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Identifying plastics 
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spectroscopy and machine learning
Benjamin Lotter1, Srumika Konde1, Johnny Nguyen1, Michael Grau1,2, Martin Koch1 & 
Peter Lenz1*

A quantitative understanding of the worldwide plastics distribution is required not only to assess the 
extent and possible impact of plastic litter on the environment but also to identify possible counter 
measures. A systematic collection of data characterizing amount and composition of plastics has to be 
based on two crucial components: (i) An experimental approach that is simple enough to be accessible 
worldwide and sensible enough to capture the diversity of plastics; (ii) An analysis pipeline that is 
able to extract the relevant parameters from the vast amount of experimental data. In this study, 
we demonstrate that such an approach could be realized by a combination of photoluminescence 
spectroscopy and a machine learning-based theoretical analysis. We show that appropriate 
combinations of classifiers with dimensional reduction algorithms are able to identify specific material 
properties from the spectroscopic data. The best combination is based on an unsupervised learning 
technique making our approach robust to alternations of the input data.

Plastic pollution is considered one of today’s main environmental problems. With worldwide production rates 
of 460 million tons per year and recycling rates being only at 9%, more and more plastic debris is ending up in 
the environment. Significant amounts of plastics have already accumulated in aquatic environments (109 million 
tons in rivers and 30 million tons in the ocean)1. This number continues to grow as the annual worldwide pro-
duction rate of plastics is continuously increasing and even outpacing economic growth. Unfortunately, plastics 
can persist for decades as most types are resistant to natural degradation processes2.

Only under harsh environmental conditions, such as extensive exposure to sunlight, plastics can fragment into 
micrometer-sized particles commonly known as microplastics3–8. Being almost invisible to the eye, the potential 
harm of microplastics has been ignored for decades. However, this is beginning to change as we now find them in 
almost every corner of our planet7,9–13, in animals14–16, and in our food17,18. Most recently, microplastics was found 
in the placenta19 and in our blood20, which shows that plastic litter has finally found its way into our bodies21–23. 
These alarming findings urge us to increase our efforts to track the fate of plastic litter in our environment and 
to implement worldwide effective waste management plans to avoid further plastic litter accumulation24–26.

Such strategies have to be based on a quantitative understanding of plastic litter distribution and characteriza-
tion. To obtain the necessary data, plastic litter monitoring has to be implemented in combination with the use of 
consistent and reliable methods of sample characterization27. In particular, valuable insights about average micro-
plastic size and material type and their global distribution can be gained by analyzing plastic samples extracted 
from different sites. The material type is highly relevant for plastic pollution mitigation, as it could allow us to 
pin down site-specific sources for the most common plastic litter types. Detecting plastics in our environment, 
however, is a challenging task, as they are diverse: during production, additives are frequently utilized to change 
the material properties of plastics. In the environment, these properties can change and deteriorate after long 
exposure times. Therefore, it is fundamental to conduct frequent and consistent sampling at multiple sample sites.

There are several detection techniques available that can be used to identify plastic litter28,29. Generally, 
non-destructive spectroscopic techniques should be preferred as they allow us the cross-validation with other 
analytical tools. Such techniques probe the sample with a light source and measure the emitted light with a 
spectrometer to acquire a spectrum. The interaction of the sample with light depends on the sample’s chemical 
composition implying that a spectrum can contain information similar to a fingerprint for sample material identi-
fication. Studies on plastic pollution commonly use solutions based on Raman spectroscopy or Fourier-transform 
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infrared (FTIR) spectroscopy to analyze plastic samples29–32. However, both techniques come with physical 
limitations30,33,34 obstructing the detection of several types of plastic litter.

Recently, Ornik et al. have demonstrated that photoluminescence (PL) spectroscopy can be used for plastic 
litter identification35. The big advantage of this technique is its simplicity. A set-up consists of a light source that 
emits monochromatic light in the visible range, a spectrometer, and a set of lenses to collect the light emitted 
from the sample. Since the amount of necessary components is lower compared to Raman and FTIR spectroscopy, 
the acquisition costs for PL spectroscopy are lower. As a result, it should be ubiquitously accessible compared to 
the aforementioned techniques. This, in turn, can be used to systematically extend plastic litter monitoring by 
conducting sampling worldwide and will allow us to establish databases of spectral data sets capturing sample 
diversity.

The prediction of sample properties like material type from its observed spectrum is based on modeling 
spectral features such as intensities at certain wavelengths. For PL spectroscopy, we have shown that most 
common plastic types can be distinguished from non-plastic samples from the marine environment, simply by 
comparing certain spectral intensity ratios between different samples35. However, such a model may be insuf-
ficient for precise prediction of individual pollution sources or plastic types. Furthermore, the prediction model 
should work even in the presence of spectral variations due to, e.g., varying hardware components or acquisition 
parameters in measurement setups, or chemical additives in the sample. This shows that we need mathematical 
methods that scan through the high-dimensional spectral data to discover common spectral features suitable 
for robust sample identification.

One field of such mathematical analysis is supervised machine learning (ML). Starting with the input data, 
given, e.g., by a set of spectra of representative samples, these methods generate models to classify the sam-
ples into their prescribed known categories like plastic types. Predictions of such models are based on learned 
combinations of spectral features. However, unprocessed raw features such as intensities at all wavelengths are 
high-dimensional and there are many possible parameters to fit the relatively limited information in form of 
prescribed sample classes. Such a situation often results in models that correctly predict sample properties for the 
training samples, but fail to generalize leading to low prediction accuracy for newly measured plastic samples.

To improve model generalizability, we reduce the dimensionality of the input data. This dimensional reduc-
tion (DR) process should retain all essential information in the raw data36,37. It plays a central role in identifying 
predictive spectral features. This process is unsupervised and thus, only the raw spectra are used as input and no 
additional information such as plastic type is used. Instead, a mathematical model is employed. Here, we utilize 
a recently published method termed Signal Dissection by Correlation Maximization (SDCM). SDCM has suc-
cessfully revealed and dissected overlapping activating and inhibitory signatures in complex gene expression data 
from many patients in molecular oncology38. The spectral data from many samples are similarly complex as they 
measure the net effect of many unknown (but potentially plastic-specific) sources with stimulating (activating) 
or absorbing (inhibitory) influence on the measured light emission. Therefore, we believe that SDCM is able to 
extract information on the sample’s origins from the input spectra.

ML approaches have already been used to analyze spectral data in a variety of contexts. Most studies use 
supervised methods. For example, Li et al. used neural networks to distinguish THz data of metal and non-
metal materials39. Liu et. al combined dimensional reduction with support vector machine (SVM) to classify 
spectral data of breast invasive ductal carcinoma40. Huang et al. have used principal component analysis (PCA) 
in combination with a regression model to classify mouse liver injuries characterized by THz spectra41. In mate-
rial science, the spectral identification of components has been realized with a support vector regression (SVR) 
model42 and supervised classification scheme has been developed for laser-induced breakdown spectroscopy 
data on polymers and plastic43. In astrophysics the analysis of multifrequency data by supervised methods has 
been used for the classification of blazars44 and stars and galaxies45. Unsupervised approaches to spectral data 
are rare, but a few examples are the identification of preflare spectroscopic signatures46 and the mapping the 
diversity of galaxy spectra47.

Successful ML applications generally require vast amounts of data for learning, which explains why ML for 
plastic identification has so far primarily been used with Fourier-transform infrared spectroscopy48–50. As PL 
spectroscopy has the potential to easily produce even more high-throughput data, the combination with ML 
models seems very promising. However, such applications so far remain unexplored. Our study aims to fill this 
gap. Our ML approach for PL-based identification of plastic litter puts particular focus on the capabilities of ML 
models to discover spectral features that enable robust prediction of identifying sample properties, such as sample 
color, for newly collected plastic litter. It would be particularly useful to implement a classification method utiliz-
ing unsupervised DR as such an approach is more flexible and robust in dealing with new data. Here, we use such 
a method (SDCM) for dimensional reduction that we combine with a selection of commonly used supervised 
classification methods. Our results demonstrate that most supervised ML algorithms are able to predict plastic 
litter characteristics based on PL, underlining the physical information contained in these spectra. SDCM stands 
out as it helps models to identify spectral features that are specific to a single sample. Such specificity might allow 
us to adjust future plastic litter mitigation strategies to particular pollution sources more effectively.

Results
Plastic litter is frequently associated with marine pollution. Therefore, we chose to evaluate the suitability of 
ML for PL-based identification of samples in the marine environment. For this purpose, we use a set of pristine 
plastics, plastics derived from consumer products and marine organic samples. All spectra were measured with 
the PL setup described in the methods section.
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Variations in the PL spectrum between samples.  A PL spectrum of a sample describes the intensity 
of the emitted light at different wavelengths. To give an example, we show in Fig. 1 the spectra of three repre-
sentative samples, namely (a): pristine low-density polyethylene (LDPE), (b): red algae and (c), (d): a consumer 
product made of LDPE. The plots illustrate the dependency between the spectral shape and the sample, which 
potentially allow us to identify samples with PL spectroscopy. Fig. 1c,d present the spectrum of the same sam-
ple acquired with different alignments of the optical components in the setup. We include these spectra in our 
library to account for measurements where the alignment in our setup is not optimal. In all spectra for LDPE, 
i.e. Fig. 1a,c,d, we also observe a Raman peak at around 450 nm. It must be noted, that additional spectral vari-
ations can also arise due to the inhomogeneity of the sample. We accounted for these variations by taking meas-
urements at different sample sites (see Methods). In practice, the occurrences of additional peaks and spectral 
variations are unavoidable because of the lack of standards for measuring plastic samples and for building a PL 
setup. Combined with the diversity of samples from the marine environment, these variations imply that spectral 
libraries are always incomplete as it is impractical to capture all spectral variations. However, with respect to ML 
models complete libraries may not be necessary if the model can derive generalized selection criteria based on 
spectral features in the limited library. These features will be evaluated later in this study.

Overall performance of ML models.  In the following, we briefly summarize our procedure of construct-
ing ML models and evaluating the data. The data analyzed consists of 1294 measurements from three different 
sample categories and 23 material types, which we combined to nine classification categories, for details see 
Methods and Table 3. All ML models designed here take as input the intensity data from PL spectroscopy, and 
yield a predicted material type. A detailed description of the implementation of DR, ML model generation, data 
preparation (see Fig. 8) and classification (see Fig. 10) can be found in the Methods section. A ML model can 
be generated with any combination of DR method and classifier. Its prediction performance depends on that 
combination and the intended application. To show the applicability of using PL spectroscopy data for ML, we 
demonstrate our results for five commonly used classifiers and two DR models which are summarized in Table 1.

We analyze the prediction performance of each ML model, by calculating three quantities, namely accuracy, 
precision and, recall (see ’Sample classification’ in Methods). These quantities can take values between 0% and 
100% and are calculated with respect to a single property, e.g. the color green. The accuracy describes the fraction 
of correct predictions made by the model. A value of 100% implies that all predictions are correct. Considering 
each material type individually, we compare model predictions with the true material types, by calculating the 
precision and recall combined as f1 score (see definition in Methods). The precision describes the fraction of 
positive predictions that are correct, while the recall gives us the fraction of actual positives that were correctly 
identified. A f1 value of 100% implies that the model achieved the highest precision and recall. The f1 score is 

Figure 1.   A representative selection of PL spectra of samples used in this study. The spectra correspond to (a): 
pristine LDPE, (b): red algae and (c,d): a consumer product made of LDPE. The spectra in (c,d) correspond to 
the same sample but were acquired with different alignments of the setup components, laser power values, and 
exposure times.
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then calculated for each material type individually and then averaged. In the following, we only focus on the 
accuracy and the f1 score.

The ML model generation starts with a preparation of the spectral data to ensure that all spectra are treated 
equally. The steps involved for this preparation are illustrated in Fig. 8. Our workflow to create the ML models 
is presented in Fig. 10 which consists of three commonly used consecutive stages: training, testing, and valida-
tion, see Fig. 9. For each stage, we use an individual set of spectral data. The first two stages are used to optimize 
the model parameters for the prediction. In the last stage, we test the optimized model on a data set unknown 
to the model to calculate the prediction metrics described earlier. We then use these results to benchmark the 
performance of our ML models.

We first evaluate the performance of those ML models that use the unprocessed spectral data set as input. 
This will later allow us to analyze the benefits of applying DR methods on the spectral data set for PL-based 
plastic litter identification. Figure 2a summarizes the performance for all five models. Each plot shows the model 
performance for one classifier. In a single box plot, we find the calculated accuracy and f1 score. We clearly see 
that most models achieve values of over 90% for both quantities. The model that is built with Nu-SVM stands 
out as it achieved the highest performance values. However, models that use the classifier GNB perform signifi-
cantly worse with an accuracy and a f1 score are around 55%. Figure 2b shows the prediction performance of the 

Table 1.   Overview of selected classifiers and DR methods used for the generation of ML models.

Abbreviation Name

Classifiers

GNB Gaussian Naive Bayes51,52

SVM Support Vector Machine51,52

Nu-SVM Nu-Support Vector Machine51,53

LR Logistic Regression51,52

RF Random Forest51,54

DR methods
PCA Principal Component Analysis55,56

SDCM Signal Dissection by Correlation Maximization38

Figure 2.   (a) Performance of prediction models with no DR method applied to the spectral data. (b) 
Performance of prediction models with DR methods applied to the spectral data. Overview of the prediction 
performance of ML models for PL-based sample identification. The accuracy and the f1 score are presented as 
box plots and are calculated during the validation stage. The colored boxes show the quartiles of the achieved 
scores, while the whiskers extend to show the rest of the distribution. Each plot presents the prediction 
performance with a different classifier. All plots in (a) show the performance when the spectral data has not 
been processed with a DR method. All models in the plots in (b) are built around spectral data that have been 
processed with either PCA or SDCM. The prediction performance at all training stages are summarized in 
Fig. S1.
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models using data preprocessed with a DR method as input, i.e. SDCM or PCA. We observe that all SDCM-based 
models have an improved performance compared to the models in Fig. 2a. Here, the classifier GNB benefits 
the most from SDCM as the accuracy and the f1 score of the corresponding model increase to roughly 70%. As 
for the remaining models, we see a slight increase by at most 2%. For PCA-based models, we find an improved 
performance comparable to SDCM-based models when it is combined with the classifier GNB, Nu-SVM or LR 
but a performance drop by up to 3% when we use the classifier SVM or LR. Interestingly, we see a trend that 
linear classifiers (SVM, Nu-SVM and LR) work better with SDCM-transformed data. This could be relevant for 
creating interpretable classification models with SDCM, as linear classifiers can be easier understood in terms 
of their classification rules than the non-linear ones.

Our evaluation reveals a high prediction performance for most of the ML models generated. We see that the 
choice of the classifier has the largest influence on the model’s performance. Furthermore, preprocessing the 
spectral data with a DR method does not always lead to prediction improvements so that comparisons between 
the models are required to identify the optimal DR method and classifier combination. Note that additional 
improvements might also be achievable by optimizing the parameters bound to the classifiers.

Prediction performance on sample types.  Bad drops of a model might be traced back to specific sam-
ple types in our set. For example, a prediction model may specifically struggle to distinguish between samples 
made from PET and PS. This would then cause a drop in the overall performance even though the prediction 
for the remaining samples is high. To test if such cases occur for our models, we now evaluate the prediction 
performances for individual sample types.

We conduct this analysis by evaluating the confusion matrix of the validation data set for each ML model. 
In the field of machine learning confusion matrices are the standard way of presenting the performance of a 
learning algorithm. Rows of the matrix represent the actual class while columns represent the predicted class. 
The calculated confusion matrices are presented in Fig. 3. The entries of each matrix are the probability (in %) 
that the sample type specified in a row is classified as the type specified in the column. For example, for the 
model generated by applying GNB on the entire spectral data (top row, first column in Fig. 3), the probability 

Figure 3.   Confusion matrices of the validation set for individual sample types. Each matrix corresponds to a 
model generated with a unique classifier and DR method combination. A matrix is to be read as the probability 
(in %) that the sample type specified in a row is classified as the type specified in the column.
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that a non-plastic material is identified as PS is 28.6%. By definition, all values in a single row add up to 100%. 
In case of a perfect prediction model, all entries along the main diagonal are 100% while the off-diagonal ones 
are 0%. All matrices in the first column of Fig. 3 correspond to models trained with unprocessed data. Here, we 
observe that for all models, except those that use the GNB classifier, a high identification accuracy of over 95% 
for all sample types. For example, the LR-based model achieves an accuracy of 98% for non-plastic samples. We 
observe no sample types where the identification could be difficult for the model. Further improvements for all 
models can be achieved by preprocessing the data with SDCM where the probability for a correct prediction 
per sample type is on average 3% higher. For models that use PCA processed data as input, we also observe an 
improvement with an average prediction performance per sample type of 2.2%. We find a slight increase for 
Nu-SVM-based models while SVM-based models appear to struggle to predict PVC and PMMA correctly. This 
worse performance agrees with our findings above and emphasizes once more that the models must be compared 
with each other to find the optimal classifier and DR method combination.

Detecting identifying characteristics in PL spectra.  Our previous results demonstrate that with ML 
models it is possible to classify with high accuracy PL spectra into their respective plastic types. Besides clas-
sification, we are also interested in finding features in the spectra which are characteristic of the various sample 
properties such as type, color, or manufacturer. The question whether such spectral fingerprints exist is relevant 
for microplastic detection, as they allow us to efficiently pin down their sources. Furthermore, they may be ana-
lyzed to determine the underlying chemical structure.

At the no DR training stage of the previous section, the classifier sets up geometric borders in the input space 
of wavelength-bins to distinguish the spectral regions that are characteristic for different sample types. Reshaping 
these complex regions into an understandable spectral representation to use as fingerprints is a difficult task. For 
supervised classifiers this can be achieved by using, e.g., convolutional neural networks57. However, as mentioned, 
our goal is to establish an unsupervised approach for which we need to develop our own interpretation scheme.

To do so, we make use of the fact that measurements of samples that have the same properties, for example 
a specific color or any physical, chemical, or systemic property, should have common features in their spectra. 
These features are not necessarily a set of peaks in the spectra but they can also be a complex relationship between 
the intensities at different wavelengths. This operation removes all irrelevant information from a measurement, 
which makes it easier to identify collections of measurements with similar properties. These collections are here 
referred to as clusters.

In the following, we discuss the relationship between clusters detected by the DR methods and the sample 
properties. We introduce a metric that quantifies this relationship and a method of deriving quantifiable associa-
tions between clusters and properties.

Labels and metrics.  We divide the sample properties of a measurement into the following categories: 
<< isplastic? >> (whether sample is a plastic or not), << origin >> (either manufacturer, nature or retail), 
<< color >> (sample color), << type >> (material type) and << sampleID >> . The latter is a unique iden-
tifier for each plastic sample probed. As the samples have been probed multiple times, the replicates of each 
sample may carry information that is specific to the sample (e.g. due to specific chemical composition). Such 
individual characteristics might be useful in applications where the task is to backtrace the origin of a particular 
production source of plastic. All categories are discrete and finite valued. We refer to a set of values from one or 
more categories as a label.

As mentioned earlier, the two DR methods we use in this study are PCA and SDCM. PCA is a conventional 
method, which separates the input data into linear clusters along orthogonal axes that maximizes the variance 
along each axis. SDCM is a novel method, which separates the data into monotonic clusters along non-orthogonal 
axes, maximizing the local correlation. If a spectrum belongs to a cluster can be calculated from a quantity 
called cluster weights. Using this quantity, we say a measurement belongs to a cluster, if its weight is above a 
given threshold. While SDCM produces these weights as part of its output, they have to be estimated from the 
clustering coefficients for PCA. For PCA, the choice of threshold also is more critical than in SDCM (see sup-
plementary information for details).

If there is a relation between a cluster and a label, then most of the measurements belonging to that cluster 
should also carry that label and vice versa. Therefore, it is sufficient to determine the agreement between the 
list of measurements belonging to a cluster and the list of measurements that carry that label. A good metric 
quantifying this agreement is the f1 score, which is also known as F-score. It is defined as the harmonic mean 
between precision and recall, which quantify the error rate of false and missed associations, respectively. If the 
number of measurements for a label is large relative to the size of the data set, a high f1 score may be achieved 
by random association. Such cases can be filtered by calculating the probability p of random association with a 
hypergeometric test. We only consider those f1 scores with p ≤ 0.005.

Associating one cluster to one label.  We test the association of a cluster to a label by calculating the f1 score for 
every possible combination of cluster and label. Labels can be drawn from one or more categories, e.g. “PVC” 
drawn from << type >> or “PVC, red” from the combination << type, color >> . In a sample set of limited size 
it is unlikely that every theoretically possible label is represented, due to the fast growth of the number of pos-
sible combinations of each category. In consequence, many labels are often related. For example, if all samples of 
type “PVC” have the color “red”, and all “red” samples are of type “PVC”, then the labels “PVC”, “red” and “PVC, 
red” are equivalent descriptions of the underlying set of measurements. If a cluster has a high f1 score for these 
measurements, any of these three labels could provide an interpretation, and choosing a specific one requires 
an additional and arbitrary selection rule. We therefore group together all labels which belong to the same set 
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of measurements into an “equivalence class” (EC). Each EC is associated to one (unambiguous) set of measure-
ments and to one or more equivalent label descriptions. To evaluate the performance of the DR methods, it is 
sufficient to test every cluster against the set of measurements in each EC. Our data set provides 141 different 
ECs.

Figure 4 shows the number of ECs matched to a cluster for different f1 ranges. The results are presented for the 
clusters found in the data preprocessed with PCA (Fig. 4a) and SDCM (Fig. 4b). One sees that several matches 
at high f1 scores are found. SDCM finds a total of 11 perfect matches with f1 = 100 , whereas PCA finds one. 
This shows that both DR methods are capable of finding several clusters which can be associated to a specific 
sample property.

As most ECs are associated to multiple potential labels, the “correct” label description is not readily available. 
Among all 141 ECs, we find 4 that are associated with a single label (see Table 2 for a listing and their f1 values). To 
obtain a meaningful interpretation of the remaining ECs, we evaluate them with two different rules for selecting a 
preferred label. For example, if a cluster matches with an EC which contains the three equivalent labels “PVC, red, 
retail”, “PVC, red” and “PVC”, then all PVC samples have red color and were drawn from retail products. We can 

(A)	 always select the label which represents the smallest number of categories (i.e. “PVC”), or
(B)	 always select the label which represents the largest number of categories (i.e. “PVC, red, retail”).

In case no preferred label can be selected the match is dismissed. (A) always looks for the simplest and (B) to 
the most specific possible description. Rule (A) this comes with the potential risk of overestimating the general-
ity of the description, while rule (B) comes with the risk of underestimating it. Of course, other selection rules 
are just as valid. In particular an expert could analyze the data by hand and decide for the most suitable label.

We apply these rules on the data processed with PCA and SDCM. The results are summarized in Figs. 5 
and 6. For each set of categories, which are defined by the selection rules, the figures show the number of labels 
which can be matched with at least one cluster at a given f1 score or higher. For general sample properties, such 
as << type >> or << color >> , both figures reveal matches with f1 values that are at most in mid-range. Thus, 
broad physical characteristics do not seem to be resolved as single, distinct spectral features that appear in a 
single cluster. In some cases, these characteristics might not be represented in the measured PL spectra at all. 
For example, the production process might not have an effect on the PL spectra such that there is no spectral 
fingerprint for different manufacturers. The data may also be more heterogeneous than the labeling indicates, in 
this way giving rise to property sub-types with several distinct fingerprints, forming separate clusters.

On the one hand, we previously observed that ML models can accurately identify sample types from their 
spectral data. On the other hand, we found that no general sample property, such as type, manufacturer or color, 
can be associated to a single cluster with a high f1 score. Such properties therefore are not represented as distinct 
spectral fingerprints of various fixed peak intensities in the input data. Rather, their spectral representation may 

Figure 4.   (a) PCA, (b) SDCM. The histograms show the distribution of f1 scores of each match for PCA and 
SDCM. A large f1 score corresponds to a close match between cluster and EC.

Table 2.   f1 scores of the four ECs which only contain a single, unambiguous label.

Category Label PCA SDCM

Is plastic? Plastic 39.4 71.4

Color White 31.5 53.5

Color Yellow 55.0 64.5

Is plastic?, color Plastic, white 29.0 51.0
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depend on other sample properties, which may not only induce changes in peak intensities, but also overall shifts 
along the spectrum. Due to this complex behavior, high-dimensional machine learning is required to identify 
the sample type and other properties.

We find high f1 values, i.e.  f1 > 90 , for those labels that contain the category << SampleID >> , which 
enumerate the samples from which the spectra were recorded. This means that characteristic spectral shapes of 
individual samples are sufficiently fixed in their intensities across all measurements that can be resolved with 
both DR methods. In the data preprocessed with PCA, we find one perfect match with f1 = 100 value for both 
rules. In comparison, SDCM performs significantly better. Here we find 10 perfect matches with rule A and 11 
perfect matches with rule B. Our findings imply that while both DR methods can detect sample specific spectral 
features in the data, SDCM is more effective in finding these features. As a result, SDCM is particularly useful 
for identifying characteristics that allow particle tracking to a single source.

Finally, we would like to point out that further additions of diverse measurements might reduce the ambigu-
ity in choosing a representative from the ECs and improve the detection of clusters which can be associated to 
more general physical properties.

Discussion
Significant progress in the field of microplastic research will only be achievable if we obtain a better quantita-
tive understanding of the current status quo. This requires to perform worldwide measurement on plastic litter 
distributions and compositions. This is challenging from both an experimental and theoretical perspective. 
Experimentally, samples have to be characterized according to standard protocols ideally with simple setups that 
could be available worldwide. Theoretical analysis approaches then have to be able to extract from vast amounts 
of experimental data the relevant material parameters.

Figure 5.   (a) PCA, rule A. (b) SDCM, rule A. Cumulative distributions of matched labels over f1 in the 
categories defined by rule A. For each set of categories, which are defined by rule A, the figures show the number 
of labels that can be matched with at least one cluster at a given f1 score or higher. The color scale is capped at 20 
to improve readability.
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In this study we have demonstrated that such a combined approach could rely on photoluminescence spec-
troscopy that is being analyzed by our machine learning based theoretical approach. To do so, we evaluated the 
capability of ML models to identify plastic and non-plastic materials based on their PL spectra. Our results reveal 
that most of the ML models can achieve high prediction performances with accuracies over 95%. In particular, 
the models that were combined with SDCM achieved the highest performance.

Furthermore, we tried to identify potential links between the characteristics in the sample spectrum and the 
sample properties. Such links could lead to selection criteria that apply to plastics in general. For this purpose, 
we analyzed the data that have been processed with PCA and SDCM. In our analysis, we found that the SDCM 
algorithm particularly stood out in finding criteria that apply to specific samples. Our result could proof to be 
particularly useful for environmental studies. For example, they can provide means to identify local plastic litter 
sources and thus, can help to create more effective plastic litter reduction policies.

Our approach could provide the first step for analyses performed on large scales. As the best preforming 
combination is based on an unsupervised learning technique, we expect our approach to be robust against alter-
nation of the input data, i.e. to perform similarly well for new data that significantly differs from the currently 
available spectroscopic data. Of course, this has to be tested for example by the establishment and maintenance 
of a spectral library with complete sample records and additional experimental heterogeneities. To do so, it is 
necessary to define guidelines which assure that each record in the library is complete and accurate.

Such a library would allow further tests to evaluate the extent and reliability of our method. In particular, we 
could then evaluate the performance of our ML models for new measurements that are not present in the library.

Methods
Experimental setup.  Figure 7 illustrates our experimental setup for PL spectroscopy measurements. The 
blue path highlights the incident beam which excited the sample and induced photoluminescence. The cen-
tral wavelength of our laser (SF-AW210 with TTL driver, InsaneWare) depends on the laser power and varied 
between 402 nm and 404 nm. To narrow down the excitation bandwidth, the generated light passed through an 
excitation filter with a central wavelength and a bandwidth of 405 nm and 10 nm, respectively. A dichroic mirror 

Figure 6.   (a) PCA, rule B. (b) SDCM, rule B. Cumulative distributions of matched labels over f1 in the 
categories defined by rule B. For each set of categories, which are defined by rule B, the figures show the number 
of labels that can be matched with at least one cluster at a given f1 score or higher. The color scale is capped at 20 
to improve readability.
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directed the light to lens 1 which focused incident light on the sample’s surface. The path taken by the emitted 
photoluminescence light is highlighted in red. Starting from the sample’s surface, this light was collected and 
collimated by lens 1 and passed through the dichroic mirror. To ensure that the excitation light was completely 
removed from the emission path, we used a long-pass filter with a cut-on wavelength of 420 nm. Finally, lens 
2 focused the light onto an optical fiber, which directed the light to our spectrometer (LR2, Lasertack GmbH).

Both the laser and the spectrometer were controlled with a microcontroller (Mega 2560, Arduino) which, in 
turn, was connected to a computer. This arrangement made it possible to control the laser power, exposure time, 
and the time between sample excitation and signal acquisition. The latter was set to 500 ms.

Samples and measurement parameters.  Samples from the environment show a large diversity since 
interactions with the environment can alternate the chemical composition. Therefore, spectral libraries can 
always be considered as unbalanced and incomplete as it is impossible to reflect the sample variety in a single 
data set. To account for these conditions in our study, we generated our spectral data set from 46 samples, which 
consisted of non-plastic materials from the marine environment and plastics from different manufacturers and 
retail products. A summary of the data set is presented in Table 3. For each sample, we adjusted the laser power 
Plaser and the exposure time tex to acquire a signal with a low background noise. A list of these measurement 
parameters is given in Table 4. To introduce additional inhomogeneities in the spectral library, we included an 
additional measurement for eight samples, where we readjusted the alignment of the optical components. For 
these samples, the two sets of spectra represent variations when the components are aligned or not. All spectra 
were measured over the full range of the spectrometer, i.e. between 200 nm and 1000 nm. For each sample and 
setup, we took 9 to 20 measurements to capture spectral variations due to sample inhomogeneity. In total, all 
samples were measured 29 times, with the exception of four non-plastic samples, which were measured 19 times. 
We also took measurements of the background noise, which was required in our ML model building process.

Dimensional reduction and SDCM.  Dimensional reduction (DR) aims to project high-dimensional data, 
e.g. spectra measured over a large number of wavelength bins, onto a lower-dimensional space. In this work, we 
used both a conventional method called Principal Component Analysis (PCA) and a novel method called Signal 
Dissection by Correlation Maximization (SDCM) to achieve a DR in our data.

SDCM is an unsupervised algorithm for detection of superposed correlations in high-dimensional data sets38. 
Conceptually, it can be thought of as an extension of PCA for non-orthogonal axes of correlation, where instead 
of projecting out detected dimensions, the discovered axes of correlation are iteratively subtracted (dissected) 
from the data. Initially developed for the application in bioinformatics for the clustering of gene expression data, 
it can be generically applied on any high-dimensional data containing (overlapping) subspaces of correlated 
measurements.

We denote by MNf ,Nm the set of real valued Nf × Nm matrices, where Nf  is the number of features in the data 
and Nm the number of measurements. The Nf  row vectors and the Nm column vectors belong to different vector 
spaces referred to as feature space and measurement space, respectively.

Figure 7.   Illustration of our PL spectroscopy setup. The excitation light follows the path highlighted in blue to 
induce PL on the sample. The pathway of the PL signal is highlighted in red.
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The main assumption of SDCM is that the input data, D ∈ M
Nf ,Nm , is a superposition D =

∑n
k=1 Ek + η of 

submatrices Ek ∈ M
Nf ,Nn (also called signatures) and residual noise η . We interpret Ek as a physically meaningful 

hypothesis in the data, e.g. a common physical or chemical property, due to which some samples and features are 
correlated. As superposing is a non-bijective operation, we need further conditions to dissect D into separate Ek . 
We assume that each Ek is bimonotonic, i.e. that there exists an ordering If  of the Nf  indices and an ordering Im 
of the Nm indices such that the reordered matrix Ẽk = Ek(If , Im) is monotonic along all rows and columns. Thus, 
after reordering, the correlations follow monotonic curves in both feature- and measurement space. While this 
bimonotonic requirement restricts the applicability of the algorithm, it allows an unambiguous dissection of D 
into the Ek components. In contrast to PCA, it also allows detection of non-linear (bi)monotonic correlations, 
whose axes are non-orthogonal.

SDCM dissects the data in four steps: 

1.	 Detection of initial representatives for an axis of correlation. in both feature and measurement space.
2.	 Calculation of the signature axes by maximizing the correlation.
3.	 Estimation of the bimonotonic, possibly non-linear, correlation curves (eigensignal) in both feature and 

measurement space. For this purpose, a non-parametric regression is used.
4.	 Subtraction of the data points belonging to the eigensignal from the data set.

These four steps are performed iteratively until no more representatives of axes can be found. SDCM treats rows 
and columns completely symmetrically. Each feature and sample is given a strength value s and a weight value w 
for every signature. The strength value (in units of the input data) quantifies the position along the eigensignal. 
The weight w ∈ [−1, 1] quantifies how strongly the feature or the sample participates in the signature, i.e. how 

Table 3.   Overview of samples used for this study.

Sample category No. of samples No. of measurements Material type

Non-plastic 12 308

Sand

Wood

Posidonia oceanica (plant)

Sepia officinalis (bone)

Echinocardium cordatum (shell)

Hexaplex eggs (shell)

Monodonta turbinata (shell)

Neverita josephina (shell)

Lithophyllum racemus (algae)

Plastic (manufacturer) 26 754

Polyamide (PA)

Polycarbonate (PC)

Polyethylene (PE)

Low-density polyethylene (LDPE)

High-density polyethylene (HDPE)

Polyethylene terephthalate (PET)

Polymethylmethacrylate (PMMA)

Polypropylene (PP)

Polystyrene (PS)

Polyvinyl chloride (PVC)

Plastic (retail) 8 232

LDPE

HDPE

PET

PP

Table 4.   Summary of samples and measurement parameters. For each sample, the laser power ( Plaser ), the 
exposure time ( tex ) were adjusted.

Sample category

measurement

Plaser [mW] tex [ms]

Non-plastic 0.2, 0.5, 2.5, 2.6, 2.8 300

Plastic (manufacturer) 0.5, 2.5, 5, 20, 25, 30, 50, 100 300

Plastic (retail) 0.5, 5, 25, 50, 104, 130 300, 1500
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Figure 8.   Flowchart of the data preparation pipeline. The solid arrows denote the data flow and the dashed 
arrows denote the influence by the parameters. The raw input data was preprocessed (P1) to remove background 
offsets and noise, to filter out overexposed measurements, to cut the data into the appropriate spectral range and 
to normalize it. The data was then split 25 times into 80–20% DRB and validation batches (P2). The median of 
each spectral bin was calculated across all DRB measurements and subtracted from both DRB and validation 
sets (P3a and P3b). The DR (SDCM, PCA) was applied to the DRB (P4) set. Passthrough denotes that no DR 
was applied for the no DR data set. The results were used to project DRB and validation into the dimensional 
reduced space (P5a and P5b). The final sets were used as input for the classification pipelines. Generated with 
pgf v3.1.9a.

Figure 9.   Conceptual description of data set splittings. The data was split before the DR process and once again 
before the classifier training. Yellow nodes took part in the DR process. The red border denotes that training was 
used to fit the classifier. Generated withpgf v3.1.9a.
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close to the eigensignal it is. Typically, the number of signatures detected will be orders of magnitudes smaller 
than the number of input features, and in this way give rise to an effective DR of the data.

ML model generation.  To generate our ML models for PL-based sample identifications, we chose a com-
bination of supervised and unsupervised learning methods. In the following sections, we describe all steps used 
to generate these models.

Data format.  We saved the information of a spectrum in two different files: one file that contains the absolute 
intensity as a function of wavelength; and one that contains details about the sample and the measurement. The 
latter provides labels for all spectra, which are central for the evaluation of the classifier’s performance. We use 
the following categories:

•	 Type: material type of the sample.
•	 Origin: name of the manufacturer or location. All retail samples have the same label.
•	 Color: color of the sample.
•	 is plastic: specifies if the sample material is a plastic or not.
•	 Sample ID: unique ID identifying the sample from which multiple replicate measurements have been taken.

All categories are discrete and finite valued. In the following, i enumerates the set of features (spectral bins) 
fi ∈ F  , Nf := |F | and j enumerates the set of measurements mj ∈ M , Nm := |M|.

Prediction categories.  We aggregated the 19 distinct material types from Table 3 by combining all non-plastics 
into the type nonplastic and LDPE, HDPE and PE into the type PE.

Figure 10.   Flowchart of the classification pipeline. The solid arrows denote the data flow and the dashed arrows 
indicate influence of parameters. For clarity, the nodes for the data labels are omitted. DRB and validation 
were taken from each of the 25 validation splits made in the data preparation stage. For each classifier the 
DRB was used to optimize the classification parameters via a cross-validated parameter grid search (C1). DRB 
was then split 144 times into 80–20% training and testing batches (C2). The classifier was fit to training using 
the parameters found in the grid search (C3). Its performance was then evaluated over training, testing and 
validation (C4). Generated with pgf v3.1.9a.
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Preparing the spectral data.  In the following, we describe the data preparations applied to the spectral data 
before it is passed to the classification pipeline. The data preparation pipeline is explained in Fig. 8. The refer-
ences (P1) to (P5) refer to the respective nodes in the flowchart.

To treat all spectra equally in the ML process, we needed to preprocess our data first (P1). We started by 
interpolating the spectral data and the corresponding background measurement onto a common spectral axis. 
The number of spectral bins was kept equal to the mean of the number of bins in the overall set. Then, we sub-
tracted the background measurement from the sample spectrum. Once all spectra were processed in this way, 
we concatenated the data into a single matrix.

Since we did not expect any signal below the laser peak, we estimated the offset from the baseline Oj for for 
the j-th measurement by calculating the median intensity in the range 294 nm 400 nm. Similarly, we estimated 
the noise level ηj by calculating the standard deviation in the same range. As we regarded any offset of the spectra 
as systematic, we subtracted it from the data.

To remove overexposed or noisy spectra, we applied a process that automatically filters out all data, which 
do not satisfy our conditions. We singled out measurements with experimental overexposure by determining 
for each spectrum the maximum Mj of the smoothed spectrum of mj . For the smoothing, we used a running 
median with a window size of 20 nm. The exposure level was then calculated as Ej = Oj

Mj  . We then discarded 
overexposed measurements with Ej < 0.5 . To detect noisy spectra, we calculated the signal-to-noise-ratio, SNRj , 
with the expression

Here Pj is the power of the spectrum given by

and sij is the i-th spectral bin of mj . We considered a measurement to be noisy if the signal-to-noise ratio is less 
than 2. Such measurements were then discarded.

To generate the model, we only considered the spectral information in the range 410 nm 680 nm, which 
contains most information about the sample. Each spectrum was then normalized such that the integral over 
its absolute values is one. This is particularly important for SDCM to ensure that the regression steps converge 
within a reasonable time.

Cross‑validation splits.  In our classification model, we split the data at the (unsupervised) DR stage and at the 
(supervised) classification stage.

In a real world application, the trained classifier pipeline is applied onto the novel data, which was not part of 
the DR or learning process. To properly assess our model’s performance, the data needs to be split into batches 
on which the model is trained, and batches on which its performance is evaluated. As SDCM is computationally 
expensive, we applied a two-step process in which the data was first split several times into multiple dimensional 
reduction batches (DRB) and validation batches with the DR method being applied to DRB. Each DRB batch was 
again split into multiple training and testing batches. The model was then trained on each training batch, and its 
performance was evaluated on the corresponding testing and validation batches. Figure 9 illustrates the concep-
tual differences in the different splits. This has the additional benefit of providing a comparison of the classifier’s 
performance on measurements, which have been part of the DR (testing) and novel measurements (validation). 
We note that there is no meaningful difference between testing and training if no DR method is applied.

The data was cross-validated 25 times with an 80%-20% split into a DRB and a validation set (P2). We used 
type and sample ID as stratification variables, i.e. we aimed to keep the relative proportions of each type and 
sample ID equal in DRB and validation. For stratification, we used the cvpartition methods of the MATLAB 
Statistics and Machine Learning toolbox (The MathWorks, Inc., Natick, Massachusetts, United States).

We calculated the median of each spectral bin in DRB and subtracted it from each measurement in both DRB 
and validation set (P3a and P3b). This centers the data at the zero level of DRB in each spectral bin. We addition-
ally performed classifications of spectra and PCA without median subtraction. An evaluation showed that this 
process does not significantly influence the performance of the classifier. The final dimensions Nf × Nm of the 
DRB and the validation set for each cross-validation were 1394× 1036 and 1394× 258 , respectively.

Dimensional reduction methods.  In our study, we used SDCM and PCA as DR methods and compared them 
to the baseline when no DR was performed. The three input types are referred to as SDCM and PCA and no DR. 
SDCM and PCA reduce the data into signatures and principal components (PCs). From the processed data, we 
could derive strengths and PC coefficients for input into the classification pipeline.

We applied the DR methods on the DRB data (P4). For no DR, the data was just passed through. SDCM 
terminates with a median of 130 identified signatures over all cross-validation splits. PCA does not terminate 
on its own but rather produces a number of PCs equal to the number of measurements. To achieve an effective 
DR, we chose the first 130 PCs for further analysis.

Once SDCM finds a set of signatures in DRB, the strengths and weights relative to these signatures for vali‑
dation needed to be determined. This is a non-trivial task, since the signature axes can be non-orthogonal and 
the method is dissecting and not projecting. The standard procedure is to repeat the dissection on the new data, 
while fixing the signature axes to the previously detected values. This, however, might still regress to a different 
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eigensignal, which skews the prediction results. To circumvent this, we performed a weighted projection of the 
data onto the DRB signature axes (P5b), where the projection weights were the signature weights for each spectral 
bin calculated on DRB. This removes some of the precision obtained by SDCM, as spectral features explained 
by a single signature can still produce significant projection values in other signatures, if the axes are not suf-
ficiently orthogonal. However, it ensures that all signature strengths are obtained relative to the same axes. For 
consistency, DRB is also projected onto the signature axes (P5a).

Sample classification.  Our classification pipeline consists of optimization of each classifier, followed by a cross-
validated training and scoring. This pipeline is illustrated in Fig. 10. The individual steps are numerated from 
(C1) to (C4). To set up the classification pipeline, we used the python module scikit-learn51.

The DRB set and the validation set were fed into the classification pipeline. For each classifier in Table 1, the 
DRB set was used to optimize the classification parameters via a parameter grid search (C1). Here, multiple 
additional cross-validations were performed, which are not displayed in Fig. 10.

We performed a 144-fold 80%-20% cross-validation split on the DRB set to generate the training and testing 
sets (C2). The classifier was trained on training with the optimized parameters (C3) and the performance was 
evaluated on training, testing and validation (C4).

To analyze the model performance, we calculated the following four classification metrics:

•	 accuracy =
tp+tn

tp+tn+fp+fn

•	 precision =
tp

tp+fp

•	 recall =
tp

tp+fn

•	 f1 = 2 · Precision·Recall
Precision+Recall

Here tp , tn , fp , fn are the number of true positives, true negatives, false positives and false negatives in the clas-
sification. As precision and recall are binary metrics, they were calculated for each material type individually 
and then averaged.

The classification metrics and errors were calculated over all 25× 144 evaluations. For each classification, we 
generated a confusion matrix normalized along the rows based on the predictions of the classifier.

Detecting identifying characteristics in PL spectra.  We are interested in finding spectral fingerprints 
of certain sample properties in the data. The properties are supplied as labels for each measurement in the meta-
data.

We attempt to link individual SDCM signatures or PCs to specific sample properties. As both DR methods 
are unsupervised, no validation set is necessary, nor do we need to re-project the data onto the discovered cluster 
axes. The data preparation workflow hence only consists of the steps (P1), (P2), (P3a) and (P4) in Fig. 8. PCA and 
SDCM are applied only once to the data. In contrast to the previous section, we do not aggregate all non-plastic 
material types into a single label.

In the following, we refer to both SDCM signatures and PCA PCs as clusters. To be able to interpret the 
discovered clusters, we imposed the restriction that for each measurement all data labels must be provided. The 
dimensions of the data considered are Nf × Nm = 1394× 1243.

Cluster weights.  To match clusters to properties, we needed to determine if a measurement is part of cluster. 
For each cluster k and measurement mj , SDCM provides weights wk,j ∈

[

− 1, 1
]

 , which can be used to quantify 
how strongly a measurement is associated with a cluster k. We consider a measurement to be part of a cluster if 
|wk,j| ≈ 1 , whereas if |wk,j| ≈ 0 there is no link present. Each cluster has an axis, along which the measurements 
are clustered, whose median (after median subtraction) is located at 0. This separates the axis into one part with 
negative weights and one with positive weights.

Since the implementation of PCA does not provide a comparable metric, we needed to define such a quantity 
for PCs. Let Ck,j

PCA be the coefficient of the j-th measurement in the k-th PC. We defined the PC weight as:

where M is the set of all measurements. The interpretations of positive and negative weights are identical to the 
one previously described for SDCM.

We increased the number of clusters to test for associations to sample properties by dividing each cluster 
k into three subclusters: one which includes all measurements with w > 0 , one with measurements that fulfill 
w < 0 and one that is identical to k. For SDCM, the weights are closely distributed around either ±1 or 0. This 
motivates determining cluster membership of a sample by a threshold τ ∈

[

0, 1
]

 . We say

w
k,j
PCA =

C
k,j
PCA

maxj∈M |C
k,j
PCA|

k− containsmj ⇐⇒ wk,j < 0 and |wk,j| ≥ τ

k+ containsmj ⇐⇒ wk,j > 0 and |wk,j| ≥ τ

k containsmj ⇐⇒ |wk,j| ≥ τ
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For the remaining part of this chapter, we refer to all subclusters as k∗.
The optimal τ for both PCA and SDCM can be found empirically by testing the association between subclus-

ters and labels for multiple values. SDCM is fairly robust under different choices of the threshold. Here, τ can 
be reliably set to 1. PCA, in contrast, is more sensitive to this choice and performs best when τ is between 0.05 
and 0.4 (see SI for a discussion). The best value for τ can be determined by optimizing the number of matches 
at f1 ≥ 90 (see below for an explanation for the calculation of f1).

Quantifying the association between a subcluster and a set of labels.  Let l be a label and k∗ a subcluster. l is associ-
ated to k∗ if it is likely for a measurement belonging to k∗ to have carry the label l and vice versa. We can describe 
this relationship in a contingency table T (see Table 5). A strong association should lead to a large number of 
true positives/negatives relative to the false positives/negatives. Mathematically, we are interested in the recall 
(fraction of measurements carrying l that belong to k∗ ) and precision (fraction of measurements belonging to 
k∗ that carry l) of the contingency table. The f1 score is the harmonic mean of recall and precision and therefore 
a suitable score to summarize both values. We always have 0 ≤ f1 ≤ 100 and f1 = 100 for a perfect association 
with no false positives/negatives. We interpret f1 as a measure of how well L matches to k∗.

Associating one cluster with one label.  We searched for subcluster–label associations by exhaustively calculat-
ing f1 for every subcluster and every available label l. To do so, we first constructed the set of all theoretically 
possible labels L , which is given by all Cartesian products of all category sets. As the number of all labels gener-
ated in this way is much larger than the number of labels that can be realistically recorded experimentally, real 
labels are often related. For example, if all samples of type “PVC” have the color “red” and all “red” samples are 
of type “PVC”, then the labels “PVC”, “red” and “PVC, red” are equivalent descriptions of the underlying set of 
measurements.

We say that two labels, l1, l2 ∈ L , are equivalent, l1 ∼ l2 , if they describe the same set of measurements. We 
define L/ ∼ as the set of equivalence classes (ECs) induced by this equivalence relation. As every label of an 
EC belongs to the same set of measurements, it is sufficient to calculate the f1 score for just one representative 
of each class.

For every subcluster and every EC ∈ L/ ∼ , the f1 score was calculated via the contingency table presented 
in Table 5. When the number of measurements associated to a label is large relative to total number of measure-
ments, the f1 score may grow large by random association. Hence a p-value was calculated with a hypergeometric 
test. Only matches with p < 0.005 were kept for further analysis. For every EC, the highest scoring subcluster 
was chosen.

If an EC contain more than one label, the interpretation of the subcluster–label match is ambiguous. To 
recover interpretable subcluster–label matches, we chose label representatives from the ECs via the selection 
rules (A) and (B) as defined in the results. If the selection is not unique, the EC was dismissed.

Data availability
The datasets used and analysed during the current study are available from the corresponding author, Prof. Peter 
Lenz, on reasonable request.
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