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Effects of vorticity on solitary 
waves
Keisuke Nakayama1*, Kojiro Tani1, Hideto Yoshimura2 & Ichiro Fujita3

The vorticity effect on solitary wave profiles has not been solved experimentally; previous studies 
theoretically and numerically showed that when a solitary wave progressed in the positive direction, 
the effective wavelength of a solitary wave with positive vorticity increased. Using laboratory 
experiments and fully nonlinear numerical simulations, we here show that the effective wavelength 
is extended more when positive vorticity is given to a progressive wave in the positive direction. We 
further show that the total energy increases with increasing positive vorticity, demonstrating that a 
wave with positive vorticity propagates with less attenuation and lasts longer than a solitary wave 
with no vorticity. We anticipate that our outcomes will provide a starting point for more sophisticated 
methods to investigate the effect of vorticity on solitary waves in laboratory experiments and 
numerical simulations.

When surface waves progress over a sandy or rough bottom, the bottom friction induces vorticity, which affects 
the characteristics of surface waves, such as the vertical profile of the horizontal velocity and the wave shape1. 
Mean currents have similar effects: positive and negative vorticities correspond to the surface wave propagating 
opposite to the direction of and in the same direction of current. Dean showed the possibility that mean currents 
deform the shapes of surface waves2. Later studies revealed the importance of current effects on the surface wave 
amplitudes in a wave–current system by considering the logarithmic vertical profile of horizontal velocities3,4.

On the other hand, other studies demonstrated the importance of vorticity on the surface wave profiles. For 
example, Freeman and Johnson5 derived the Korteweg and de Vries equation in shear flows, arriving at the same 
result as Benjamin6 by following the original strategy of Burns7. They mentioned the necessity for numerical 
computation to evaluate detailed velocity profiles and wave speeds. Dalrymple8 presented a finite amplitude 
wave in a constant shear flow using a numerical perturbation procedure, which led to a change in wavelength 
propagating over a vertically varying linear shear current; still, he mentioned the necessity of laboratory experi-
ments to verify his results. Teles and Peregrine9 showed that waves with more extended wavelength occurred 
when positive vorticity was given to a progressive wave in the positive direction, corresponding to surface waves 
that progress against a stream in an open channel flow. Vanden-Broeck10 investigated a finite amplitude wave 
in constant vorticity by using a boundary integral equation method. In addition, the effect of continuous and 
discontinuous vorticities on surface waves has been shown11–14. For example, a fundamental investigation showed 
that, when surface waves progress in the positive direction, wave amplitude increases as vorticity increases from 
negative to positive before the waves break11. In the same study, the authors performed a detailed analysis of the 
shear-layer effect on wave shape.

Teles and Peregrine9 suggested the need to consider “strong nonlinearity” when analyzing the propagation 
of steady surface waves with constant vorticity. Through strongly nonlinear long gravity wave equations, Choi15 
demonstrated that the wavelength of a solitary wave increased under positive vorticity and decreased under 
negative vorticity, which was similar to the findings of Teles and Peregrine9. Moreira and Peregrine16 modelled 
the underlying current as a distribution of singularities (vortices) using a boundary integral method. Lannes 
and Marche17 developed extended Green–Naghdi equations with additional advection-like equations for the 
vorticity-related terms and investigated solitary waves numerically. As a fully nonlinear model, a direct numerical 
method has been proposed to simulate nonlinear surface waves with nonzero constant vorticity18. However, in 
contrast to the various numerical simulations, there have been few laboratory experiments investigating the effect 
of vorticity on the amplitude and wavelength of a solitary wave. Therefore, it is necessary to conduct laboratory 
experiments and develop a method including full nonlinearity that enables verification of the deformation of 
surface waves under a constant shear flow.

In previous studies on one-layer models, which can include “strong nonlinearity” of waves, the Boussinesq-
type equations19–21 have been improved to include strong nonlinear waves22–25. In contrast to a one-layer model, 
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studies examining strong nonlinear waves in a two-layer system indicated the possibility of large-amplitude 
internal solitary waves due to the effect of topography and the excitation of internal solitary waves26,27. Two-
layer systems with constant vorticity in each fluid layer have been proposed to investigate nonlinear responses 
generated by vorticity28. In a theoretical study on a perturbation basis, Choi and Camassa29 derived two sets of 
internal-wave equations by considering the full nonlinearity of internal waves in a two-layer system, where one 
set of equations was chosen to treat a shallow layer whether it lay on another shallow layer with weak dispersion 
or on a deep layer with intermediate dispersivity11. The models mentioned above can include strong nonlinearity, 
but they are based on nonlinear long waves. Therefore, it may be necessary to apply fully nonlinear wave equa-
tions to investigate the vorticity effect on solitary waves, as in the study by Guyenne18.

Nakayama and Kakinuma30 proposed the Fully nonlinear and strongly Dispersive Internal wave equations 
in a two-layer system (FDI-2s equations) based on Isobe31 and Luke32. The collective model name for the fully 
nonlinear and strongly dispersive wave equations is the Nakayama model33–35. Although the Nakayama model 
analyzes internal waves in a multi-layer system, it may be possible to analyze surface water waves considering 
that the upper and lower layers are air and water, respectively. In addition, it is easy to include vorticity effects 
in the Nakayama model because of the use of the variational principle36,37; Luke first suggested the possibility of 
applying the variational principle to vorticity flow fields. Therefore, we attempted to expand the Nakayama model 
to include new equations that can include vorticity effects. The effect of vorticity on solitary waves was numeri-
cally investigated to determine whether waves with more extended wavelength, which correspond to surface 
waves that progress against a stream in an open channel flow, could be reproduced. Moreover, we conducted 
rough-bottom laboratory experiments to investigate the effect of negative vorticity on a progressive solitary 
wave in the positive direction.

Laboratory experiments.  Many previous results have been obtained using theoretical analyses and 
numerical simulations, but their have been an insufficient number of analyses using laboratory experiments. 
Therefore, we attempted to conduct laboratory experiments to investigate the vorticity effect on solitary waves 
by using 3 mm roughness (TOWA: DMAH-9211) at the bottom of an open channel (Fig. 1). This roughness 
drives negative vorticity on a progressive solitary wave in the positive direction due to the friction effect from the 
bottom. Two cases were tested: a smooth-bottom case (Lab1, with no vorticity) and a rough-bottom case (Lab2, 
with vorticity) (Table 1). We tried to produce a similar wave height in both cases, 9.2 mm and 9.7 mm for Lab1 
and Lab2, respectively. The wave was generated by exerting a step-like shape displacement to create one solitary 
wave. Particle Image Velocimetry (PIV) was applied to measure the vertical profiles of horizontal velocities and 
the wave shapes Lab1 and Lab2 (Fig. 1). The width and length of the acrylic open channel were 0.1 m and 4.0 m. 
Since the both-ends vertical walls of the open channel reflect waves perfectly, we conducted our measurements 
after the waves had been reflected twice from the vertical wall, meaning the effective open channel length was 
12 m and long enough to reproduce a solitary wave. Since the laboratory apparatus was too small to allow suf-
ficient alterations of the total water depth and wave height, we examined only two conditions with negative vor-
ticity. Note that our laboratory experiment could not give positive vorticity to progressive surface waves in the 
positive direction, so we used numerical simulations to investigate the positive vorticity effect on solitary waves.

Results and discussion
Laboratory experiments.  The water depths and wave heights were 0.0485 m and 0.0092 m in Lab1, with 
no vorticity, and 0.0484 m and 0.0097 m in Lab2, with vorticity. The wave celerity of Lab1 was 0.689 m s−1, which 
was smaller than the theoretical solution of 0.754 m s−1. Acrylic was used in the laboratory experiment; still, the 

(a) (b) Lab1 with no vorticity
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Figure 1.   Laboratory experiments. (a) Schematic diagram of the laboratory experiments. A laser sheet was 
inserted through the bottom slit. (b) Lab1 with no vorticity. (c) Lab2 with vorticity.
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friction from the bottom and lateral walls was expected to reduce the wave celerity. The wave celerity of Lab2 
was 0.59 m s−1, smaller than that of Lab1 due to the additional bottom friction. The wave shape of Lab1 agreed 
very well with that by Fenton’s solution39 (Fig. 2a). In contrast, Fenton’s solution overestimated the wave shape 
of Lab2 in the trough area (Fig. 2b). It was demonstrated that Fenton’s solution agreed very well with the fully 
nonlinear and strongly dispersive surface wave26, suggesting that the surface wave of Lab1 was a typical solitary 
wave. Choi11 demonstrated that the water depth in the trough area decreases by giving negative vorticity to the 
progressive solitary wave in the positive direction, which agreed with our laboratory experiments.

The influence of vorticity on solitary waves was evaluated using the Froude number ( FV ) defined by Choi11 
as the ratio of vorticity × water depth and wave celerity. The vertical profile of horizontal velocities obtained 

Table 1.   Conditions for solitary wave cases. ηmax is the maximum water depth from the bottom, h2 is the 
initial water depth, ω0 is the vorticity, and �I is the effective wavelength.

Case ηmax − h2 (m) ω0 (s−1) FV = ω0h2/
√

gh
2

�I (m)

Lab1 0.0092 0 0 0.273

Lab2 0.0100 − 0.114 − 0.0077 0.262

A1 0.207 0.0 0 14.76

A2 0.204 0.25 0.113 15.64

A3 0.202 0.50 0.226 17.12

A4 0.210 − 0.25 − 0.113 13.72

A5 0.214 − 0.50 − 0.226 12.34

B1 0.37 0 0 11.15

B2 0.36 0.25 0.113 12.44

B3 0.34 0.50 0.226 14.09

B4 0.39 − 0.25 − 0.113 9.99

B5 0.40 − 0.50 − 0.226 7.93

C1 0.79 0.0 0 8.00

C2 0.73 0.25 0.113 8.83

C3 0.66 0.50 0.226 10.08

C4 0.84 − 0.25 − 0.113 6.96

C5 0.89 − 0.50 − 0.226 5.48

0.0958 s-1
0.2093 s-1
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Figure 2.   Wave profile and horizontal velocity. (a) Wave profile of Lab1 with no vorticity. (b) Wave profile of 
Lab2 with vorticity. Solid lines indicate the Fenton’s solution, and circles indicate the water depth by laboratory 
experiments. (c) Vertical profile of the horizontal velocity at the crest of Lab1 with no vorticity. (d) Vertical 
profile of the horizontal velocity of Lab2 with vorticity.
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from the PIV analysis showed the typical velocity profile of a solitary wave in Lab1 (Fig. 2c). The vertical profile 
of horizontal velocities was linear from the bottom to the solitary wave height. In contrast, the vertical gradient 
of horizontal velocities in Lab2 was 0.2093 s−1, greater than the 0.0958 s−1 of Lab1 (Fig. 2d), suggesting that the 
bottom roughness induced negative vorticity. Note that the 0.0958 s−1 of Lab1 is not a vorticity, but the vertical 
profile of horizontal velocities due to the typical characteristic of a solitary wave. The vertical gradient of hori-
zontal velocities was obtained using the least-squares method, which gave the Froude number, FV = −0.0077 
(red lines in Fig. 2d). If we assume the celerity to be a linear longwave celerity, the Froude number is ω0

√
h2/

√
g   

( ω0 : vorticity; h2 : water depth; g : gravity acceleration). Thus, as the Froude number is proportional to the square 
root of water depth when vorticity is constant, the Froude number tends to be smaller in a shallow water depth 
laboratory experiment than in the results of previous studies.

To confirm the solitary-wave deformation due to the vorticity effect, we computed the effective wavelengths, 
�I , by following the definition used by Koop and Butler38:

where �I is the effective wavelength, and aH is the wave height.
In Lab1 and Lab2, the effective wavelength of Lab2, 0.265 m, was shorter than that of Lab1, 0.273 m, which 

may be due to the negative vorticity effect (Table 1). The previous studies demonstrated the possibility of both 
longer and shorter effective wavelengths when negative vorticity was given. Thus, the fact that the negative 
vorticity shortens the effective wavelength may provide a scientifically significant outcome similar to that in 
Choi11; still, the difference was too small to confirm the deformation of a solitary wave because of the small 
Froude number, FV = −0.0077 , which is substantially smaller than that of Choi11. In the laboratory experiment, 
the maximum vorticity is expected to be 0.25 s−1, even though we use robust roughness. In addition, the maxi-
mum water depth may be 0.5 m, even using a long wave tank, which provides a Froude number of 0.056 using 
a linear longwave speed. In a natural setting, the maximum vorticity may be twice as much as in the laboratory 
experiment. The water depth is up to a few meters, providing a Froude number of 0.28, more than five times the 
Froude number in the laboratory experiment. Since the size of the Froude number limits laboratory experiments, 
it is necessary to apply numerical simulations to analyze more larger Froude numbers corresponding to those 
produced by actual phenomena. Indeed, the Froude number in our laboratory experiments was too small to 
capture the actual characteristics of the constant vorticity effect on the amplitude and wavelength of a solitary 
wave. Therefore, in numerical simulations, the water depth was 40 times greater than in the laboratory experi-
ments so as to obtain a more significantly larger Froude number. Note that the numerical simulation cannot 
estimate the vorticity induced by the bottom friction in the laboratory experiment. Thus, we cannot make direct 
comparisons between the laboratory experiments and the numerical simulation.

Numerical simulations.  We show results using the Nakayama model for cases B and C only, as these cases 
exhibit more obvious differences induced by the vorticity effect than case A, where the wave height is the small-
est (Table 1). We will use case A to discuss the vorticity effect on wave height and wavelength. The values of the 
horizontal velocity component at the crest, US ( = ω0(h2 + ηmax) ) m s−1, due to the vorticity for ω0 = 0.0 s−1, 
ω0 = 0.25 s−1, ω0 = 0.50 s−1, ω0 = −0.25 s−1, and ω0 = −0.50 s−1, were obtained as ( US = ) 0.0 m s−1, 0.59 m s−1, 
1.17 m s−1, − 0.60 m s−1, and − 1.20 m s−1 in cases B1 to B5, respectively. The celerity of a solitary wave with 
no vorticity, CR m s−1, was obtained as 4.89 m s−1, and the values of the Froude number, ω0h2/

√

gh2 , were 0.0, 
− 0.113, − 0.226, 0.113, and 0.226 in cases B1 to B5. In cases B1 to B5, �I in the case with ω0 = 0.50 s−1 was the 
longest (Fig. 3a and Table 1). Note that a positive Froude number corresponds to a case where a solitary wave 
progresses against a stream.

In cases C1 to C5, where wave amplitude was largest, the values of the horizontal velocity components due to 
the vorticity at the crest, US m s−1, at the maximum wave height were 0.0 m s−1, 0.68 m s−1, 1.33 m s−1, − 0.71 m s−1, 
and − 1.45 m s−1 (Table 1). The wave celerity with no vorticity was CR = 5.55 m s−1, and the values of the Froude 
number, ω0h2/

√

gh2 , were 0.0, − 0.113, − 0.226, 0.113, and 0.226 from cases C1 to C5. In cases C1 to C5, �I in 
the case with ω0 = 0.50 s−1 was the longest (Fig. 3b and Table 1).

Vorticity effect on wavelength, amplitude and energy.  Laboratory experiments demonstrated that 
the wave height decreased around the skirt of a solitary wave when the wave progressed positively with negative 
vorticity, as in Choi11. The laboratory experiment results of Lab1, with no vorticity, showed that the relationship 
between the wave height, aH , and effective wavelength agreed with Fenton’s theoretical solution39 (Fig. 3c). In 
contrast, the effective wavelength of Lab2, with negative vorticity, was slightly smaller than the theoretical solu-
tion. However, the difference in the effective wavelength was tiny, as the Froude number was − 0.0077; this was 
too small to confirm the deformation of a solitary wave.

Therefore, the Nakayama model was applied using a water depth of 2.0 m, which was 40 times greater than 
in the laboratory experiment. The effective wavelengths were confirmed to agree with Fenton’s solutions when 
there was no vorticity (Fig. 3c). To investigate the change in effective wavelength according to wave height, the 
small-amplitude case A was added in Fig. 3c. In the maximum positive vorticity cases B3 and C3, the effective 
wavelengths were 1.41 and 1.46 times greater than in the no-vorticity cases B1 and C1, as in the previous study40. 
In contrast, the effective wavelengths of the minimum negative vorticity cases B5 and C5 were 0.71 and 0.69 times 
smaller than in the no-vorticity cases. The ratio of the effective wavelength based on the no-vorticity condition 
was almost constant when vorticity was constant (purple arrows in Fig. 3c). However, the ratio of the negative 
vorticity cases decreased as wave height increased (green arrows in Fig. 3c). Therefore, these experiments may 

�I =
1

aH

∫ ∞

−∞
(η − h2)dx
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have uncovered a new scientific relation—namely, the higher the wave height, the greater the effect of negative 
vorticity on the effective wavelength of a solitary wave shape compared to that of positive vorticity.

On the other hand, the maximum wave height defined as (ηmax − h2)/h2 increased as the Froude number, 
FV , decreased; the more significant the initial wave height, the greater the change in wave height (Fig. 3d). In 
case C, where the initial wave height is the maximum, the change in the maximum wave height of the positive 
vorticity case was more significant than that of the negative vorticity case (arrows in Fig. 3d). Note that the 
Froude number showed no significant influence on the maximum wave height when the normalized initial wave 
height was less than 0.1.

To understand the energetics of a solitary wave affected by vorticity, the normalized total energy was com-
puted by using the wave amplitude and wavelength obtained from the KdV theory:

where ET is the normalized total energy and  �KdV is the KdV wavelength.
It was shown that positive vorticity tends to have greater total energy (Fig. 4a). Since a wave with positive 

vorticity had a longer effective wavelength, as shown in Fig. 3c, the normalized total energy was greater in a wave 
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Figure 3.   Comparisons of water depth distributions at 20 s. (a) Dotted, broken spaced, thick solid, broken, 
and thin solid lines indicate cases B3, B2, B1, B4, and B5, respectively. (b) Dotted, broken spaced, thick solid, 
broken, and thin solid lines indicate cases C3, C2, C1, C4 and C5, respectively. (c) �I for theoretical solutions 
and the Nakayama model at 20 s. Broken and solid lines indicate the KdV solution and the 3rd-order solution by 
Fenton39 for surface waves. (d) Froude number, FV , and the normalized maximum wave height, (ηmax − h2)/h2 , 
for cases A, B, and C at 20 s.
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with positive vorticity (Fig. 4). Significantly, the larger the vorticity, the more significant the normalized total 
energy. These results may suggest that a wave with positive vorticity propagates with less attenuation and lasts 
longer than a solitary wave with no vorticity.

Methods
Laboratory experiments.  The wave shape and velocity vectors were visualized by sliding a laser sheet 
(Japan Laser DPGL-2w) with a thickness of 0.005 m through the slit at the open channel bottom and using 
crushed nylon particles with a representative scale of 80  µm. Wave shape was measured using a high-speed 
camera, and the velocities were obtained using PIV analysis41. The camera was a CASIO EX100 with a sampling 
rate of 30 frames per second and a resolution of 3840 × 2160. An area of 0.05 m adjacent to the water surface 
was measured to obtain high-resolution images with a grid size of 0.00005 m. A solitary wave was generated by 
releasing a steplike convex region dammed up by the acrylic plate at the upstream end. The Lab2 wave shape 
with vorticity was generated with a staggered arrangement projection of 1 mm length. The laser sheet was slid 
through a slit, measuring 0.01 m wide and 0.3 m long, at the open channel bottom. Before generating a solitary 
wave, we confirmed the absence of any vorticity or turbulence in an open channel with particles for the PIV. We 
also carried out laboratory experiments repeatedly to obtain similar wave heights in both Lab1 and Lab2 to the 
greatest extent possible.

Numerical simulations.  We attempted to use the Nakayama model to investigate the effect of vorticity on 
a solitary wave. In applying the variational principle, the functional including the vorticity effect by Luke32 yields 
the Euler‒Lagrange equations by using velocity potential31. The Euler‒Lagrange equations were solved numeri-
cally based on the numerical scheme developed by Nakayama and Kakinuma30. They assumed wave fields for the 
irrotational case, but in the present study, the rotational condition including vorticity effects was introduced in a 
two-layer fluid by following Clebsch36, Bateman37, and Luke32 ((1) and Fig. 5). The second term of (1) indicates 
the velocity potential due to the vorticity effect. Details are shown below.

Here, ul is the velocity of the lth layer in the x direction, vl is the velocity of the lth layer in the y direction, µl 
and νl are the vorticity effect terms, φl is the velocity potential, wl is the vertical velocity of the lth layer, and ∇ is 
a partial differential operator in the horizontal plane, i.e., =  (∂/∂x, ∂/∂y).

The upper and lower layers are represented as l  = 1 and 2 in a two-layer system, respectively, and incompress-
ible fluids are assumed to be stable in still water, as shown in Fig. 5. We consider that the upper and lower layers 
are the air and water, respectively. The friction term between the air and water was ignored in the numerical 
simulations. The lth layer thickness in still water is denoted by hl , and two-layer fluids will not mix during wave 
motion. The density is spatially uniform and temporally constant in each layer. In the lth layer, the upper and 

(1)ul = (ul , vl) = ∇φl + µl∇νl and wl =
∂φl

∂z
+ µl

∂vl

∂z

Figure 4.   Total energy and vorticity. (a) Froude number, FV , and the normalized total energy, ET , for cases A, 
B, and C at 20 s. (b) Solitary wave profile of no vorticity. (c) Solitary wave profile of negative vorticity. d) Solitary 
wave profile of positive vorticity. Illustration adapted with permission from Reina Nakayama.
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lower interfaces are indicated as ηl,1 and ηl,0 , respectively, and the pressure on the lower interface is pl. By fol-
lowing Isobe31 based on Clebsch36 and Luke32, the function for the variational problem in the lth layer, Fl , was 
determined by

where g is gravitational acceleration; plane A, which is the orthogonal projection of the object domain onto the 
x−z plane, is assumed to be independent of time.

To derive a set of equations, vertical integration was performed analytically by expanding φl , µl , and νl . φl , 
µl , and νl were expanded into a series in terms of α given a set of vertically distributed functions, Zl,α , Ml,α , and 
Ll,α , multiplied by their weightings, fl,α , ml,α , and nl,α , respectively.

Here, N is the total number of an expanded functions.
(7) is applied to Eqs. (4) to (6).

We substituted (3)–(6) into (2), after which the function was integrated vertically. Then we applied the vari-
ational principle to obtain the following Euler–Lagrange equations for each layer, i.e., the equations for fully 
nonlinear and strongly dispersive internal waves with vorticity effects. We call the fully nonlinear and strongly 
dispersive internal wave equations with vorticity effects in a two-layer system the “FDV-2s” equations. The col-
lective model name for the FDS, FDI-2s, FDI-3s, FDV-2s and FDI-multi-layer-system equations is the Nakayama 
model.

[1st layer]
In the 1st layer, i.e., the upper layer, l = 1 and j = 0, and the Euler − Lagrange equations become

(2)
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(7)Zl,α = Ml,α = Ll,α = zα(α = 0, 1, 2, . . . ,N − 1)

(8)

−η
α
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− R1[α, γ ,β + δ]m1,βm1,γ n1,δ = 0

Figure 5.   A two-layer fluid for water waves.
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[2nd layer]
In the 2nd layer, i.e., the lower layer, l = 2 and j = 1 , and the Euler–Lagrange equations become

where j = 0 and 1, α = 0, 1, 2, …, N − 1 , β = 0, 1, 2, …, N − 1 , γ = 0, 1, 2, …, N − 1 , δ = 0, 1, 2, …, N − 1 , ε = 0, 
1, 2, …, N − 1 , and b is an arbitrary bottom (Fig. 1).

(8)–(21) can provide surface waves with vorticity effects over an arbitrary bottom in a two-layer fluid. By fol-
lowing Nakayama and Kakinuma30 and Nakayama and Lamb35, an implicit technique was used in the proposed 
numerical computational scheme in the one-dimensional region of the two-layer system in order to obtain stable 
computational results.

For the numerical analysis, the depths of the upper and lower layers were h1 = 4.0 m and h2 = 2.0 m, the 
specific density ratio between the upper and lower layers was ρ1/ρ2 = 1/1000 , and the computational domain 
size was 250.0 m, with 500 grids and a time step of 0.00025 s, which corresponds to about CFL 1/400. Three 
wave amplitudes were given as initial conditions: 0.20 m, 0.35 m, and 0.70 m (Table 1). The term of the vertically 
distributed function was given as N = 2 by following a previous study regarding solitary waves34. Five vertically 
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η
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uniform vorticities were given: ω0 = 0.0 s−1, ω0 = 0.25 s−1, ω0 = 0.50 s−1, ω0 = −0.25 s−1, and ω0 = −0.50 s−1. 
Radiation conditions were applied at the left and right boundaries. As initial conditions, the 3rd-order solution 
based on Mirie and Pennell42 and Nakayama et al.33 was used to target large-amplitude solitary waves. Note 
that we applied the initial conditions of Mirie and Pennell42 and Nakayama et al.33 here because of the necessity 
of giving velocity potentials in both the upper and lower layers as initial conditions for the FDV-2s equations.

Since we considered surface waves, the vorticity effect was given only in the lower water layer. In the analysis, 
vertically uniform vorticity was given as ω0 (s−1). Vorticity, ω , can be expressed by using the additional terms of 
velocity indicated by µl and νl of (1) as (22).

It is necessary to include the second term of vertically distributed functions for µ2 and ν2 in order to give a 
vertically uniform vorticity, ω0 s−1, which yields (23).

To give horizontally constant values, n2,1 = 0 yields n2,0 as follows:

To obtain coefficients m2,0 and m2,1 , it is assumed that the vertically integrated horizontal velocity due to the 
vorticity effect is zero, which gives (25). Since the coefficient m2,0 can be taken as any constant value, we can 
give m2,0 = 1.

Conclusion
Laboratory experiments were conducted successfully by using roughness at the open channel bottom to investi-
gate the effect of negative vorticity when a solitary wave progresses in the positive direction. The Froude number 
was − 0.0077, but the decrease in wave height around the trough was confirmed to be similar to the decreases in 
previous studies by Choi11 and Teles and Peregrine9. The Nakayama model was used to investigate the influence 
of the Froude number on a solitary wave. Vertically uniform and constant vorticity was applied to progressive 
solitary waves. When positive vorticity was given, the effective wavelength increased compared to the no-vorticity 
case. Also, wave height decreased with positive vorticity, resulting in the generation of a wave with more extended 
wavelength, which has more significant normalized total energy than a wave with no vorticity (Fig. 4).

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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