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Curvature and van der Waals 
interface effects on thermal 
transport in carbon nanotube 
bundles
Mostafa Valadkhani1, Shunda Chen2, Farshad Kowsary1, Giuliano Benenti3,4,5, 
Giulio Casati3,6 & S. Mehdi Vaez Allaei7,8*

A van der Waals (vdW) heterostructure, can be used in efficient heat management, due to its 
promising anisotropic thermal transport feature, with high heat conductance in one direction and 
low conductance in the rest. A carbon nanotube (CNT) bundle, can be used as one of the most feasible 
vdW heterostructures in a wide range of nanoscale devices. However, detailed investigations of heat 
transport in CNT bundles are still lacking. In this paper, we study heat transport in different CNT 
bundles—homogeneous bundles consisting of the one CNT radius (curvature) and inhomogeneous 
bundles constructed from different CNTs with different curvatures. We also investigate the comparison 
between two possible thermostatting configurations: the two ends connected (TEC) case in which 
there is at least a direct covalently connected path between the hot and cold heat baths, and the 
one end connected (OEC) case in which the system can be divided at least into two parts, by a vdW 
interacting interface. Nonequilibrium molecular dynamics simulations have been carried out for a 
wide range of configurations and curvature differences. We find that, in homogeneous bundles, by 
increasing the number of outer CNTs, the heat conductance increases. In inhomogeneous bundles, 
the total heat flux shows dependence on the difference between the curvature of the core and outer 
CNTs. The less the difference between the curvature of the core and the outer CNTs, the more the 
thermal conductance in the system. By investigating the spectral heat conductance (SHC) in the 
system, we found that a larger curvature difference between the core and outer CNTs leads to a 
considerable decrease in the contribution of 0–10 THz phonons in the bundled zone. These results 
provide an insightful understanding of the heat transport mechanism in vdW nano-heterostructures, 
more important for designing nanoelectronic devices as well as systems in which asymmetry plays a 
significant role.

van der Waals (vdW) heterostructures have attracted a lot of attention1–4 due to their applications in making novel 
structures with distinct optoelectronic and thermal characteristics5. The emergence of new vdW heterostructures 
brings exciting applications in different branches of science and technology, boosting an effort to understand 
their stable properties, different from those of pristine individual components6.

More specifically, concerning different common structures that can be produced in the synthesis of aligned 
nanotubes7, well known as nanotube forest, a common possible feature in the growth of nanotubes on a large 
scale area, vdW interaction between nanotubes and the number of neighbors and structures become more 
important. In spite of numerous studies that have been devoted to these kinds of structures in different research 
areas, such as thermionic emission and plasmonics7,8, or free carriers in aggregated single-wall carbon nanotubes 

OPEN

1School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran. 2Department of 
Civil and Environmental Engineering, George Washington University, Washington, DC 20052, USA. 3Dipartimento 
di Scienza e Alta Tecnologia, Center for Nonlinear and Complex Systems, Università degli Studi dell’Insubria, 
via Valleggio 11, 22100  Como, Italy. 4Sezione di Milano, Istituto Nazionale di Fisica Nucleare, via Celoria 16, 
20133  Milan, Italy. 5NEST, Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127  Pisa, Italy. 6International 
Institute of Physics, Federal University of Rio Grande do Norte, Campus Universitário‑Lagoa Nova, CP. 1613, 
Natal, Rio Grande do Norte 59078‑970, Brazil. 7Department of Physics, University of Tehran, Tehran 14395‑547, 
Iran. 8School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran  19395‑5531, 
Iran. *email: smvaez@ut.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-22641-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19531  | https://doi.org/10.1038/s41598-022-22641-y

www.nature.com/scientificreports/

by photoexcitation9, microelectromechanical devices10, etc., thermal transport in these different structures has 
not been well studied, yet.

In general, mechanical stability, electrical and thermal properties of CNTs make them appropriate candidates 
for optimal thermal management of the nanoscale devices11–13. Considerable efforts have been devoted to finding 
different aspects of thermal properties of CNTs14–17, but for the vdW heterostructures, further investigations 
are highly required.

Thermal stability and heat management are two leading parameters to increase the performance of electronic 
devices18,19. In particular, proposing or synthesis of materials or structures with anisotropic thermal conduction 
can be useful from different points of view17,20. For instance, how to remove high temperature from a hot spot 
along the direction of high thermal conductivity as well as provide kind of insulation in the other directions21, 
even leading to the design of a thermal rectifier17. The most well know example is multiwalled CNT, due to the 
strong covalent bond inside the tubes and, in comparison, weak vdW interaction normal to CNT surface Due 
to the various configurations in possible structures of CNT bundles, anisotropic thermal transport features, due 
to the structure, shape, and curvature, can be promising.

In this paper, we study the thermal transport in different bundles of CNTs, characterizing the effect of dif-
ferent curvatures, as well as the contact area. This study leads us to understand thermal transport dependence 
of most common possible configurations of CNT bundles with respect to their curvature. More specifically, we 
consider a structure consisting of a CNT as the core, and a number of first neighbors, i.e. the outer CNTs (from 
3 to 10), see Fig. 1 for a schematic drawing. Using non-equilibrium molecular dynamics (NEMD) simulations, 
and spectral analysis, heat transport properties such as heat fluxes and Kapitza resistance are calculated. Depend-
ing on the number of outer CNTs, different CNT diameters, the spectral thermal transport is studied. In cases 
that the radius of outer CNTs differs from the core one, the effect of different curvatures plays as another key 
parameter in thermal transport, which is also investigated here. To gain a better understanding of heat transport 
properties, we use tools such as the power spectrum and spectral heat conduction (SHC). Regarding the two 
different important parameters that play roles in heat transport of CNT bundle structure, the rest of the paper is 
organized as below. In “Simulation method”, we explain how different structures are made, and details of NEMD 
have been explained. The results and discussion section has been divided into two parts; the section in which 
the core and the outer bundles are the same, in which we address the importance of a shared interface between 
CNTs. We also study the effect of the difference in curvature of the core and outer CNTs and its effect on spectral 
heat transport in the rest of the section.

Simulation method
In a given CNT vdW heterostructures, from nanotube forest7,8 to self-assembled ones9,10, a given local bundle 
of CNTs can contain a different number of adjacent tubes, with the same diameter (see Fig. 2a) or probably with 
smaller or larger ones (see Fig. 1). Here we have to consider a wide range of possible bundle structures, to have 
a good estimation of key parameters, as well as be able to observe leading parameters in heat transport features. 
The atomistic structure of bundled CNT is schematically shown in Fig. 1. There are seven different structures IV, 
V, VI, VII, VIII, IX, and X that are corresponding to the number of outer CNTs surrounding the core one. The 
(m, m) chirality is chosen for all CNTs in which m is 27, 15, 10, 7, 5, 4 and 3 for IV, V, VI, VII, VIII, IX, and X 
case, respectively, that it means that m is 10 for the core all CNTs in homogeneous structures. Diameter of outer 
CNTs have been chosen in such a way that all CNTs become perfectly matched with each other in a given bun-
dle structure, i.e. the distance between each adjacent CNTs to be almost equal to the distance between graphite 
sheets, we call it as vdW equilibrium distance.

As common and possible cases, Fig. 2a, we also study the heat transport in structures in which the diameter 
of outer CNTs are the same as the core ( m = 10 ), so the vdW equilibrium distance of outer CNTs does not com-
ply in structures other than I-VI in which six CNTs with the same diameter of inner CNT are surrounding the 
inner CNT as shown in Fig. 2a, different from what is considered here, as vdW equilibrium distances. In these 
cases, the distances between the outer CNTs can vary from the I–VI case, the structure could be unstable and it 
is important to consider this effect in computing transport properties. In Fig. 3, a sample possible structure of the 
system has been shown. It means in addition to molecular fluctuations, these structures could have additional ref-
ormation by which the distances between outer CNTs can change. This can affect the phonon transport in every 

Figure 1.   Schematic structure of bundled CNTs with different diameters (top). The configuration of the system, 
consisting of two heat baths and the two ends, the region in which the heat baths are implemented, and z axis 
corresponding to heat flux direction and the other axes (x and y normal to energy flux direction, (so-called 
radial direction) are presented. The two red (heat source) and blue (heat sink) regions are corresponding to the 
hot and cold heat baths.
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individual CNT, and a possible additional curvature along the CNT axis also can affect thermal conductivity. 
To assure to have not a sample-dependent study for these cases, where the diameter of the core and outer CNTs 
are the same, by imposing additional forces on a few atoms in outer CNTs, we eliminate the reconfiguration and 
rearrangement of studied structures. Thus, what we have investigated in these structures can be mostly similar 
to the structures that are presented in Fig. 2a.

All molecular dynamics simulations of this study are performed using the LAMMPS code22. Airebo potential23 
is used to simulate C–C interactions. Airebo potential is suitable for simulating thermal transport in carbon 
nanotubes as shown in different studies17,24–26. (To support the independence of our main findings from the 
covalent C–C potential, in the supplemental materials we compare results of the main text with those obtained 
by means of the optimize Tersoff potential27,28 with the same van der waals (LJ) parameters used in the AIREBO 
potential.) Stuart et al. ’s Lennard Jones potential parameters23 is used to simulate the interactions between each 
CNT pair. The time-step in velocity Verlet integration is set 1 fs. The core CNT length is 50 nm and the outer 
ones are 25 nm. Each steady heat current in each stable structure has been obtained by imposing the procedure. 
At the first, an isothermal-isobaric (NPT) ensemble imposed for 5× 105 steps (0.5 ns) at 300K, and afterward 
3× 105 steps (0.3 ns) in canonical (NVT) ensemble lead each system to achieve equilibrium condition. Then 
1× 105 steps (0.1 ns) in the microcanonical (NVE) ensemble are performed to reach a state that we could impose 
two heat baths on different sides of each system. Atoms in the two slabs with the length of 10Å at both ends of 
each structure are frozen to have fixed boundary conditions at both ends. Atoms in two slabs with a width of 
20Å adjacent to the frozen regions are coupled to a Langevin thermostat. The heat source and sink temperatures 
are set to 350 K and 250 K, respectively.

We have used Langevin thermostat29,30 to fix temperature in heat baths to reduce the artificial effect on tem-
perature profile31. The importance of this heat bath type is discussed in “Results and discussion”. For 5× 106 
steps (5 ns), the two heat baths are imposed to reach �T . Then another 1× 106 steps (1 ns) perform to reach 
the steady-state and finally 3× 106 MD steps (3 ns) are carried out to calculate temperature profile and collect 
velocities of atoms every 5 time steps to calculate spectral heat conductance (SHC).

To compare the frequency dependence of heat transport, mostly have an insight on which modes are more 
contributing in the core, and how vdW interaction can improve/suppress the transport inter- and intra-tubes, we 
calculated the spectral heat conductance of the core. The well known formalism developed by Saaskilahti et al.32 
has been employed for calculating spectral decomposed thermal conductance or SHC. The SHC is calculated for 
two cross-sections in the middle portion of the single side and the bundle side of the core (orange triangle and 
blue square in schematic in Fig. 5). To calculate SHC, we need to measure qi→j(ω) , the interatomic heat current 

Figure 2.   (a) The bundle structure for cases that the core and outer CNTs have the same diameters (i.e. (10,10)). 
The structure of the system, such as the length, position of fixed atoms, and heat baths are the same on the rest 
of the simulations. A case with III, IV, V, and VI outer CNTs have been schematically shown. (b) Schematic 
of tow ends connected core (TEC) and one end connected core (OEC) in which the blue and orange colors 
represent heat sink and heat source respectively.

Figure 3.   If a few atoms of outer CNTs are not fixed, rearrangement can be obtained in III, IV, and V cases. A 
sample snapshot of these systems has been presented. Just in VI case, there is no deviation.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19531  | https://doi.org/10.1038/s41598-022-22641-y

www.nature.com/scientificreports/

between particles i (in the left side of the cross-section) and j (in the right side of the cross-section) located next 
to each other, by which it is possible to express the pair-wise SHC equation32

where tsimu is the simulation time, ω is the angular frequency, v̂αi (ω) and v̂βj (ω) are the discrete Fourier transforms 
of the atomic velocities, and the interatomic force constant Kαβ

ij  can be written as

in which, uαi  and uβj  are the displacements of atoms i and i from their equilibrium positions in directions 
α,β ∈ {x, y, z} , and U is the interatomic potential energy function. The SHC through the core of is obtained 
from Eq. (1), by a summation over all pairs of atoms (one in from left outer CNTS, denoted by L and one from 
the core, denoted by R ) within the potential cut-off distance of each other and dividing by the interface area A:

Results and discussion
In a forest or an assembled structure of CNTs, different local structures can be obtained. Among all possible 
configurations, a bundle structure is one of the most possible, with orientational ordering. For example, one local 
bundle can have a core tube with a few to several adjacent CNTs, possibly with the same (homogeneous) and/
or different (inhomogeneous) diameters. To clarify all differences with respect to heat transport, here, all cases 
have been categorized into homogeneous (Fig. 2a) and inhomogeneous (Fig. 1) local structures.

In a homogeneous case in which the vdW equilibrium distance between the core and the outer CNTs are the 
same, the most important issue is the number of neighboring CNTs (Fig. 2a). The higher the number of neigh-
bors, the larger the shared surface area among tubes. A larger area between two neighboring CNTs corresponds 
to larger vdW interaction between them, which here is addressed as the shared vdW surface in heat transport 
in a CNT bundle.

On the other hand, in an inhomogeneous case (Fig. 1), each element of a bundle can have a different diam-
eters, thus despite the importance of the shared surface, the curvature difference between each element can also 
play a significant role. The effect of interface shape or diameter difference between two neighbor CNTs, here, 
has been categorized as the curvature effect. Thus, this section is divided into two parts to address both issues.

From another point of view, there are two different heat transport scenarios in these kinds of heterogeneous 
vdW structures. In the first case, there are combinations of vdW and covalent interactions that are simultaneously 
contributing to heat transport. But, in the second scenario, there is no direct path from hot to cold heat bath that 
is constructed by covalent bands; thus all phonons need to pass through the shared surface between outer CNTs 
and the core, via vdW interaction. Thus, these two cases have been divided into two different categories: Two 
End Connected (TEC), when the core CNT is in contact with both heat baths, in which a portion of heat fluxes 
cross directly from the heat source to heat sink through the core CNT, and One End Connected (OEC) when the 
core is just in contact with the cold heat bath from the right side, while the hot heat bath is in contact with the 
outer CNTs (from the left) as shown in Fig. 2b. In this case, the entire heat flux crosses the interface between the 
core and the outer CNTs.

Temperature profiles of CNTs in a given structure provide insightful data to understand thermal transport 
processes in vdW heterostructures (see Fig. 4). Due to the distinct difference between the interaction of two 
carbon atoms, (i) inside CNT with the strong covalent band, and (ii) the weak Lennard Jones interaction, we may 
have adjacent atoms in two different CNTs, having different temperatures. Figure 4 shows how the temperature 
profiles of outer CNTs and the core are different. Specifically for the case of OEC (Fig. 4), in which the left side of 
the core is disconnected from the hot bath, the temperature of the core can not reach the temperature of the bath, 
from the leads to a lower thermal conductance for OEC structures, as compared to the corresponding TEC cases.

As shown in Fig. 5, there are different possible trajectories for heat to flow from the hot bath (left) to the cold 
one (right). If the core is mutually connected to both hot and cold heat baths (TEC), one major portion can flow 
directly from the core (orange triangle and blue rectangle in top Fig. 5), due to the high thermal conductance of 
the core. Simultaneously, the remaining portion transfer from outer CNTs (green circles) to the core as well. But, 
when just one side of the core is directly connected to the cold bath (OEC), all thermal phonons must transfer 
from outer CNTs to the core, where the accumulated total heat is received by the cold bath. Due to the low ther-
mal conductance of vdW interaction (normal z-axes, radial direction between two CNTs) as compared to the 
high thermal conductance of covalent bonds (in the z-direction, alongside CNTs), the total conductance in the 
TEC system is higher than the corresponding OEC version. Mere interaction with outer CNTs in all cases can 
result in more phonon scattering in the core, which decreases the thermal conductance of the core. Nonetheless, 
in all cases, the entire heat must be transferred from left to right, and the flux magnitude in the blue rectangle 
zone (Fig. 5) will be the total steady flux for each case.

As precisely described by Rajabpour et al.33, the transport trajectory of heat is somehow complicated. Also 
in our studied cases, if we consider flow in the z direction, a part of flow will be transmitted through outer CNTs 
to the core and the rest inside the core. It means that for the left side of the system in Fig. 2a, at a given point in 
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the z direction, there will be no thermal equilibrium, since the temperature in outer CNTs and the core are not 
the same (Fig. 4). But if we make an average over their temperature, a Kapitza like feature will be obtained. This 
discontinuity mimics the effect known as the Kapitza resistance at the interface which for both TEC and OEC 
can be calculated34 (next sections).

The effect of shared vdW surface.  To understand the contribution of outer CNTs to homogeneous cases 
(same diameter of CNTs), heat transport in four different structures have been simulated (Fig. 2a). In these cases, 

Figure 4.   Temperature profiles for the core (blue) and the outer CNTs (red) for (a) TEC and (b) OEC. In the 
TEC in which both sides of the core are connected to the two heat baths, we have less temperature difference, 
between the core and outer CNTs, rather than the OEC case.

Figure 5.   Heat current in the middle of single side (overall heat flux) and bundle side for the homogeneous 
bundles. (a) Represent the heat current for the TEC case, and (b) represent the heat current for the OEC case. 
The red line shows the value of heat flux in the (10,10) single CNT with the same simulation method with no 
outer CNTs. The horizontal axis shows the number of outer CNTs for example I–III represent three outer CNTs 
surrounding the inner CNT.
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as described (see above), because the distance between each of the two adjacent outer CNTs is larger than the 
vdW equilibrium distance, each outer CNT may rotate around and/or slip over the core, which could lead to 
possible asymmetric structures (see Fig. 3). Thus a few atoms have been frozen to avoid all mechanical instabili-
ties.

The heat flux for two sides of the systems (the middle of each side), for single side, or bundle side is shown in 
the Fig. 5. As it is seen, by increasing the number of outer CNTs, the total heat flux will also increase (blue line 
in Fig. 5), and for the case, I–VI largest heat flux magnitude is obtained. The variation of heat flux of the core in 
the bundle side (orange triangle) is not considered for different structures. Higher contribution of energy heat 
flux belongs to the outer CNTs increases almost linearly with the number of constructors. By comparing the right 
and left figures (Fig. 5), the major contribution of the core in the TEC case becomes more clear. Since the thermal 
conductance in a single CNT is too high, the amount of energy flux transferred from outer CNTs to the core is 
considerably lower than the energy flux transferred directly by the core, in the TEC case. But since the heat has 
no direct path to transfer from hot to cold bath in OEC structures, the energy flux of outer CNTs (green circles) 
and the core (orange triangle) in different cases are not much different from each other.

To make a conclusion on energy fluxes in these two cases, Fig. 5 gives an insightful understanding of the 
importance of covalent bonds for the whole process. We have a path constructed by covalent bands, through 
which the major amount of heat is transferred. But in the other case in which heat needs to pass a vdW junction, 
the contribution of the vdW shared surface is the leading parameter.

To have more insightful data about the contribution of different phonons in heat transport, the SHC of a 
portion of atoms in the middle of right and left half of the core (orange triangle and blue square in Fig.  5 (top)) 
are calculated (is shown in FIG. 6). In FIG. 6, sub-figure a–d are the SHC of TEC case. As discussed above, the 
major part of the heat is directly transported through the core, and the effect of outer CNTs is most apparent 
in low frequencies (longer wavelengths). The red and blue curves in 0-10 THz interval, have meaningful dif-
ferences as compared to the rest of the frequency domain, which means these modes transfer or are affected by 
corresponding modes in outer CNTs. But the SHC feature for the bottom row (e,f) is completely different. The 
difference between red and blue curves in OEC cases are not limited to a specific frequency interval and the 
red curves appear to the multiplied to a value less than one. The intensity of all modes is almost lower for red 
cases in the bottom row, indicating that there is no crucial difference between outer CNTs and the core. Since 
the heat has to pass through the core and outer CNTs Van der Waals interface, it seems all things are almost the 
same in this respect.

As can be seen in Fig. 6, the main trend of SHC does not vary by decreasing the number of outer CNTs, which 
is because there is no major difference in heat fluxes. The fact that the diameter of the core and outer CNTs are 
the same plays an important role in heat fluxes being equal, which brings about the effect of core curvature as 
discussed in the next section can play a role from this point of view, that we address this issue more precisely, 
somehow related to the curvature of core and outer CNTs (see below).

The curvature effect.  The focus of this section is devoted to the effect of the difference between the radius 
of the core and outer CNTs. To choose a unique or similar structure for all configurations, the most symmetric 

Figure 6.   The SHC of the core in single side (red lines) and bundle side (blue lines). (a–d) Calculated for the 
TEC case, and (e–h) are the same for OEC ones. The small cartoon at the top right inside each figure depicts 
the structure. The major difference between the top and the bottom row is in the top row, the most significant 
difference between blue and red curves occurs at approximately 0–10 THz, but for the bottom row, in which just 
one end of the core is connected to the cold bath, there is a larger difference between red and blue curves for a 
wider range of frequencies.
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configurations have been considered. It means similar to the I–VI case in the previous part, that the distance 
between every two neighboring CNTs was the same and the distance between the core and each of them was also 
the same, the constructed structures of this section, have been set that way. That the distance between every two 
neighboring outer CNTs becomes similar to the I–VI ones, i.e., all distances between the core and outer CNTs 
and even neighboring outer CNTs are equal and called vdW equilibrium distance (Fig. 1).

Using NEMD simulation heat transport, the steady thermal current for all cases is obtained (Fig. 7). Similar 
to the previous section, the flux is calculated at the middle of both half right and left sides, in the core (orange 
triangle and blue square) and outer CNTs (green circles).

At first, a comparison between TEC and OEC cases should be addressed, but it is important to emphasize 
that the energy flux of the I–VI structure is the maximum value in both cases [(a) and (b) in Fig. 7]. This result 
can so be called the first evidence of the importance of the homogeneity (same radius) or the effect of curvature 
difference in heat transport of vdW heterostructures.

To have a more insightful understanding of the whole process, similar to vdW shared surface cases, the heat 
current in two portions of atoms located in the middle of right (blue square) and left (orange triangle) half of the 
core, have been calculated (Fig. 7). As shown in this figure, the magnitude of the blue squares (the steady heat 
fluxes), for the TEC case, is at least 1 eV larger than corresponding cases in OEC. This indicates that the high 
thermal conductivity in the core can lead heat transport process, especially when its two ends are connected to 
hot and cold heat baths.

In contrast to the previous section in which by increasing the number of outer CNTs, the energy flux of outer 
CNTs increased, here, by increasing the number of outer CNTs, the energy flux has a decreasing feature, for 
systems that the number of outer CNTs is more than VI. Although these decrements vs increasing the number 
of outer CNTs can relate to the smaller diameter of outer CNTs, the increment in the number of tubes can be 
overwhelmed by the decrements in the vdW shared surface. In both TEC and OEC cases, the total heat flux 
(blue square), as well as the heat, passes from the outer CNTs to the core (green circles) have a maximum at 
the I–VI case.

It is needed to emphasize the main differences between the heat current for the core in all cases (orange tri-
angle). For the TEC case, from I–IV to the I–VI structure, there is no considerable difference, but for from VII 
to the I–X case, the TEC structures have increasing feature, but the OEC ones have decreasing feature. Besides 
the fact that CNT with smaller diameters has lower thermal conductivity, due to the shorter phonon mean free 
path, thus this can suppress heat transport in outer CNTs, rather than corresponding cases with larger diameters. 
Thus, in TEC cases, the core plays the leading role in heat transport, and by decreasing the thermal conductivity 
of outer CNTs, the core contributes more significantly. But in OEC systems in which whole thermal energy has 
to be transferred through outer CNTs, they exhibit monotonic decrements from I–VI to I–X cases.

One other reason behind obtaining a maximum energy flux in the I–VI structure is related to the similar local 
curvature of two CNTs at their shared interface, that in which the phonons can be more easily radially transferred 
from one to the other. To have a more quantitative understanding of the claim, it is needed to investigate spectral 
density function adjacent CNTs as well as SHC.

Before dealing with spectral properties, it is important to have a precise description of the temperature profile 
of CNTs in each case. Similar to the previous section, in Fig. 8, the temperature profile of the core and outer CNTs 
are presented for both TEC (left) and OEC (right) cases. In bottom row cases that the hot bath is not directly 
connected to the cold one by covalent bonds, the buttle neck in phonon carrier is the svW shared surface between 
the core and outer CNTs. The lowest temperature difference between red and blue curves in OEC structures 
belongs to the I–VI case in which the nanotube curvatures are the same. In TEC cases, this feature is not clearly 
seen, because of the leading role of the core by which most of the heat transferred to the middle of the system. 
As it is seen, the temperature difference between the core and outer CNTs has a minimum value for the I–VI 
case. The same story about the leading role of the core in the TEC case is also valid.

Figure 7.   The heat flux for (a) TEC and (b) OEC heat fluxes for the OEC case. The blue square, the orange 
triangle, and the green circle correspond to the values for the middle of the core right side, the middle of the 
core on the bundle side, and the middle of outer CNTs as demonstrated in the top figure.
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To characterize the difference between the temperature profile of the core and outer CNTs, it is possible to 
calculate a parameter similar to Kapitza resistance at the middle of both TEC and OEC structures. As previously 
discussed33,34, since there is no equilibration between the core and outer CNTs, it is not possible to assign a tem-
perature to the system along z direction, but by averaging over the temperature of the core and outer CNTs, the 
same feature appears. In Fig. 9, the averaged temperature alongside z direction of TEC (left) and OEC (right) for 
all seven structures are presented. These Kapitza like parameters, which can be defined similarly to the Kapitza 
Resistance ( (RK = �T/J) ) is also shown in the same figure. Very interestingly, this kapitza resistance can exhibit 
the lower resistance of the I–VI structure, corresponding to a higher thermal conductance rather than the other 
cases. As support on results presented in Fig. 7, the minimum Kapitza resistance corresponds to the maximum 
thermal conductance of the I–VI structure. As can be seen, by increasing the curvature difference between vary 
the higher Kapitza resistance is achieved.

To have a better vision of phonon transfer, vibrational density of states or velocity power spectra of a portion 
of atoms in each CNT has been calculated (Fig. 10). In this figure, the gray lines are the radial velocity power 
spectrum of the (10,10) case, and the red lines are the same for outer CNTs. Depending on the radius of outer 
CNTs, as much as they are similar to the core, the velocity power spectra have less difference from the core ones 
(10,10). This is evident for less contribution of low frequency (acoustic) phonons, which means the radial (out of 
plane) modes transmit more difficult between core and outer CNTs. To have more insightful pictures from veloc-
ity power spectra, in Fig. 11, the overlap between every two curves of Fig. 10 calculated. The overlap magnitude 
has a maximum for the I–VI case and its trend is similar to the heat flux as shown in Fig. 7.

Similar to the previous case, SHC for these structures also provides nontrivial and insightful pictures. In 
Fig. 12a,b are the SHC for the single and bundle side of the core, for the TEC structure, respectively. Since the 

Figure 8.   The temperature profiles of the core (blue) and outer CNTs (red) for the TEC (top row) and OEC 
(bottom row) structures. From the first (I–IV) to the last ( I–X) column, the curvature of outer CNTs becomes 
smaller.

Figure 9.   The average of the temperature of the core and outer CNTs along z direction (blue curves) for (a) 
TEC, and (b) OEC structures. By definition of the Kapitza like resistance (red curves), for both TEC (left) and 
OEC (right), the higher thermal conductance if I-VI structure can be concluded.
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core is connected to both heat baths, we do not expect a serious deviation between the left and right sides of each 
case. Just small deviation in low frequencies (long wavelengths) corresponds to higher interaction of out of plain 
phonons. This difference is mostly located in 0–10 THz frequencies. The collapse of all curves over almost one 
curve [side SHC (Fig. 12a)], is another insight into the fact that in all structures the major part of the heat is not 
influenced by outer CNTs, and energy flux passes through the core. For Fig. 12c,d cases, the story is completely 
different. The SHC of the single side is almost present an accumulation of phonon carriers pass through shared 
vdW surfaces. Since the core CNT is not connected to the hot heat bath, the power spectral density has been 
considerably suppressed. Similar to previous pictures, the highest magnitude of spectra belongs to I–VI, that 
vibrational modes are the same between the core and outer CNTs. It is worth to mention that the lowest SHC 
belongs to a higher difference between the curvature of the core and outer CNTs, corresponding to the lowest 
overlap magnitudes in the studied cases (Fig. 11).

Figure 10.   (a) Circumferential (in the off-axis direction of the CNT) power spectrum of outer CNTs (red lines) 
in comparison to core CNT(10,10) (gray lines) and (b) z-direction (in the axis direction of the CNT as shown in 
Fig. 1) power spectrum of Outer CNTs (blue lines) in comparison to the core (gray lines).
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Conclusions
In this paper, thermal transport in a CNT bundle, with different varieties of consisting elements and possible 
structures, such as the number of outer CNTs in the bundle, and the difference between the radius of outer CNTs 
and the core have been investigated. These structures cover all common local structures in possible given vdW 
heterostructures, such as a nanotube forest and/or an assembled nanotube structure. To cover all kinds of pos-
sible transport mechanisms, the OEC and TEC cases have been included in simulations, to show when there is 
no completely covalent connected path between the hot and cold sides of the system.

Figure 11.   The overlap area of core CNT and outer CNTs power spectrum in each structure.

Figure 12.   In the top figure, the two tiny red regions schematically show which portion of the core atoms has 
been considered for calculating Spectral Heat Conductance (SHC). In the top row (the TEC cases), the SHC of 
the middle portion of the core on the bundle side (a) and the single side (b) are presented. For OEC structures 
(bottom row), (c,d) exhibit the same calculated values for corresponding cases.
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To emphasize how the vdW contact area or vdW shared surface affects on heat transport, four different 
structures of homogeneous CNT bundles (bundles with the same CNTs) have been studied (Fig. 2a). In OEC 
cases in which any amount of transferred heat from hot (left) to cold (right) bath has to pass through the vdW 
interface, i.e. the area that outer CNTs match to the core, by increasing the vdW interface (from I–III to I–VI), 
the increment of thermal conductance is clearly seen (Fig. 5). In these structures the radius of the outer and the 
core are the same, there is no curvature effect, thus just increasing the interface area that controls total heat flux 
(flux of the core at the single side). But, more interestingly, in the TEC homogeneous system, in which there 
are two different paths for heat to transport from the left to right sides of the system, the core that consisted of 
carbon-carbon covalent bonds, takes care of a considerable amount of thermal conductance. But for the remain-
ing amount of the transfers that pass from outer CNTs to the core, we have a complicated feature. These vdW 
interactions between outer CNTs and the core lead to a negative effect on the individual thermal conductance 
of the core (triangles in Fig. 5a), that it can be considered as the result of inter-layer vdW interactions which 
lead more phonon scattering; this can be considered as the source of small decrement. But, the total conduct-
ance, the combination of outer CNTs to the core plus intrinsic transport by the core, shows increasing thermal 
conductance from I–III to I–VI case.

One major result of the paper was to clarify how a covalent direct path between hot and cold heat baths, affects 
the feature of heat transport. This understanding came from the comparison of the TEC and OEC structures. But 
the other key parameter in heat transport is the curvature difference between outer CNTs and the core. Due to the 
mismatch between the vibrational density of states of CNTs with different radii (curvatures), this also needs to 
be considered for understanding the transport mechanism in these heterostructures. If the radius of outer CNTs 
are larger, or smaller than the core, the maximum number of outer CNTs changes. Thus, to make a clear overview 
of the whole process, all cases have been studied. For a larger outer CNT radius, the number of outer CNTs is 
smaller, but the interface is larger. But, this difference leads to smaller thermal conductance in the system. For 
CNTs with smaller radii, the outer CNTs are more than homogeneous case, but the vibrational difference leads 
to more thermal resistance in the system. This lead to a clear conclusion: if we consider the system, similar to 
two side system with an artificial kapitza resistance between the left and right side, the lower resistance belongs 
to the homogeneous case, I–VI, and the rest of the case, with larger CNT radii (IV and V) and even smaller ones 
(VII, VIII, IX, and X), thermal conductance of the system is smaller.

The heat flux in the bundled CNTs is maximum, by increasing the number of outer CNTs to 6 and decreas-
ing their curvature or radius difference. By simulating different systems with a different number of outer CNTs 
with a variety of radius, this result has been concluded. Frequency-dependent analysis, including velocity power 
spectra as well as SHC, supported this conclusion.

These results provide an insightful understanding of heat transport in vdW nanostructures, more specifi-
cally important in nanoelectronic devices as well as systems in which the asymmetry of transport has crucial 
importance.

Data availability
The data sets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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