proposed, using GANs and CNNs for Covid-19 detection tasks. A 
supervised deep learning model based on CNN called COVID-NET has been proposed in23 leading to 93.3% test 
accuracy, on a test set of 100 samples of normal, pneumonia, and Covid-19 chest X-ray (CXR) images from the 
COVIDx dataset24. All other images were used for training the model. A combined approach involving YOLO 
algorithm to detect and isolate the chest portion of X-ray and a modified VGG19 CNN architecture has been 
proposed in25 to classify between Covid-19, pneumonia and healthy CXR images where the authors have achieved 
a very high accuracy of 99.84% for binary classification and 97.16% for multi-class classification. In26, the binary 
and multiclass classification of CXR images using the Darknet neural network model was investigated. They 
achieved a reported binary classification accuracy of 98.08% and multi-class classification with accuracy of 87% 
on 25 Covid-19, 100 normal, and 100 pneumonia images. Multiple architectures such as VGG19, DenseNet121, 
and InceptionV3 are investigated in27 and the mentioned architectures are tested on a small set of 25 Covid-
19 positive and 25 Covid-19 negative images, with reported accuracies of between 50% (InceptionV3) to 90% 
(VGG19 and DenseNet201) for each investigated architecture. A novel framework was developed in28 for rapid 
diagnosis of Covid-19 on CT scans using CNNs based on a Naive Bayes classifier to classify Covid-19 and healthy 
cases, where the authors used multiple strategies to extract features and a genetic algorithm to select appropriate 
features from the inputs with 92.6% accuracy. A channel boosted CNN was proposed in29 which has shown an 
excellent detection rate of 97%. The major drawback in all these studies is limited availability of data and the 
size of the test set used to evaluate the model. Since there is very less open source data available for CXR images 
affected with Covid-19, all the available studies could not use more than 50 test images for testing the model.

One of the hurdles in dealing with medical images is data labeling. It is extremely tedious, laborious, expen-
sive, and accurate annotation of images demand expert knowledge of doctors. Many methods have been proposed 
in the literature to augment available data to increase the size of the training set and thus achieve better accuracy. 
In30, the authors have utilized multiple image augmentation techniques such as random flipping, random jitter 
and random cropping to augment the input pipeline. Semi-automated and automated classification algorithms 
have been proposed in31,32 to overcome this issue to classify unlabeled data. In addition to classical augmenta-
tion methods, Deep learning based augmentation techniques have been gaining a lot of momentum in recent 
years, especially Generative modelling based methods such as GANs33. In34, a GAN based data augmentation 
has been proposed for improving cancer classification on gene expression data, where the authors achieved an 
18.8% improvement in classification accuracy as a result of the proposed augmentation method. Algorithms like 
Auxillary classifier GAN (ACGAN), Deep Convolutional GAN (DCGAN), CycleGAN, pix2pix and progressively 
growing GANs have proven to be efficient GAN based image augmentation techniques30,35–38. Many studies have 
been published using these GAN based augmentation techniques in CXR detection. CovidGAN was proposed 
in22, which is based on an Auxilary Classifier GAN35, being able to generate synthetic data and thereby improving 
the accuracy of classification. Using this method, improved CNNs with accuracy from 85 to 95% were reported. 
GAN based data augmentation has been performed in39 for CXR classification which resulted in a 3% increase 
in the accuracy. RANDGAN has been proposed in40 to classify images of unknown classes from known classes 
such as normal and viral pneumonia. However, one drawback in all the proposed GAN methods can be a low 
resolution of generated images ( 1282 pixel size). Consequently, these synthetically obtained images are difficult 
to be validated by a radiologist. Generation of high-resolution images is not trivial since the high-resolution 
images contain detailed features which drastically increase the gradient problems35. Due to the large resolution, 
smaller batches of data need to be used, due to memory bottlenecks, which compromises training stability. As 
mentioned above, a way to increase the accuracy can also be to focus on binary classification of Covid-19 with 
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two classes of healthy and pneumonia images being labeled as Covid-19 negative. Furthermore, the discriminator 
of GANs is not powerful enough to exhibit a high classification accuracy since the discriminator architectures 
of GANs are generally not very deep and, therefore, comparable with other standalone CNN architectures. 
Hence, further developments of neural network topologies are necessary to combine multi-class classifications 
with high-resolution images. To the knowledge of the authors, currently available studies in the literature do 
not address this issue.

This is where the present study comes in. We propose a Residual U-Net GAN based data augmentation to 
increase the size of the dataset and a novel CNN architecture based Covid-19 detection strategy that is capable 
to achieve a classification accuracy of over 99%. To account in image classification for the relevant image data, 
the need for image segmentation for improving the receiver operating characteristic (ROC) score was discussed 
in40. However, in the present study, we use unsegmented images and show, that a reduction of image noise using 
segmentation is not necessary in our case due to the use of high-resolution synthetic images.

Dataset
The chest X-ray images used in this study are taken from the public dataset, covidx24, compiled of chest X-ray 
images from Covid-19 affected individuals, healthy individuals and pneumonia-affected individuals. These RGB 
images with a pixel range of [0, 255] have various resolutions. To train the generative models in this study, all 
images were converted to grayscale, resized to 1024× 1024 pixels, and normalized to have pixel intensities in the 
[0, 1] range. Since the images have unequal pixels lengthwise and width-wise, to prevent the distortion of images 
due to resizing from a mxn resolution to hxh resolution, a central crop is employed using a square bounding 
box. This helps in having an equal number of pixels in length and width wise in the image, thereby preventing 
distortion when resized to a square resolution. Also, chest X-ray images from Montgomery county dataset and 
Shenzen dataset41,42 have been included to boost the training data. The primary dataset consists of 417 covid 
affected X-ray images, 8148 pneumonia affected X-ray images, and 2924 healthy X-ray images. Figure 1 shows 
the distribution of data between different classes obtained from the public datasets. The exact number of images 
in each class is given in the Table 1
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Figure 1.   Distribution of data over different classes.

Table 1.   Categorization of data into classes and sets.

Data distribution

Classes of X-ray images

Covid-19 Healthy Pneumonia

Overall data Before augmentation 417 2924 8148

Training set – 2027 2624 7368

Test set – 390 390 780
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Instance and batch normalized residual U‑Net GAN
We proposed a modified residual U-Net architecture as the generator, which consisted of an encoder, decoder, 
and symmetric skip connections between encoder and decoder blocks. The network is instance and batch nor-
malized. The convoluting, conventional CNN blocks of the generator together are called an encoder, and the 
deconvoluting transpose CNN blocks are called a decoder. The encoder block consists of densely connected con-
volution blocks that help propagating the input features without any losses. The encoder was trained to compress 
the key information from the image artifacts to feature representations so that the decoder could regenerate the 
artifact-free image. The skip connections from encoder to decoder played a key role in reconstructing the fine 
details of the final image. Each block in the encoder consists of a convolutional layer, an instance normalization 
layer in the early blocks, batch normalization layer in latter blocks, and a swish activation43. The proposed GAN 
with swish activations and instance normalization can equalize the luminosity of the X-ray images, thereby 
substantially reducing the randomness caused due to the luminosity and swish activation function has proven 
to show better performance with deeper networks43 as compared to a ReLU activation function. Each block of 
a decoder consists of a Transposed convolutional layer, a batch normalization layer, a dropout layer for the first 
three blocks, and a ReLU activation function. Skip connections are provided between all the layers except for 
the middle. Skip connections help with the vanishing gradients problem and mitigate accuracy saturation or the 
degradation problem. Each skip connection is provided with a mapping layer called a skip mapper, that performs 
swish activation. These skip connections provide additional information exchange between the convolution and 
the deconvolution blocks which results in better convergence. The architecture of proposed IBNRUN GAN is 
shown in the Fig. 2

The generated image is then passed through a discriminator which differentiates the generated image from the 
real image. The discriminator is also a GAN, in this case, a PatchGAN. A PatchGAN is a type of discriminator for 
GANs which classifies the data based on the structure at the local data patches. The patch GANs have proven to 
be efficient at tasks like object reconstruction from edge maps, photosynthesis, and style transfer implementations 
like pix2pix. In this study, we build upon the basic U-Net architecture proposed by44 incorporating dense con-
nectivity inside the convolution blocks and residual connections to address vanishing gradients and swish activa-
tion which tends to work better on deeper models than ReLU43 thereby improving the architecture’s efficiency. 
Each discriminator block consists of a 2D convolutional layer, a batch normalization layer, and a leaky ReLU 
activation. A Wasserstein loss function is utilized to optimize the parameters of discriminator and generator.

The synthetic images generated by the generator and the real images are fed to the discriminator. The gen-
erator then classifies both the real and generated image. The discriminator loss of the real image is called real 
loss and the generated image is called generated loss. The sum of these two losses constitutes discriminator loss 
which is used to train and optimize the discriminator. The generator loss function computes the loss as a sum 
of binary cross-entropy loss of discriminator output and weighted L1 regression of the difference of target and 
generated images. This generator loss is then used to train and optimize the generator. The generator and the 
discriminator are trained parallelly and continuously until the generator can produce synthetic images that are 
indistinguishable from the real images by the discriminator or the reconstruction accuracy is good enough.

Figure 2.   Residual U-Net GAN.
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Thus, the learning procedure is a two-player game, where the discriminator and generator compete with each 
other. The ultimate goal of the training is to make the generator be able to learn to generate a distribution that 
matches the distribution of the training dataset.

Therefore, the proposed GAN architecture, with instance normalization to equalize luminosity, with batch 
normalization to prevent overfitting, with densely connected convoluting blocks and residual connections to 
prevent impeding of information and vanishing gradient problems, and with swish activation that has been to 
proven better than ReLU in deeper networks, is capable of generating realistic and less random synthetic images.

Novel CNN based multi‑class classification
Convolutional neural networks (CNNs)45 have come to be the go-to machine learning approach for the classifi-
cation and detection tasks. In recent years, deeper networks with narrow kernels and many layers have become 
popular due to the possibility of having more non-linear activations for the same effective size as of a wider 
network, thereby improving accuracy46,47. Two such widely used state-of-the-art architectures48 in the CNNs 
are ResNet and DenseNet. Though the state of the art networks excel in classification tasks even with hundreds 
of classes, they have millions of training parameters and consume a lot of memory. Utilizing these models in 
radiology equipment requires considerably more computation power and time to run the models. Also, the X-ray 
images used in this study contain a lot of randomness in the luminosity and also in their resolution, since they 
are compilation of images from different sources and periods of time. The use of Global average pooling49 after 
convolutions, followed by a softmax activation is extremely useful while classifying objects or images of classes 
with distinct features like cats, dogs, humans, flowers, cars, etc. But in the case of the CXR dataset, the X-rays, 
although not completely identical, are not trivial like other object detection or classification problems due to the 
unique and non-trivial nature of the disease markers that are to be identified.

Hence to overcome these above limitations, a novel CNN architecture is proposed with branched convolu-
tions, instance normalization and densely connected layers, respectively. The branched convolutions reduce the 
overall parameters, thereby keeping the network lighter. To address the problem of randomness of luminosity 
and brightness in the CXR images, instance normalization is used in the initial layers to equalize the images. 
Finally, Flatten and dense layers are used to replace the Global average pooling layer to facilitate for fine-tuning 
of parameters for greater accuracy. Therefore, in this study, a novel, modified version of the state-of-the-art 
architectures is proposed and applied for the multi-class classification of X-ray images between pneumonia, 
healthy, and Covid-19 classes.

CNN architecture.  The architecture proposed in this study is based on Densely Connected Convolutional 
Networks (DenseNet). DenseNets are a class of deep CNNs proposed in50. The classical DenseNet is modified 
to have less training parameters to make it computationally lighter. In a classical DenseNet, each layer connects 
to every other layer in a feed-forward fashion, meaning that DenseNet has n(n+ 1)/2 connections in total. For 
each layer, the feature maps of all previous layers are used as inputs, and its feature maps are used as inputs to all 
subsequent layers, i.e. the (n+ 1) th layer receives the feature maps of all preceding layers as input which modi-
fies xn+1 = H(xn) as 

 where H represents [Normalization → Activation → Convolution] of x′

n , ⌢ represents concatenation of feature 
maps and x′

n = [x⌢0 x⌢1 x⌢2 . . .⌢ xn] . A branched block of densely connected convolutions is then introduced, 
which increases the non-linearity of the network while lowering the total training parameters. The branched 
convolution blocks are incorporated into the network in the second and third blocks to just serve the purpose 
of making the model lighter without compromising accuracy. This modifies Eq. (2) for branched convolution 
block as 

Classical convolution blocks make up the first dense block with instance normalization51 instead of batch 
normalization and also, in the last dense block to have more training parameters and higher information propa-
gation to the final layers. The proposed architecture with dense branched convolutions is shown in Fig. 3. Here 
D1, D2, D3 and D4 represent the dense blocks, where D2 and D3 represent the branched convolution blocks. 
The architecture of the branched convolution blocks is shown in Fig. 4.
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Data pre‑processing and experiment methodology
The workflow is shown in the Fig. 5. All methods were performed in accordance with the relevant guidelines and 
regulations. We start with collecting primary data from three public sources such as Covidx dataset24, Shenzen 
and Montgomery county datasets41,42. The primary dataset contains 417 Covid-19 affected X-ray images, 8148 
pneumonia affected X-ray images, and 2924 healthy X-ray images. Since CNNs requires a lot of data to train 
and achieve good classification accuracy, the proposed IBNRUN GAN is developed to generate synthetic Covid 
affected X-ray images to increase the training dataset and get better accuracy for classification. The GAN is 
modelled using Tensorflow 2.8 and Keras libraries. Mixed precision layers are employed to minimize memory 
consumption wherever needed. Consequently, 2000 synthetic Covid X-ray images are generated. The class of 
Covid consists of 2027 images that are used for training, out of which 2000 are synthetically generated and 27 are 
from the Covidx dataset. All the other real Covid X-ray images are used for evaluating the model. To achieve an 
optimised hit rate, a nearly proportional number of healthy and Covid-infected images was used to balance the 
data set. As mentioned in the Dataset section, all the images are cropped to a square bounding box with a side 
length equal to the size of the smaller of lengthwise or widthwise pixels to prevent distortion. Then the images 
are resized to 224× 224 pixels using a convolution-based high-quality Lanczos filter to preserve quality after 
downscaling. The images are then normalized to [0,1]. These three classes of images are then used to train the 
two proposed very deep CNN models. A test set of 390 Covid X-ray images, 390 healthy X-ray images, and 780 
pneumonia X-ray images are used for evaluation. All the networks used in this study are coded using Tensorflow 
2.7 and Keras libraries. The models are trained using an Nvidia RTX 3090 GPU with 24GB of memory.

Figure 3.   Block diagram of the proposed architecture.

Figure 4.   State of the art DenseNet architecture (left) and architecture of convolution blocks of proposed 
architecture (right).
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Results
The proposed IBNRUN GAN is trained using the 417 Covid-19 affected chest X-ray images that have been taken 
from the public dataset. The GAN is trained for 100k epochs and CNNs are trained for 200 epochs respectively. 
2200 synthetic Covid-19 images are generated from the trained GAN and 2000 images are selected from this 
pool of 2200 images. 27 real X-ray images are then added to the Covid-19 training pool of CNN along with the 
synthetic images. The rest of the Covid-19 X-ray images are used for evaluating the trained models. A sample of 
the generated synthetic images is shown in Fig. 6. The accuracy and loss plots of the proposed architecture along 
with their state of the art counterparts are shown in Figs. 7 and 8.

Even though batch normalization and dropout layers are incorporated to prevent overfitting, a 5-Fold cross-
validation is performed to study the sensitivity of the model to a different selection of training and validation 
sets. The loss and accuracy plots from the sensitivity analysis are shown in Fig. 9 respectively. All the models are 
then evaluated using a test set of 390 covid images, 390 healthy images and 780 pneumonia images respectively.

In Figs. 10 and 11, confusion matrices are shown to check the true positives and false positives of the models. 
It can be observed from Figs. 10a and 11a that the number and percentage of false positive and false negative 
prediction rate of the proposed CNN architectures on the test set is extremely close to zero. The model perform 
the classification very efficiently with an accuracy of 99.28%. Whereas for the other models, it can be observed 
that the performance is well below that of the proposed architecture from Figs. 10b,c and 11b,c.

Figure 5.   Workflow

Figure 6.   Synthetic images generated by GAN.
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The true positives (tp), true negatives (tn), false positives (fp) and false negatives (fn) are obtained from the 
confusion matrix. Since this is a multi-class classification, one versus all approach is used where, in the first case 
metrics for Covid-19 versus. all are computed, healthy versus all in second and pneumonia versus all in the 
third respectively. From these metrics, performance metrics such as Precision, Recall, Specificity and F-Score 
are calculated as follows. 

(4a)Precision (P) =
tp

tp+ fp
.

(4b)Recall (R) =
tp

tp+ fn
.

(4c)Specificity (S) =
tn

tn+ fp
.

Figure 7.   Comparison of accuracy vesus epochs between proposed and state of the art architectures.

Figure 8.   Comparison of loss versus epochs between proposed and state of the art architectures.
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The metrics for each of the three classes are calculated and the average of these metrics are taken to represent 
the overall performance of the model. The classification performance of the proposed and state of the art models 
are given in Table 2.

Apart from the state-of-the-art classical CNN models, state-of-the-art classification models used for disease 
diagnosis of Covid have also been compared. The models were reconstructed in Tensorflow based on the archi-
tecture described in the respective articles and have been trained on the same dataset used in the study with 
images augmented using IBNRUN GAN. The performance metrics of the state-of-the-art COVID classification 
models have been shown in Table 2. The relation between sensitivity (fraction of true positives) and specificity 
(fraction of true negatives) of the trained models on the test set is assessed graphically by Receiver operating 
characteristic (ROC) curves. One versus all approach has been used to plot the ROC curves. The usefulness of 
the model is given by the area under the ROC curve (AUC) with 1.0 being the best measure. The plots in the 
Fig. 12 showcase ROC, using one versus rest approach with Covid versus rest, healthy versus rest, and pneumo-
nia versus rest. For proposed architecture, ROC plots are made during the 5-Fold cross-validation to assess the 
model’s sensitivity to new data. It can be observed from the Fig. 12a,b that the proposed models perform much 
better than the state of the art models while having almost 40% less parameters.

Discussion
In the current study, the IBNRUN GAN architecture effectively produced synthetic images that boosted the 
training set and had a realistic appearance. The network has been designed to deal with the randomness of 
X-ray images. Here, using the proposed CNN architectures, a multiclass classification is carried out using three 
classes: Covid, healthy, and pneumonia. These are then contrasted with state-of-the-art models. The proposed 
novel architecture includes instance normalization, branched convolution blocks, and dense layers to make the 
models lighter and more accurate. In comparison to the most advanced versions, this led to models that were 
40% lighter. The proposed model has an execution rate of 25ms/step where as the state-of-the-art DenseNet 
architecture has an execution rate of 47ms/step. This shows that the proposed model is faster in execution as 
compared to the state-of-the-art models. That said, there has not been a gain in training speed due to the use of 
instance normalization since it is computationally expensive as compared to batch normalization during train-
ing. Nevertheless, both the proposed model and the state-of-the-art counterpart consumed 63sec/epoch while 
training. In40, the significance of segmentation is discussed. Although lung segmentation is not done, it can be 
shown that the network still gets strong ROC and AUC values as shown in Fig. 12. Furthermore, because of the 
limited Covid X-ray image dataset that is available for training, we outperform a standalone CNN network in 
terms of test accuracy. The proposed method has the best testing accuracy (99.2%) in comparison to the litera-
ture due to its novel IBNRUN GAN with instance normalization and swish activations and CNN architectures. 
The authors are aware that the current study is based on a closed data set, nevertheless. Additionally, it is noted 
that the human body is superimposed onto a 2D image, which causes the X-ray images to have a great deal of 
unpredictability. In order to investigate the proposed method close to application, a medical study using X-ray 

(4d)F-Score =
2 ∗ P ∗ R

P + R
.

Figure 9.   5 Fold cross valdiation of proposed architecture.
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images from routine clinical practice would be ideal. However, the current study developed the scientific founda-
tion which can be used in clinical studies.

Conclusion
A novel artificial neural network architecture was suggested in the current study to identify Covid-19 infection in 
the lungs using X-ray pictures. The developed technique is suggested as a rapid diagnostic tool due to the high hit 
rate of 99% of the fully trained network model. Additionally, it was possible to differentiate between Covid, pneu-
monia, and healthy lungs. However, the level of information in the photos may be what distinguishes pneumonia 

Figure 10.   Confusion matrices of all the architecture understudy showing metrics by number of test samples.
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from Covid infections. Consequently, a significant number of data was required for a successful categorization 
between these three categories of lung imaging. For this reason, synthetic X-ray images were produced using a 
Residual U-Net based GAN model. Following this methodology, a very deep CNN model with high accuracy 
was suggested. It was trained using both available real images from public data banks and generated images 
from GANs. radiology equipment and the trained CNN model can be used together to quickly diagnose X-ray 
images as soon as they are taken. The proposed models have the better accuracy as compared to state of the art 
models while having 40% less parameters.

Figure 11.   Confusion matrices of all the architecture understudy showing metrics by percentage.
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Table 2.   Performance metrics of the proposed and state of the art models.

Architecture

Performance metrics (%)

Accuracy Precision Recall Specificity F-Score

Proposed architecture

Fold 1 98.59 98.33 98.68 99.30 98.50

Fold 2 99.49 99.36 99.45 99.76 99.40

Fold 3 99.42 99.27 99.41 99.73 99.34

Fold 4 99.23 99.06 99.20 99.63 99.12

Fold 5 99.55 99.44 99.53 99.79 99.49

DenseNet – 93.21 91.03 95.45 97.54 93.18

ResNet – 92.24 89.70 94.60 98.11 92.08

Karaci et al.25 – 93.46 91.28 95.52 97.14 93.00

Ozturk et al.26 – 93.20 91.06 95.66 97.01 92.58

Ioannis D. et al.52 – 93.14 90.94 95.13 96.68 92.62

Sarki et al.53 – 92.75 90.72 95.03 96.73 92.48
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Data availability
The datasets used and analysed during the current study available from the covidx24 dataset complied of chest 
X-ray images with Covid-19 infections, healthy and pneumonia which can be accessed at https://​github.​com/​
ieee8​023/​covid-​chest​xray-​datas​et. Also, chest X-ray images from Montgomery county dataset and Shenzen 
dataset41,42 have also been utilized which can be downloaded from https://​www.​kaggle.​com/​datas​ets/​kmader/​
pulmo​nary-​chest-​xray-​abnor​malit​ies. The sources are publicly licensed and available for download from the 
website of National Institute of Health, Maryland, USA.
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