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Modeling a semi‑optimal 
deceleration of a rigid body 
rotational motion in a resisting 
medium
F. M. El‑Sabaa1, T. S. Amer2*, A. A. Sallam1 & I. M. Abady3

This paper studies the shortest time of slowing rotation of a free dynamically asymmetric rigid body 
(RB), analogous to Euler’s case. This body is influenced by a rotatory moment of a tiny control torque 
with closer coefficients but not equal, a gyrostatic moment (GM) due to the presence of three rotors, 
and in the presence of a modest slowing viscous friction torque. Therefore, this problem can be 
regarded as a semi-optimal one. The controlling optimal decelerating law for the rotation of the body 
is constructed. The trajectories that are quasi-stationary are examined. The obtained new results are 
displayed to identify the positive impact of the GM. The dimensionless form of the regulating system 
of motion is obtained. The functions of kinetic energy and angular momentum besides the square 
module are drawn for various values of the GM’s projections on the body’s principal axes of inertia. The 
effect of control torques on the body’s motion is investigated in a case of small perturbation, and the 
achieved results are compared with the unperturbed one. For the case of a lack of GM, the comparison 
between our results and those of the prior ones reveals a high degree of consistency, in which the 
deviations between them are examined. As a result, these outcomes generalized those that were 
acquired in previous studies. The significance of this research stems from its practical applications, 
particularly in the applications of gyroscopic theory to maintain the stability and determine the 
orientation of aircraft and undersea vehicles.

The problem of RB dynamics has aroused the interest of scientists to deal with it, and it is regarded as one of the 
important problems that have been extensively researched, due to its wide range of applications in everyday life. 
After the works of great scientists like Euler, Lagrange, Kovalevskaya, and others, this problem became clear due 
to the fact that it has been reduced to quadratures according to their cases. They pointed out the first integrable 
cases in the presence of some constraints on the position of the center of mass and values of the main moments 
of inertia1.

The last decades have witnessed a great interest in investigating the optimal deceleration of this problem, 
whether in studying integrable cases2–4, achieving approximate solutions using many perturbation methods5–21, 
or investigating its optimal deceleration22–35. In2, the classical Kovalevskaya top is generalized to a heavy motion 
of a gyrostat when the gyrostatic moment (GM) is applied and a generalization of Burn’s problem is found. 
Whereas, the possibility of obtaining the fourth-first integral for the RB motion through a simple procedure is 
investigated in3. The novel integrable case for the dynamics of the RB problem, which generalizes the prior cases, 
is discussed in4. This case can be described as the movment of magnetized gyrostat containing an electric charge 
when three classical fields are combined axially.

The approximate solutions of the RB problem are gained in many literatures e.g.5–17, using various pertur-
bation approaches such as the methods of the small parameter (MSP), averaging (MA), Krylov–Bogoliubov-
Mitropolsky (MKBM), and others36,37. In5, these solutions are obtained using the MSP when the motion is consid-
ered in a gravitational field and are generalized in6,7 to gain valid solutions at any value of the problem’s frequency 
when the Newtonian field and one of the third component of the GM are kept in mind. The same method is 
used to deal with the rotatory motion of a RB about just one fixed point when the center of mass is shifted from 
the dynamic axis of symmetry by a small quantity under the influence of gravitational field8, Newtonian field9, 
GM9–11, and recently by electric field11. The periodic analytic solutions are achieved for irrational frequency cases. 
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The MA is used in a variety of scientific publications, e.g.12–14 to acquire the averaging system of the controlling 
one when the rotation of the body is investigated under the action of various forces and moments. The MKBM 
is used in15 and16 to acquire the solutions of 3D rotatory motion of asymmetric RB in a Newtonian field of force 
and in an electromagnetic field, respectively. Where as in17, the authors investigated the same motion when the 
body’s inertia ellipsoid is near to the body’s inertia rotation.

The governing system of a RB, in two various fields, for a case similar to Kovalevskaya is transformed to the 
plane motion in18 and19, respectively. Therefore, the author gained the periodic solutions of the reduced systems. 
Meanwhile, the impact of the GM on the RB motion is investigated in20 when Kovalevskaya’s conditions are 
applied. Two distinct methodologies are used in21 to examine the periodic solutions for the Hamiltonian func-
tion that governs the sextic galactic potential function. Some classes of various periodic orbits are presented 
through some numerical examples.
It is known that the nonlinear differential equations are thought to be a useful indicator of regulating feedback 
devices that impact the instantaneous state of the producing system’s control signal. When these systems experi-
ence an impulsive disruption, we observe that these devices immediately restore the system to its equilibrium 
condition. These controllers are commonly employed in aircraft, spaceships, submarines, and a variety of other 
control systems. The progress of study in dynamics and control of bodies’ motion around a stationary point is 
going down the path of accounting for the reality that these bodies aren’t completely rigid, but they’re very close 
to being perfect models. Due to the rising precision demands of space exploration, gyroscopes, and other tech-
nologies, It’s vital to look into the consequences of numerous deviations from perfection, in which the impact 
of defects can be discovered using the perturbation approaches36 in nonlinear mechanics.

It’s worth noting that the rotation of quasi-rigid bodies without certain effective moments has never been 
controlled from the standpoint of impact forces at any given instant. In22,23, the authors used control steps and 
allowed themselves to use approximate approaches without taking into account the faults that resulted. Whereas 
in24, the author investigated the free movements of a symmetric body from the viewpoint of time-optimal 
deceleration. They supposed that the body has a globular chamber filled with liquid of high viscosity with a slow 
moment due to viscous frictional resistance. Whenever this model generalizes the prior works in22,23. Moreover, 
the works in25 and26 are extended to obtain optimal slowing of a confined body with torque and viscous friction 
that retard the body, respectively.

A minimum time for the movement of a RB connecting with a viscous elastic element as a central mass 
that is linked to a position on the axis of symmetry as a damper is studied in27. An optimal control technique 
is implemented, for the slowing motion of a RB rotation in which the associated time and pathways phases are 
estimated. However, in28, a semi-optimal control law is established to decelerate the asymmetric RB rotation 
under the influence of a tiny control torque in addition to the generalization of the examined work in25. The 
approximate solutions of a semi-optimal deceleration of a symmetric RB rotation are studied in29 and30, where 
the body is assumed to have a moving point mass at a fixed location on its dynamic symmetry axis. Because of 
the medium’s resistance, the authors assumed that the body is influenced by a restraining moment.

Controlling the bodies’ motion about a given fixed point necessitates that we take into account the fact that 
these bodies aren’t perfectly rigid, but they’re close to being perfect models. The influence of different deviations 
from perfection has become increasingly important in space exploration, gyroscopes, and other domains due to 
increasing accuracy conditions. The passive motions of stiff solid objects in a resistance medium are examined 
in31–35. The crucial fundamental issue of controlling the rotation of semi-solid bodies (the body has a hollow 
filled with viscous fluid, whose impact is measured by the internal torque which is generated by the viscosity of 
the fluid) utilizing focused torque has attracted scant attention.

The problem of damped rotatory free motion of a RB is studied in38. It is supposed that the body has a spheri-
cal chamber filled with a highly viscous liquid, as well as a movable mass point that is attached to the body by 
an elastic linkage. The law of optimal control is thus determined. In39, the author examined how to decelerate 
the rotational motion of a free RB experiencing a tiny retarding force caused by a linearly resistive medium. The 
mass of the body is considered to be located on the body’s symmetry dynamic axis. It is investigated in40 how 
to decelerate the rotatory motion of a symmetric RB rotation over time in a manner that is quasi-optimal. The 
body is supposed to have a point mass attached via a potent damper. In addition to a minor control torque with 
an ellipsoidal domain, the medium exerts a little linear resistive torque on the body which is related to its angular 
momentum. Using the MA, an asymptotic solution based on an approximate synthesis of control is presented, 
and a numerical investigation has been carried out. Utilizing dimensionless variables, the time-optimal slowing 
of asymmetric RB is investigated in41. For various values of the system’s parameters, a hodograph vector of the 
angular momentum is represented in a space. It is determined that specific ratios between the problem’s variables 
are required for the body’s optimal deceleration.

One of the best ways of controlling dynamical systems is the theory of Lyapunov42. The following is a list of 
the primary benefits of the strategy. This theory is realistically required when working with uncertain systems, 
especially nonlinear ones with time-varying parameters, and it suggests methods that are insightful and practical. 
However, when applied to parameters with slow time variations or continuous unknown parameters, the theory 
is conservative. Therefore, we propose that the total energy of a system is frequently represented by the Lyapunov 
function, in which its derivative gradually decreases and brings the system to equilibrium.

This paper addresses the quasi-optimality deceleration for the rotatory motion of an asymmetric RB in a 
resistive medium under the impactness of the GM due to the presence of three rotors on the body’s principal 
axes, besides the activity of a bounded control torque with closer coefficients. The appropriate control law for the 
body’s rotation is established. The quasi-stationary trajectories are investigated. The stabilization of the RB with 
internal degrees of freedom is investigated. The slowdown rotations a nearly spherical RB influenced by a gener-
ated torque from the medium’s linear resistance are examined. The regulating system of motion is realized in its 
dimensionless form. For various values of the GM components, the kinetic energy and the angular momentum 
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functions, as well as the square module, are depicted. The terms of “optimal” and “semi-optimal” slowing are 
different when different values of the controlled torque dimension are selected. The effect of a tiny perturbation 
on the body’s motion is explored, and the results are compared with the unperturbed case. The acquired new 
results are graphed to determine the favorable impact of the acted GM on the body’s motion. In the absence 
of the gyrostat moment’s effect, we observed that our results are consistent with those of previous studies28, in 
which the discrepancies between them are evaluated. Therefore, the acquired results were more general than 
those obtained in earlier studies. The importance of this study arises from its practical applications, particularly 
in the use of gyroscopic theory to maintain stability and determine the position of aeroplanes and underwater 
vehicles. The sketch diagram of the considered problem is presented in Fig. 1.

Problem’s formulation
In this section, we proceed to a full illustration of the investigated problem. Therefore, we look at the rotary 
motion of an asymmetric RB of mass  m around a fixed point, say O . This point is considered to be the origin of 
two frames; the first one is fixed ξηζ and the second xyz is stationary in the body and rotates with it, see Fig. 2. 
Three rotors are acted on the body to produce the GM ℓ whose projections (ℓ1, ℓ2, ℓ3) are oriented along the 
body’s principal axes (Ox,Oy,Oz) , in addition to a tiny control torque. Euler’s angles are represented by ψ (the 
precession’s angle),θ(the nutation’s angle), and ϕ(the proper rotation’s angle). The line On is the intersection of 
the two planes Oxy and OXY  , in which it is referred to as a line of nodes.

We consider a RB that is dynamically asymmetric and has moments of inertia that fulfill the constraints 
A > B > C . Referring to the considered approach in23, the regulating equations of the rotational motion of the 
body according to the Euler’s case can be represented as follows1,23,33

where ω = (p,q,r) is the body’s angular velocity, whose projections on the axes Ox,Oy and Oz are p, q and r , 
respectively, M = G + ℓ denotes a body’s entire angular momentum, in which G = Jω , J = diag (A, B, C) is the 
body’s inertia tensor, and dots indicate the derivatives regarding time t  . Then, one writes

In (1), Mu represents the control torque’s vector and Mr denotes the torque of dissipation that is assumed 
proportionally with the angular momentum; i.e.

where �′ refers to a constant coefficient that depends on the medium’s properties. The medium’s resistance is 
expected to be minimal, with a tiny order of magnitude, i.e., �′ = ε� where ε << 1 is very tiny. In this case, 
ε�Mj (j = 1, 2, 3) is the momentum’s projections on the major principal axes of body inertia33.

(1)Ṁ + ω ×M = Mu +Mr
,

(2)M = |M| = [(G1 + ℓ1)
2 + (G2 + ℓ2)

2 + (G3 + ℓ3)
2]1/2.

(3)Mr = −�
′ M,

Figure 1.   Depicts the controlled system’s description.
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It is supposed that the control torque Mu has a tiny magnitude and can be represented in terms of order of ε , 
in which its components are expressed by the products of bj which is a constant with a torque dimension, by the 
tiny parameter ε and by the nondimensional control functions uj that can be estimated. Therefore, we can write

The outcomes of ε bj (j = 1, 2, 3) describe the control system’s efficiency in relation to the corresponding 
body’s principal axes. Therefore, the governing equations of motion (1) can be rewritten as follows

In view of the equations of system (5), it is necessary to achieve the best possible controls uj = u(t, p, q, r) 
which fulfil the following constraint

and (based on the above system) from a given initial state ω (t0) = ω0 into the case of a rest state ω (T) = 0 in 
a minimum amount of time.

In the case bj = b > 0 (j = 1, 2, 3) , in which b is a time-dependent function, then the best control can thus 
be expressed as uj = −Mj

/

M . Here, uj represent the projections of the vector u on the body’s principal axes23,43. 
This control can be characterized as a semi-optimal control if bj are near to each other as in23,44.

For applications, it’s interesting to look into the rigid bodies’ motions with a basic control described as 
follows23,44

Incorporating (7) into (5) to produce a complete controlling system of motion related to projections on the 
inertia principle axes; thus, the kinematic relationships are not written out here.

The problem’s proposed solution.  In this section, we investigate the solution of the semi-optimal slow-
ing problem. To achieve this purpose, bearing in mind Eqs.  (7) and multiplying equations of system (5) by 
M1, M2 , and M3 , respectively. Adding the result, to yield the dot product (Ṁ ·M) . Taking into consideration the 
derivative’s property of the dot squared product Ṁ ·M = d(M2)

/

(2dt) =M Ṁ , then multiplying the result by 
(1/M) to get the following scalar equation

(4)Mu
j = ε bj uj .

(5)

Ṁ1 +M3q−M2r = εb1u1 − ε�M1,

Ṁ2 +M1r −M3p = εb2u2 − ε�M2,

Ṁ3 +M2p−M1q = εb3u3 − ε�M3.

(6)u21 + u22 + u23 ≤ 1,

(7)Mu
j = ε bjuj , uj = −Mj

/

M; j = 1, 2, 3.

(8)Ṁ = −ε�M −
ε

M2
(b1M

2
1 + b2M

2
2 + b3M

2
3 ).

Figure 2.   Portrays the motion of the body.
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Based on the gyrostat’s kinetic energy H2 and its first derivative25, we can express them in the following forms

If ε = 0 , then we have the unperturbed case and therefore, the body’s rotation corresponds to the case of 
Euler–Poinsot. Moreover, the Euler’s angles θ , φ , and ψ are time-dependent, while the parameters M and H are 
constants. On the other hand, for the perturbed case ( ε  = 0 ) Euler’s angles are given in terms of fast variables, 
whereas M and H are expressed in terms of slow variables. As explained earlier, we investigate the problem’s state-
ment of slowing rotation where there are no angle variables that can be determined by integrating the dynamic 
and kinematic equations simultaneously.

Now, we analyze the motion described by the constraint 2AH ≥ M2 ≥ 2CH , that corresponds to the vector 
of angular momentum’s paths which surrounds the greatest axes of the inertia moment Oz . The elliptic function 
module k31 can be determined as follows:

Solving Eq. (2) and the first one of Eq. (9) together, to get

where

Referring to the above, the formula of the square module function k is as follows

Therefore, the value of k that describes the elliptic modulus remains constant for the unperturbed case, and 
it has a one-of-a kind relationship with angular momentum M and kinetic energy H.

From45 we can get

Making use of Eq. (2) and the first one of Eq. (9) to obtain

where

Therefore, one can write the derivatives of M and H as follows

We insert (p1, q1, r1) =
(

p+ ℓ1
A , q+ ℓ2

B , r +
ℓ3
C

)

 , where the projections p, q, and r of ω from the unperturbed 
motion of Euler–Poinsot45, into the right sides of (14) and then average across the duration of this motion to 
obtain the averaged first approximation system. The same abbreviation for the slow variables M and H can be 
used. Consequently, for τ = ε t ∈ [0,T] , we can get

(9)
H =

1

2
[Ap2 + Bq2 + Cr2 + 2(ℓ1p+ ℓ2q+ ℓ3r)],

Ḣ = −εH −
ε

M

(

b1

A
M2

1 +
b2

B
M2

2 +
b3

C
M2

3

)

.

(10)
([p+ (ℓ1/A)]

2) =
B(B− C)

A(A− C)
{f 2 − [q+ (ℓ2/B)]

2},

([r + (ℓ3/C)]
2) =

B(B− A)

C(C − A)
{g2 − [q+ (ℓ2/B)]

2},

f 2 =
M2 − 2CH − L1

B(B− C)
, g2 =

M2 − 2AH − L2

B(B− A)
,

L1 = (C
/

A)ℓ21 + (C
/

B)ℓ22 + ℓ23, L2 = ℓ21 + (A
/

B)ℓ22 + (A
/

B)ℓ23.

(11)k2 =
f 2

g2
=

(B− C)(2AH + L1 −M2)

(A− B)(M2 − 2CH − L2)
, 0 ≤ k2 ≤ 1.

(12)

(

p+
ℓ1

A

)2

= p2
1
=

M2 − 2CH

A(A− C)

E(k)

K(k)
,

(

q+
ℓ2

B

)2

= q2
1
=

2AH −M2

B(A− B)
(1−

E(k)

K(k)
),

(

r +
ℓ3

C

)2

= r2
1
=

2AH

C(A− B)k2

(

E(k)

K(k)
+ k2 − 1

)

.

(13)
M2

2H
=

β1

β2
,

β1 = A(B− C)+ (A− C)Ck2,

β2 = (B− C)+ (A− B) k2.

(14)
Ṁ = −ε�M −

ε

M2
(b1A

2p2
1
+ b2B

2q2
1
+ b2C

2r2
1
),

Ḣ = −εH −
ε

M
(b1Ap

2
1
+ b2Bq

2
1
+ b3Cr

2
1
).
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where

where K(k) and E(k) represent the first and second kinds of full elliptic integrals46, respectively. According to the 
first equation in (15), the body’s kinetic energy H progresses under the effect of drag’s medium, control torque, 
and the GM ℓ . The expression’s value of the brackets located in the right side of the first equation of (15) is non-
negative for A > B > C owing to the inequalities46

Since H > 0 , we find dHdτ < 0 . Then H represents a Lyapunov function42 for any k2 ∈ [0, 1][0, 1] ; H is always 
decreasing. We can also demonstrate the decrease of the angular momentum.

Differentiating the module formula (12) and taking into account the derivatives in (15), to yield the follow-
ing differential equation

Let L2 = M2−2CH
2AH−M2 L1 , then Eq. (17) can be rewritten as follows

Examination of quasi‑steady kinematics
This section discusses a differential singularity in the present work as it relates to other works; the impact of 
control torque, and dissipating forces on the evolution of k , the time histories of the deceleration as a function 
of the magnitude of b , and the regions of semi-stationary solutions are determined.

It must be noted that there is an essential singularity in28 when M → 0 , in which the authors examined the 
problem in the absence of gyrostatic moment. Therefore, the terms L1 and L2 don’t appear in the same work, and 
coqusequently, the singularity has been arisen. In the present work, the singularity does not exist at all, since it 
is impossible M2 = (AL2 − CL1)

/

(A− C) . The reasone is due to the presence of the GM, that appears in the 
terms L1 and L2 , which reinforces the importance of its influence on the body’s dynamical behavior. For the case 
k2 = 1 which is equivalent to 2BH = M2 , we can find that it is correlated to the separatrix for the Euler–Poinsot 
motion. Equation (14) characterizes the averaging motion of the angular momentum vector’s terminal on a 
sphere with a radius M.

The control torque as well as the torque generated by the forces of dissipation have an impact on the evolu-
tion of k2 . The stationary fixed points k2∗ for the differential Eq. (14); as well as k2∗ = 0 and k2∗ = 1 , have the form

It’s important to note that, the motion of M  is often constituted exclusively of the motion along the path of 
Euler–Poinsot and decreases in the length of M  with time for the the RB semi-stationary motions that match 
the stationary locations k2∗.

In the case of dimensionless quantities of k2∗ the next notation can be introduced

and then (18) becomes

This means that

(15)

dH

dτ
= −2�H −

M

α

{

b1(B− C)
E(k)

K(k)
+ b2(A− C)

[

1−
E(k)

K(k)

]

+ b3(A− B)

[

E(k)

K(k)
− K2 − 1

]}

,

dM

dτ
= −�M −

1

α
{b1A(B− C)

E(k)

K(k)
+ b2B(A− C)W(k)+ b3C(A− B)[K2 −W(k)]},

α = A(B− C)+ C(A− B)k2, W = 1−
E(k)

K(k)
,

(16)(1− k2)K(k) ≤ E(k) ≤ K(k).

(17)

dk2

dτ
= (A− B)−2(M2 − 2CH − L2)

−2{(A− B)(B− C){−2�[(M2 − 2CH − L2)

× (2AH −M2)− (2AH + L1 −M2)(M2 − 2CH)] −
2M2

α1
(A− C)[(A− B)

× (M2 − 2CH − L2)(b2W + b3(k
2 −W)− (B− C)(2AH + L1 −M2)(b1

E

K
+ b2W)

]}}

.

(18)
dk2

dτ
=

2M(A− C)

[M2(A− C)− AL2 + CL1]

[

b1k
2 E

K
+ b2W(k2 − 1)+ b3(W − k2)

]

.

(19)k2∗ = (b2 − b3)W(k∗)[(b1 − b2)
E(k∗)

K(k∗)
+ (b2 − b3)]

−1.

(20)κ1 =
b1

b3
, κ2 =

b2

b3
,

(21)k2∗ = (κ1 − κ2)W(k∗)

[

(κ1 − κ2)
E(k∗)

K(k∗)
+ (κ2 − 1)

]−1

.
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Based on the previous formula (22), one can conclude that it is a linear function when the requirements 
κ1 > 0 and κ2 > 0 are satisfied. If the second one is met, then we can get

It is clear that, the right hand side of the previous inequality (23) will be positive for any value of k2∗ , if the 
inequalities (16) are holded. As a result, for all κ2 fulfilling the inquality (23), the required condition must be 
satisfied too. The essential conditions for the presence of semi-stationary solutions for κ1 and κ2 can be obtained 
through satisfying the inquality 0 < k2∗ < 1 in the left hand side of Eq. (21). There are two zones where in quasi-
stationary solutions can be found, see Fig. 3.

It is noted that the establishment of these zones can be achieved as follows; the boundary lines are line 2 
which matches to κ2 = 1 , line 3 that matches to κ1 = 1 , and line 4 which is specified by the following equation

The inspection of Fig. 3 shows that, line 1 is drawn according to Eq. (22) at k2∗ = 0.4 . Moreover, it has been 
observed that for some certain values of the dimensionless parameters for the projections κ1 and κ2 of the control 
torque, a quasi-stationary movment occurs, but not for all, in which the zones defined earlier can have linear 
dependence (22).

Consider the equation that governs the system’s variation of the angular momentum (15), as well as Eq. (18).
We investigate the RB’s deceleration time as a function of the magnitude of bj (j = 1, 2, 3) for the control torque. 

Figure 4 is graphed at A = 10 kg m2,B = 8 kg m2, C = 5 kg m2,ℓ1 = 40 kg m2 s−1, ℓ2 = 30 kg m2 s−1, and 
ℓ3 = 20 kg m2 s−1, in addition to the intial values of the angular velocity p0 = 0.01 rad s−1, q0 = 0.03 rad s−1, 
and r0 = 0.03 rad s−1. The potted curve describes the coefficient of the control torque, it can be observed that 
the function has an exponential form.

(22)κ1 = (κ2 − 1)
[W(k∗)+ k2∗F(k∗)− k2∗]

k2∗F(k∗)
+

[k2∗ −W(k∗)]

k2∗F(k∗)
; F(k∗) =

E(k∗)

K(k∗)
.

(23)κ2 >
W(k∗)− k2∗

W(k∗)+ k2∗F(k∗)− k2∗
.

(24)κ1 =
1

F(k∗)

[

1− κ2

(

1−
E(k∗)

K(k∗)

)]

.

Figure 3.   Sketches the areas of quasi-stationary solutions.

Figure 4.   Explains the control torque’s coefficients.
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The greatest value of this curve is identical to the lowest value of b and a gradual decrease of the curve is 
observed till the end of the range of b . It is worthwhile to mention that the T = T(bj) function defined in26 has 
the same behavior to some extent.

Numerical results
This section aims to solve the systems of Eqs. (15) and (18) numerically in accordance with the different values 
of gyrostatic moment and control torque. To accomplish this purpose, we are going to transform the mentioned 
system to its dimensionless form by using the system’s parameters like the deceleration time T , the intial value 
of angular momentum value M0 , and the control torque’s cefficient b3 . Then, we can write.

Based on The system equations in the form of dimensionless is

Consider the following identifying number

which specifies the fundamental process of the RB’s deceleration under the influence of a control torque in the 
shortest or minimum possible period T.

Referring to the above dimensionless forms and definition of σ , the dimensionless form of the system of 
Eqs. (15) and (18) has the form

where

The integration was carried out for the beginning circumstances k2(0) = 0.99 and M̃(0) = 1 ; in which the 
initial value of the kinetic energy can be calculated using the next equation

It must be mentioned that the variation of k2 can be described by the third Eq. (27). Thus, the right hand side 
of the mentioned equation must be negative for the initial circumstance k2 ≈ 1 . Moreover, in the bracket, the 
third term is negative. Consequently, the below condition

for the control torque’s dimensionless coefficients must be satisfied.
To achieve the numerical solution of the system (27), we can take into account the dimensionless form (25) 

beside the following data

In addition to the selected values of the GM ℓ components, the values of the dimensionless coefficients of 
the torques (κ1, κ2) , and the identifying number σ , where the RB’s deceleration is quasi-optimal. Deceleration 
can occur in a variety of ways.

It is worthy to mention that the numerical analysis was performed on the identical mass geometry and resis-
tive medium of the RB. The influence of the components of the GM on the kinetic energy H̃ , the angular moment 
M̃ , and the square module k2 of the RB motion is examined. Therefore, two of them will be constant values 
while the other component varies. Figures 5, 6, and 7 are calculated at ℓ2 = 150 kg m2 s−1, ℓ3 = 50 kg m2 s−1,
κ1 = 0.5, κ2 = 0.8 since b1 = 5, b2 = 8, b3 = 10 and σ = 1.3 when the first projection of the GM has the various 
values ℓ1(= 100, 150, 200) kg m2 s−1 . These figures show the changes in the body’s functions H̃ , M̃, and k2 with 
time in the presence of the applied torque and moment. It is clear that the behavior of these functions during 
the examined time interval has a decay manner for the investigated case of quasi-optimal slowing motion of 
the RB. An examination of the curves in Figs. 5 and 6 reveals that the inner curvature of these curves increases 

(25)
t̃ =

τ

T
, �̃ = �T , H̃ =

H

b3
, Ã =

A

M0T
, B̃ =

B

M0T
,

C̃ =
C

M0T
, M̃ =

M

M0
, α = M2

0 T
2 α̃, L̃j =

Lj

M2
0

(j = 1, 2).

(26)σ =
b3T

M0
,

(27)

dH̃

dt̃
= −2�̃H̃ −

M̃

α̃

{

κ1(B̃− C̃)
E(k)

K(k)
+ κ2(Ã− C̃)

[

1−
E(k)

K(k)

]

+ (Ã− B̃)

[

E(k)

K(k)
− k2 − 1

]}

,

dM̃

dt̃
= −�̃M̃ −

σ

α̃

{

κ1Ã(B̃− C̃)
E(k)

K(k)
+ κ2B̃(Ã− C̃)W(k)+ C̃(Ã− B̃)[k2 −W(k)]

}

,

dk2

dt̃
=

2σ

[M̃2(Ã− C̃)− ÃL̃2 + C̃L̃1]

{[

κ1k
2 E

K
+ κ2W(k2 − 1)+ (W − k2)

]}

,

α̃ = Ã(B̃− C̃)+ C̃(Ã− B̃)k2.

(28)H̃(0) =
(B̃− C̃)(L̃1 − M̃2)− k2(Ã− B̃)(M̃2 − L̃2)

2σ α̃
.

(29)κ1 <
κ2(1− k2)W + k2 −W

k2F
,

A = 35 kg m2, B = 22 kg m2, C = 16 kg m2, p0 = 0.01 rad s−1,

q0 = 0.02 rad s−1, r0 = 0.03 rad s−1, � = 0.2.
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Figure 5.   Shows the change of the kinetic energy H̃ over time when (ℓ2, ℓ3) = (150, 50) kg m2 s−1 at 
ℓ1(= 100, 150, 200) kg m2 s−1.

Figure 6.   Displays the change of M̃ over time when (ℓ2, ℓ3) = (150, 50) kg m2 s−1 at 
ℓ1(= 100, 150, 200) kg m2 s−1.

Figure 7.   Demonstrates the variation of k2 over time when (ℓ2, ℓ3) = (150, 50) kg m2 s−1 at 
ℓ1(= 100, 150, 200) kg m2 s−1.
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with the increase of  ℓ1 values. These curvatures can be distinguished with the graphed curves of Fig. 6 than the 
curves of Fig. 5, which highlights the significance of the GM and the control torque the motion of the body. 
This means that, the process of deceleration can occur at a variety of different values of ℓ1 . On the other hand, 
the curvature of the time variation of k2 seems to be outer and decreases as the value of ℓ1 rises, see Fig. 7. The 
increasing or decreasing of the curve’s curvature, whether concave or convex, is due to the mathematical forms 
of the represented functions as in the system of Eq. (27).

It is worthwhile to mention that Figs. 8, 9, and 10 are calculated at ℓ1 = 200 kg m2 s−1, ℓ3 = 50 kg m2 s−1,
σ = 1.3,κ1 = 0.5, and κ2 = 0.8 where b1 = 5, b2 = 8, b3 = 10 when ℓ2 has the different selected values 50, 100 
and 150 kg m2 s−1. It is noted that curvature of the functions of kinetic energy H̃ , angular momentum M̃ , and the 
square module k2 curves increase with the increase of ℓ2 that mean the time of the optimal deceleration of RB is 
increasing. The function H̃ is uniformly goes way down in the quasi-optimal duration of time t̃ in all numerically 
examined circumstances when ℓ2 has the above considered values, as seen in Figs. 8 and 9. In other words, the 
slowing process can occur at a range of various values of ℓ2 . A closer look at the curves of Fig. 10 explore that 
the larger of the control torque yields faster deceleration of the RB, and the plots become more complex, with 
concave and convex portions plainly visible. Moreover, the convexity of the curvature increases with the increase 
of the second projection of the GM on the corresponding principal axis.

Figures 11, 12, and 13 exhibit the time dependent variation of the kinetic energy H̃ , angular momentum M̃ , 
and the square module k2 at (ℓ1, ℓ2) = (200, 150) kg m2 s−1 when ℓ3(= 50, 100, 150) kg m2 s−1 in addition to the 
above considered values of the parameters. It is clear to see from the included curves in Fig. 10 that the increase 
of ℓ3 values yields an increase of the curvature of H̃ which reveals the good influence of these components of the 
GM as well as the other two components. This function decreases to its zero during the time interval (0.8, 1] and 
then it behaves a monotonically decreasing when t̃ ∈ (1, 6] . After that the deceline of the curves becomes sharp 
during the interval (6, 10] . The fast slowing of the curves describing the variation of the function M̃ with time is 
observed when ℓ3 increases as drawn in Fig. 12. The intial values of M̃ increase with the increasing of ℓ3 values 
and the deceleration become faster, while the curvature of the convex curves increases with the decrease of these 
values. The curvature of the curves included in Fig. 13 decreases with the increase of ℓ3 values.

It is important to note that, when the gyrostatic moment vanishes, i.e., ℓ ≡ 0 , it violates the elliptic condi-
tion, and we can’t draw any plots to make a comparison with the results in28 for the used initial values. In other 

Figure 8.   Describes the the kinetic energy H̃(t̃) when ℓ1 = 200 kg m2 s−1 and ℓ3 = 50 kg m2 s−1 at 
ℓ2(= 50, 100, 150) kg m2 s−1.

Figure 9.   Exhibits the solutions M̃(t̃) when ℓ1 = 200 kg m2 s−1 and ℓ3 = 50 kg m2 s−1 at 
ℓ2(= 50, 100, 150) kg m2 s−1.
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Figure 10.   Exhibits the change of k2 over time when ℓ1 = 200 kg m2 s−1 and ℓ3 = 50 kg m2 s−1 at 
ℓ2(= 50, 100, 150) kg m2 s−1.

Figure 12.   Demonstrates M̃(t̃) when (ℓ1, ℓ2) = (200, 150) kg m2 s−1 at ℓ3(= 50, 100, 150) kg m2 s−1.

Figure 11.   Illustrates H̃(t̃) when (ℓ1, ℓ2) = (200, 150) kg m2 s−1 at ℓ3(= 50, 100, 150) kg m2 s−1.
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words, in the presence of ℓ1, ℓ2, and ℓ3, the condition 0 ≤ k2 ≤ 1 holds, while it isn’t satisfied in the absence of 
the gyrostatic moment as in28 and the solutions will be imaginary. This confirms the importance of the effect of 
the gyrostat moment on the problem under study.

The numerical computations for the computed values of the dimensionless components of the control torque 
κ1 and κ2 are performed when the identifing number σ has different values. Therefore, Figs. 14, 15, and 16 are 
drawn at σ = 1.3 when ℓ1, ℓ2, and ℓ3 have the values 200, 150, and 50, respectively. Here, the values of (κ1, κ2) 
are (0.75, 0.9), (0.8, 1), and (0.89, 1.11) . The corresponding values of these figures for the torques  (b1, b2, b3) are 
(15, 18, 20) , (20, 25, 25) , and (20, 25, 25) , respectively. When κj (j = 1, 2) increase, the curvature of the plotted 
curves of the kinetic energy function increases, as seen in Fig. 14. Moreover, the first values of them produce an 
almost linear curve. On the other hand, the curves of the functions of angular momentum coincide with each 
other to some extent, as graphed in Fig. 15, while the plotted curves of k2 are characterized for the values of κ1 
and κ2 as observed in the curves of Fig. 16.

Curves of Figs.  17, 18, and 19 are calculated at (κ1, κ2) = (0.89, 1.3) , (κ1, κ2) = (0.76, 1.25) and 
(κ1, κ2) = (0.89, 1.3) , respectively. The corresponding values of these figures for the torques are 
(b1, b2, b3) = (15, 18, 20), (b1, b2, b3) = (15.2, 25, 20), and (b1, b2, b3) = (16, 25, 18), respectively. Moreover, 
σ = 1.8 and the same considered values of ℓ1, ℓ2, and ℓ3 in the previous three figures, are taken into account. 
These figures explore the temporal histories of the functions H̃ , M̃, and k2 . When Figs. 14, 15, 16 are compared 
with Figs. 17, 18, 19, we can see the curves of Figs. 17, 18, 19 are more distinguished than the included curves 
of Figs. 14, 15, 16. This distinction between these curves is due to the change of the identifying number σ which 
reveals the significance of this number.

Figure 13.   Describes the time history of k2 when (ℓ1, ℓ2) = (200, 150) kg m2 s−1 a 
ℓ3(= 50, 100, 150) kg m2 s−1.

Figure 14.   Depicts the temporal history of H̃ at σ = 1.3.
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The influence of various values of σ number is drawn in Figs. 20, 21, and 22 for the functions H̃ , M̃, and k2 , 
respectively. These curves show the numerical computations of the system (26), in which there is no variation of 
the kinetic energy curves with the various values of σ , see Fig. 20. Whereas the functions of angular momentum 
and square module are varied over the used time intervals, as seen in Figs. 21 and 22. The time of deceleration 
decreases with the increase of the values of σ.

Figure 15.   Depicts the temporal history of M̃ at σ = 1.3.

Figure 16.   Portrays the temporal history of k2 at σ = 1.3.

Figure 17.   Reveals the variation of H̃ with t̃ at σ = 1.8.
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Impact of a tiny perturbation
This section presents a sensitivity analysis to study the impact of a tiny perturbation and to examine the robust-
ness of the model. In47, the authors investigated the optimal slowing of an asymmetric body’s rotations in a 
resistant medium

In that study, the time change of the angular momentum vector’s magnitude and the kinetic energy of RB 
are found analytically. The solution of system (27) in the presence of the circumistantes (30) yields results that 
are in convergence with the obtained ones in47. Now, let’s examine how these functions behave when the control 
torque coefficients are varied by a tiny variation. Based on Eq. (20), the dimensionless coefficients κj (j = 1, 2) 
can be introduced and the third one κ3 can be used as unity.

(30)b1 = b2 = b3 = b.

Figure 19.   Describes the change of k2 over time t̃ at σ = 1.8.

Figure 20.   Shows the evolve of H̃ over time t̃ at σ (= 0.7, 1.3, 1.8).

Figure 18.   Reveals the variation of M̃ with t̃ at σ = 1.8.
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Therefore, small increments |µi| << 1 are considered as follows

Curves of Figs. 23, 24, and 25 are plotted for the comparison between the numerical investigation of the 
coefficients of the control torques at µj = 0 , and the perturbed ones at µ1 = 0.05 and µ2 = 0.07 . A small devia-
tion between them is noticed. We may conclude from these plots that any tiny changes in one of the coefficients 
produces a little increase in the deceleration function of the RB.

Concluding remarks
Analytically and numerically, a time quasi-optimal slowing problem for the rotation of a dynamically asymmetric 
RB in a resistive medium under the influence of a GM and a tiny control torque is examined. The control optimal 
decelerating law for the RB rotation is achieved, in which the study of quasi-stationary trajectories is carried out. 
The governing mechanism system of motion is obtained in its dimensionless form. The obtained novel results are 
depicted to determine the GM’s favourable impact on the functions of the angular momentum and the kinetic 
energy, as well as the square module. The terms of “optimal” and “semi-optimal” slowing are different when dif-
ferent values of the controlled torque dimension are selected. A case of tiny perturbation is studied to reveal the 
action of the control torques on the body’s motion and it is compared with the unperturbed one. The achieved 
results are graphed for various values of the GM, identifying number, and perturbed parameter. These results 
generalize those which were obtained in28 for the zero value of the GM. These out comes are significant because 
they can be used to regulate aviation and submarine systems.

(31)κj = 1+ µj; j = 1, 2.

Figure 21.   Shows the evolve of M̃ over time t̃ at σ (= 0.7, 1.3, 1.8).

Figure 22.   Portrays the evolve of k2 over time t̃ at σ (= 0.7, 1.3, 1.8).
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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