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Resting‑state BOLD signal 
variability is associated 
with individual differences 
in metacontrol
Chenyan Zhang1, Christian Beste2,3,4, Luisa Prochazkova1, Kangcheng Wang4, 
Sebastian P. H. Speer5,6, Ale Smidts7, Maarten A. S. Boksem7 & Bernhard Hommel1,2,4*

Numerous studies demonstrate that moment-to-moment neural variability is behaviorally relevant 
and beneficial for tasks and behaviors requiring cognitive flexibility. However, it remains unclear 
whether the positive effect of neural variability also holds for cognitive persistence. Moreover, 
different brain variability measures have been used in previous studies, yet comparisons between 
them are lacking. In the current study, we examined the association between resting-state BOLD 
signal variability and two metacontrol policies (i.e., persistence vs. flexibility). Brain variability was 
estimated from resting-state fMRI (rsfMRI) data using two different approaches (i.e., Standard 
Deviation (SD), and Mean Square Successive Difference (MSSD)) and metacontrol biases were assessed 
by three metacontrol-sensitive tasks. Results showed that brain variability measured by SD and MSSD 
was highly positively related. Critically, higher variability measured by MSSD in the attention network, 
parietal and frontal network, frontal and ACC network, parietal and motor network, and higher 
variability measured by SD in the parietal and motor network, parietal and frontal network were 
associated with reduced persistence (or greater flexibility) of metacontrol (i.e., larger Stroop effect 
or worse RAT performance). These results show that the beneficial effect of brain signal variability on 
cognitive control depends on the metacontrol states involved. Our study highlights the importance of 
temporal variability of rsfMRI activity in understanding the neural underpinnings of cognitive control.

Neural activity is highly variable from moment to moment at every level of neural organization. Traditionally, 
variability of this kind is considered to be “noise” that tends to mask, overshadow, or even distort the neural 
signals that are assumed to represent the relevant neural processing. Accordingly, functional magnetic resonance 
imaging (fMRI) research typically focuses on mean activity within a voxel or brain region, but considers variance 
in blood oxygen level-dependent (BOLD) signal as to-be-neglected “noise”1. The same logic applies to other 
neuroscientific and behavioral measurements indicative of human cognitive functioning2.

However, accumulating evidence suggests that intra-individual variability might be functional and beneficial 
for cognitive performance3–8, so that a better understanding of its functional role might strongly improve the 
diagnosis and treatment of mental disorders such as ADHD9–12. For example, higher BOLD signal variability 
is associated with younger age, higher accuracy, faster and more stable responses across a number of cognitive 
tasks spanning perception, attention, working memory, response inhibition and task switching4,6,7,13–16. BOLD 
signal variability might reflect intrinsic properties of network organization8, cardiovascular and cerebrovascu-
lar factors17, and/or general non-cognitive factors18. Notably, previous work suggests that more pronounced 
brain variability might allow the brain to explore among different functional network configurations, which in 
turn supports cognitive flexibility—the ability to explore variable opportunities and flexibly adapt to changing 
circumstances5,16,19.
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The present study was motivated by the idea that individual differences in cortical variability might be sys-
tematically related to individual cognitive-control styles, to what Hommel (2015) has called “metacontrol”20. This 
term refers to the control of cognitive functioning to deal with a fundamental dilemma of human cognition21–23: 
the fact that we sometimes need to be “cognitively conservative” by sticking with our present mindset and our 
present goal, but to be flexible and more open to alternative goals on other occasions. Hence, people need both 
cognitive persistence and cognitive flexibility: while cognitive flexibility helps them to switch between alterna-
tive opportunities, intentional agents also need cognitive persistence to avoid distractions and to stick with the 
current goal as long as pursuing it is worthwhile20,24–26.

As Hommel’s Metacontrol State Model (MSM) suggests, cognitive control emerges from the interplay of 
two counteracting forces or systems, one promoting cognitive persistence and the other promoting cognitive 
flexibility20. A metacontrol bias towards persistence is characterized by a strong top-down influence from the 
current goal and restricting processing to task-relevant information. In contrast, a metacontrol bias towards flex-
ibility is characterized by a stronger bottom-up influence and openness to alternative goals and opportunities20. 
Truly adaptive control requires humans to find a balance between persistence and flexibility, an ability called 
metacontrol. Interestingly, there are systematic individual differences with respect to the metacontrol default: 
while some people tend to have a persistence bias, so that they perform better than others on tasks that require 
persistence but less well than others on tasks that require flexibility, other individuals tend to have a flexibility 
bias, resulting in the opposite performance profile26. The basic idea driving the present study was that such 
individual biases in metacontrol might be related to individual differences in brain variability, that is, in the 
individual level of the BOLD signal variability of people’s brains.

We assessed our key hypothesis by testing whether an indicator of the individual degree of brain variability, 
our noise measure, is statistically correlated to behavior in tasks that have been shown to be diagnostic for indi-
vidual biases towards metacontrol persistence or flexibility. “Noise” is defined as variability that results from 
random or unpredictable fluctuations and disturbances27. We used resting-state fMRI (rsfMRI) measures as indi-
cators of the individual variability level. RsfMRI is a spontaneous low frequency (< 0.1 Hz) BOLD signal within 
the brain in the absence of external stimulation. Noise (at an optimal level) in rsfMRI is thought to drive the 
network dynamics28,29 and enables the exploration of the brain among various functional configurations repre-
senting its dynamic repertoire19. It thus seems possible that cortical noise is systematically related to metacontrol.

Various temporal variability estimation approaches for rsfMRI data have been introduced and used in previ-
ous studies4,7,30,31. The simplest and most prominent measure of variability is the standard deviation (SD), which 
reflects the distributional width of a BOLD signal time series. The SD of a BOLD signal is related to age and 
cognitive performance in both younger and older adults4,7. However, SD overestimates the true dispersion when 
the (mean) signal varies because the calculation of SD is based on the difference between single data points and 
the overall mean32. To circumvent this problem, some researchers have suggested an alternative measure—the 
mean squared successive difference (MSSD)30,33,34. The MSSD captures the BOLD signal difference between 
successive time points and thus can adapt to changing expected (mean) signals. Although the advantages and 
disadvantages of different measures have been discussed in the literature7,30,33, it is unknown whether different 
parameters that can be estimated on the basis of rsfMRI data reveal differences in their predictability to cognitive 
control. Given that we had no a-priori reason to favor one measure over another, we considered both of them, 
assuming that a systematic comparison would lay the grounds for choosing proper measurement approaches in 
future studies. Therefore, the present study employed two different brain variability measures and tested which 
of them, if any, would best predict performance in metacontrol-sensitive tasks.

We used two tasks in which high performance requires cognitive persistence (i.e., the Stroop task and the 
Remote Associates Task (RAT)), and a task in which high performance depends on cognitive flexibility (i.e., the 
Alternate Uses Task (AUT)). Given that metacontrol biases cannot (yet) be assessed directly, we followed the 
previous experimental logic of comparing individual differences in tasks that rely (more) on persistence with 
tasks that rely (more) on flexibility26. Persistence is assumed to lead to a strong focus on the present goal and 
information strictly related to that goal, which suggests that a high degree of persistence would lead to better 
performance in tasks that require a strong focus on some stimuli and neglect of others. The Stroop task35 is an 
excellent example for such a task. In the classical Stroop task, participants are to respond to the color of colored 
words while ignoring the word meaning (e.g., responding “green” to the word “RED” written in green ink35–37). 
To be successful in this task, one has to process task-relevant information (i.e., color “green”) and ignore task-
irrelevant information (i.e., word “RED”). Individuals usually respond slower in incongruent trials (in which 
the color of the word and meaning are different) than in congruent trials (in which the color of the word and 
meaning are same), which is known as the Stroop effect. A smaller Stroop effect can be taken to indicate a better 
ability in reducing cognitive conflict, which is supposed to benefit from a metacontrol bias towards persistence 
(e.g., Dreisbach & Goschke, 2004, who applied this logic to similar tasks38). In comparison, a larger Stroop effect 
implies a stronger impact from task-irrelevant information, which indicates a metacontrol bias towards flexibility. 
As some researchers argue that reaction time (RT) difference scores are sometimes unreliable in individual differ-
ences research39, we also considered intra-individual variability (IIV) of Stroop performance, which can be taken 
to reflect the stability of metacontrol over time. More trial-to-trial variability which was potentially induced by 
more frequent strategy readjustments, would indicate lesser stability of metacontrol states, i.e., higher flexibility. 
Conversely, less trial-to-trial variability in Stroop performance would indicate more persistence.

A second persistence-heavy task we considered was the Remote Associates Task (RAT). RAT is typically used 
to measure convergent thinking, which is one aspect or component of human creativity40. It requires participants 
to find a single solution under highly constrained search conditions: they are presented with three words and are 
requested to specify the one word that can be combined with either of them (e.g., “Market”, “Glue”, and “Man”, 
with the solution “Super”). While this task does require a certain degree of flexibility (in repeatedly searching 
through memory and considering novel possible targets), its reliance on persistence is much stronger than in 
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tasks testing divergent thinking26,41. Accordingly, participants with comparably better performance in the RAT 
would be considered to have a stronger bias towards persistence than participants with worse performance42.

As a flexibility-heavy task, we employed the Alternate Uses Task (AUT)43,44. This task is traditionally used 
to assess divergent thinking, another component of human of creativity, requiring to generate new ideas and to 
overcome more familiar, but currently misleading ideas43,44. As an example, a participant might be presented 
with the label or picture of a brick and asked to report all kinds of uses that a brick might have, including very 
uncommon ones. The AUT does need some degree of persistence (in keeping the original concept active to check 
it for possible uses) but it relies much more on flexibility26,41. Accordingly, participants with comparably better 
performance in the AUT would be considered to have a stronger bias towards flexibility than participants with 
worse performance42.

In sum, the present study explored whether and how resting-state BOLD signal variability is associated 
with inter-individual differences in metacontrol biases towards persistence or flexibility. We examined different 
indicators of brain variability and three different tasks drawing on cognitive persistence or flexibility. Our main 
question was whether two indicators are significantly related to performance in the three behavioral tasks and 
whether these associations would differ between tasks tapping into persistence biases and tasks tapping into 
flexibility biases. We were also interested in possible differences between the two indicators in the way they are 
associated with such behavioral differences but had no specific hypothesis regarding such differences.

Results
Behavioral findings.  The analysis of the Stroop data (n = 32) yielded a standard Stroop effect, with 
longer mean RTs in incongruent trials (1100 ms, SD = 317 ms) than in congruent trials (797 ms, SD = 234 ms), 
t(31) = 4.34, p < 0.001, d = 1.09) (see Fig. 1a). Performance accuracy and speed were not significantly correlated 
(congruent trials: r = 0.181, p = 0.323; incongruent trials: r = 0.260, p = 0.151), which rules out a speed–accuracy 
trade-off. Intra-individual variability of Stroop performance (RT-CV) was 0.315 ± 0.062 ms. In the RAT, partici-
pants solved 6.22 items correctly on average (SD = 4.09). In the AUT, inter-rater reliability was assessed by intra-
class correlation coefficients (ICC), which were moderate for flexibility scores (ICC shoe = 0.571, ICC stone = 0.650) 
and for fluency scores (ICC shoe = 0.705, ICC stone = 0.665). The averaged AUT flexibility scores from both raters 
were 7.50 ± 2.04, and the averaged AUT fluency scores were 9.78 ± 2.26. Histograms displaying the distribution 
of above-mentioned variables are provided in the supplementary Fig. S3.

In order to test whether metacontrol-bias parameters extracted from various tasks and different measures 
were related, we applied an inter-correlation analysis between the size of Stroop effect, RT-CV of Stroop task, 
RAT scores, AUT flexibility scores, and AUT fluency scores. As displayed in Fig. 1b, the size of Stroop effect 
was significantly positively correlated with RT-CV (r = 0.403, p = 0.022). A highly positive correlation was also 
found between AUT flexibility scores and AUT fluency scores (r = 0.709, p < 0.001). Correlations between other 
measures were not significant. These results may indicate that participants are biased towards persistence or 
flexibility to a different extent, depending on the task demands.

Resting‑state independent components findings.  The spatial maps at the threshold of Z > 1.0 and 
time courses of our selected ICs are shown in Fig. 2. IC1 and IC4 mainly reflect activities in bilateral precuneus, 
superior and inferior parietal regions, within the parietal cortex. IC2 includes bilateral inferior prefrontal gyrus, 
middle temporal gyrus, and angular gyrus. Bilateral inferior parietal regions, postcentral and precentral areas 
are involved in IC3, which was defined as a parietal and motor network. IC5 reflects the left-sided executive 

Figure 1.   Statistics of mean RT in the Stroop task and inter-correlations between behavioral assessments. (a) 
Mean reaction time (RT) in (corresponding) incongruent condition was larger than RT in (corresponding) 
congruent condition; (b) inter-correlation between the size of Stroop effect, RT-CV of Stroop task, RAT scores, 
AUT flexibility scores and AUT fluency scores. *p < 0.05, ***p < 0.001.
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control network, including the left prefrontal and parietal cortex, while IC7 represents the right executive con-
trol network45. IC6 mainly includes the bilateral middle part of orbital frontal gyrus and precuneus which was 
defined as the frontal and parietal network. IC8 represents activity in the anterior cingulate cortex, the prefrontal 
cortex, and the bilateral insular, which were denoted as the attention network46. IC9 mainly reflects activity in 
the prefrontal cortex and extends to the anterior cingulate cortex.

Figure 2.   Spatial maps (Z-threshold > 1.0, in the left panel) and time series (in the right panel) for selected 
independent components of the mean for all participants.
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To assess whether brain variability correlated between different measures, we tested the Pearson correlations 
between brain variability measured by SD and MSSD. Results showed that SD and MSSD of BOLD signals were 
highly positively correlated for all ICs (see Table 1 for details), suggesting that these two approaches are consist-
ent in assessing the temporal variability of rsfMRI data.

Resting‑state BOLD variability and individual difference in metacontrol policies.  The analysis 
of the SD measure revealed that the SD of all selected components was positively correlated with the size of the 
Stroop effect. A pattern of positive correlations was also obtained between MSSD of all components and the 
size of Stroop effect. A close to significance positive correlation was found between MSSD of IC8 (i.e., attention 
network) and the size of Stroop effect (r = 0.468, puncorrected = 0.007, pcorrected = 0.062) (Fig. 3; see Table 2 for details). 
We performed a supplementary analysis in which we include two participants who were excluded due to the 
extreme value in the Stroop effect. Results showed that the association between MSSD of IC8 and Stroop effect 
size is not significant (see the supplementary Fig. S4 for an updated scatterplot). No significant correlations were 
found between RT-CV of Stroop task and brain variability as measured by SD, or MSSD.

Regarding RAT performance, the SD of all ICs revealed negative correlations. SD of IC3 (i.e., parietal and 
motor network) and IC6 (i.e., parietal and frontal network) was significantly negatively correlated with RAT per-
formance (IC3: r = − 0.505, p uncorrected = 0.003, p corrected < 0.05; IC6: r = − 0.508, p uncorrected = 0.003, p corrected < 0.05) 
(see Fig. 4a,b). A similar pattern of negative correlations was displayed between MSSD of all components and 
RAT scores. Most significant negative correlations were found between MSSD of IC6 (i.e., parietal and frontal 
network), IC9 (i.e., frontal and ACC network) and RAT performance (IC6: r = − 0.543, p uncorrected = 0.001, p 
corrected < 0.05; IC9: r = − 0.510, p uncorrected = 0.003, p corrected < 0.05) (see Fig. 4c,d). We found a close to significant 
negative correlation between MSSD of IC3 and RAT scores (r = − 0.470, p uncorrected = 0.007, p corrected = 0.059) (see 
Fig. 4e). These results were replicated in the supplementary analysis in which two excluded participants were 
included (see supplementary Fig. S5 for details).

AUT flexibility and fluency scores were not significantly related to brain variability.

Table 1.   Pearson correlations between brain variability measured by SD and MSSD. IC independent 
component, SD standard deviation, MSSD mean squared successive difference.

ICs

Correlation 
between SD and 
MSSD

r p

IC1 0.742  < 0.0001

IC2 0.551 0.0011

IC3 0.829  < 0.0001

IC4 0.731  < 0.0001

IC5 0.629 0.0001

IC6 0.710  < 0.0001

IC7 0.623 0.0001

IC8 0.523 0.0021

IC9 0.586 0.0004

Figure 3.   The correlation between the size of Stroop effect and brain variability of the attention network (i.e., 
IC8) was close to significance. The higher the brain variability of IC8 estimated by MSSD, the larger the size of 
Stroop effect.
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Table 2.   Correlations between brain variability measured by SD, MSSD, and metacontrol policies measured 
by the size of Stroop effect, IIV of Stroop performance (RT-CV), RAT scores, AUT flexibility scores, and 
AUT fluency scores. Spearman correlation was used for RAT scores, AUT flexibility scores and AUT fluency 
scores. IC independent component, SD standard deviation, MSSD mean squared successive difference, RT-
CV coefficient of variation in reaction time, RAT​ remote associates task, AUT​ alternate uses task, P corrected 
Bonferroni corrected p value. Significant values are in bold.

Brain 
variability 
measures ICs

Size of Stroop effect RT-CV of Stroop task RAT scores AUT flexibility scores AUT fluency scores

r puncorrected pcorrected r puncorrected pcorrected r puncorrected pcorrected r puncorrected pcorrected r puncorrected pcorrected

SD

IC1 0.117 0.523 1.000 0.030 0.870 1.000 − 0.117 0.522 1.000 0.024 0.898 1.000 0.089 0.627 1.000

IC2 0.260 0.150 1.000 0.003 0.986 1.000 − 0.305 0.089 0.805 0.135 0.461 1.000 0.141 0.441 1.000

IC3 0.379 0.032 0.292 0.123 0.502 1.000 − 0.505 0.003 0.029 − 0.086 0.639 1.000 − 0.054 0.768 1.000

IC4 0.422 0.016 0.145 0.175 0.337 1.000 − 0.146 0.424 1.000 0.027 0.883 1.000 0.014 0.937 1.000

IC5 0.258 0.154 1.000 − 0.009 0.962 1.000 − 0.223 0.221 1.000 0.071 0.701 1.000 0.226 0.213 1.000

IC6 0.319 0.076 0.680 − 0.128 0.487 1.000 − 0.508 0.003 0.027 − 0.187 0.307 1.000 − 0.063 0.730 1.000

IC7 0.116 0.529 1.000 0.000 0.998 1.000 − 0.173 0.343 1.000 0.092 0.617 1.000 0.125 0.495 1.000

IC8 0.339 0.057 0.517 0.215 0.238 1.000 − 0.194 0.286 1.000 0.216 0.236 1.000 0.030 0.870 1.000

IC9 0.334 0.062 0.554 0.286 0.113 1.000 − 0.440 0.012 0.105 0.034 0.852 1.000 − 0.006 0.974 1.000

MSSD

IC1 0.325 0.070 0.629 − 0.005 0.978 1.000 − 0.321 0.074 0.663 − 0.108 0.558 1.000 0.031 0.864 1.000

IC2 0.406 0.021 0.192 − 0.023 0.902 1.000 − 0.376 0.034 0.306 − 0.019 0.918 1.000 0.160 0.380 1.000

IC3 0.426 0.015 0.135 0.074 0.686 1.000 − 0.470 0.007 0.059 − 0.141 0.443 1.000 − 0.168 0.357 1.000

IC4 0.315 0.079 0.710 0.024 0.896 1.000 − 0.178 0.330 1.000 − 0.217 0.233 1.000 0.022 0.907 1.000

IC5 0.397 0.024 0.220 0.044 0.811 1.000 − 0.279 0.122 1.000 0.038 0.837 1.000 0.115 0.531 1.000

IC6 0.346 0.052 0.470 − 0.096 0.603 1.000 − 0.543 0.001 0.012 − 0.128 0.486 1.000 0.040 0.827 1.000

IC7 0.344 0.054 0.487 0.016 0.929 1.000 − 0.204 0.263 1.000 0.039 0.831 1.000 0.193 0.289 1.000

IC8 0.468 0.007 0.062 0.233 0.200 1.000 − 0.365 0.040 0.358 − 0.070 0.702 1.000 − 0.084 0.649 1.000

IC9 0.433 0.013 0.119 0.046 0.801 1.000 − 0.510 0.003 0.026 − 0.066 0.720 1.000 0.005 0.979 1.000

Figure 4.   RAT performance was significantly (or, in the case of e, close to significantly) negatively correlated 
with brain variability of the parietal and motor network (i.e., IC3), parietal and frontal network (i.e., IC6), 
frontal and ACC network (i.e., IC9). Brain variability was calculated using SD in (a,b); brain variability was 
measured by MSSD in (c–e).
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Resting‑state BOLD signal variability and metacontrol in the extended dataset.  With 69 par-
ticipants, we obtained 11 ICs which reflect activities in control-related brain networks (see the supplementary 
Fig. S7 for details). The temporal variability measured by SD and MSSD was highly positively correlated (see 
supplementary Table S1). SD and MSSD of all selected ICs revealed negative correlations with the RAT score. We 
found a significant negative correlation between the MSSD of frontal motor regions (i.e., new IC3, see Fig. S7 for 
details) and the RAT score (r = -0.350, p uncorrected = 0.003, p corrected < 0.05) (see Fig. S8 and Table S2). No significant 
association was detected between brain variability of other ICs and RAT scores. AUT flexibility scores and AUT 
fluency scores were not significantly correlated with SD or MSSD of selected ICs.

Discussion
The present study explored the relationship between the individual’s resting-state BOLD signal variability and 
individual differences in metacontrol biases towards persistence or flexibility. Two BOLD signal variability meas-
ures were compared. We found that resting-state BOLD signal variability measured by SD and MSSD was highly 
positively correlated. Notably, our results suggest that higher levels of resting-state BOLD variability measured 
by MSSD in the attention network, parietal and frontal network, frontal and ACC network, parietal and motor 
network, and variability measured by SD in the parietal and motor network, parietal and frontal network were 
associated with lesser persistence (or more flexibility) (denoted by larger Stroop effect or worse RAT perfor-
mance) than lower levels of brain variability in these networks.

Correlations between two brain variability measures suggest that resting-state BOLD signal variability esti-
mated by SD and MSSD is highly correlated. The high correlation between the SD measure and MSSD measure 
is consistent with findings from Garrett and colleagues7. Although SD as a measure of brain variability has been 
criticized for its dependence on shifts in the mean and MSSD was recommended to prevent this problem, our 
findings where MSSD and SD show highly consistent results suggest that SD is an appropriate variability measure 
in resting-state fMRI data where (mean) signals are relatively constant. We found that brain signal variability 
measured by SD and MSSD in a range of resting-state networks was positively associated with metacontrol biases 
towards flexibility but negatively associated with metacontrol biases towards persistence. Our findings extend 
previous knowledge of the relationship between brain variability and human behavior in two ways:

First, resting-state BOLD signal variability is meaningful and can tentatively be taken as a neural marker of 
metacontrol biases towards persistence or flexibility. Previous investigations have identified the on-task brain vari-
ability, which varies between cognitive demands6, attentional states15, task conditions47, and perceptual input48. 
We suggest that off-task variability can also be used as a trait-like neural marker of the individual metacontrol 
bias and, thus, as a predictor of individual cognitive control performance.

Second, although numerous studies demonstrate general positive effects of higher brain variability on cog-
nitive performance4–7,13,48,49, our results suggest that the beneficial effect of brain variability may depend on 
cognitive demands and metacontrol states involved. Our findings are in line with the previous task-based fMRI 
study suggesting that higher brain signal variability levels are beneficial for task switching but detrimental for 
distractor inhibition16. Hence, brain variability should not be considered as a general performance booster, but 
as a factor that can be beneficial for some tasks but impair performance in others. How might signal variability 
in the brain translate into metacontrol biases towards persistence or flexibility? Researchers have proposed that 
dopamine (DA) and inter-individual differences in DA levels and/or the dynamics of these levels over time are 
promising candidates for linking characteristics of neural processing, like differences in neural variability, to 
behavior5,50–52 and some evidence suggests that dopaminergic (or catecholamine system activity) is associated 
with metacontrol53–56.

According to the computational model proposed by Durstewitz and Seamans57, D2-dominated state related 
to a low energy barrier among activity states would allow easier and faster transition between different cortical 
network states16. This D2-dominated state facilitates switching among representations at the behavioral level and 
supports metacontrol biases towards flexibility26,57. Conversely, D1-dominated states are associated with a high 
energy barrier leading to more stable brain activity patterns and a more difficult transition between different 
network states16,57.

At the same time, this D1-dominated state boosts the robustness of items in working memory and promotes 
metacontrol biases towards persistence26,57. Evidence from simulation research suggests that dynamics of the 
brain’s intrinsic properties may help keep the system in a state where different subnetworks compete with each 
other28. Such an active resting-state (at an optimal level) can be sensitive to external signals, which can trigger 
brain activity during different tasks, thus supporting behavioral exploring and switching. In contrast, sensitivity 
to external stimuli makes people more likely to be distracted by task-irrelevant stimuli.

We found that resting-state BOLD variability of parietal and motor network (IC3), parietal and frontal net-
work (IC6), attention network (IC8), frontal and ACC network (IC9) was positively associated with metacontrol 
biases towards flexibility but negatively associated with metacontrol biases towards persistence. Previous work 
suggests that distractor inhibition and task switching rely on a shared frontoparietal network, and brain activity 
varies depending on the exact cognitive processing involved58. As a control network, the frontoparietal network 
plays a crucial role in task adaptation, implementation and flexible modulation of cognitive control59. Moreover, 
the frontoparietal network is a globally functional hub that flexibly interacts with other brain networks. Higher 
variability in frontal and parietal regions may indicate more dynamic connectivity between brain networks with 
the frontoparietal network as the hub, and thus supports the flexibility of metacontrol, but hamper persistence 
of metacontrol60,61. The attention network which mainly includes ACC, prefrontal cortex and insular has been 
shown to be involved in sustained focus on task-relevant information and conflict resolution62,63. A variable 
attention network may reveal flexible attention resources allocation, which is beneficial for flexibility but detri-
mental for persistence.
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Whereas the analyses of the Stroop and the RAT data provide a rather consistent picture, this is not the case 
with respect to the AUT findings. On the one hand, previous studies have rarely found RAT performance to be 
an exact mirror image of AUT performance; rather, various manipulations affected either only one of the two 
tasks or at least one of the more than the other64,65. This suggests that both tasks are likely to capture aspects of 
metacontrol persistence and flexibility, but they can hardly be viewed as a direct measure of the respective metac-
ontrol states. It is also likely that they differ in sensitivity, presumably depending on the experimental setting. 
Hence, it does not seem to be odd per se that only one of the two creativity tasks showed systematic effects. On 
the other hand, however, it is also possible that our particular assessment of divergent thinking was suboptimal. 
Due to the time limit in Qualtrics, our AUT task only allowed up to 6 responses within a short time duration for 
each item. This might have created ceiling effects, so that especially the fluency and flexibility scores were likely 
to be less sensitive to interindividual differences than the standard versions of the AUT. This must have reduced 
the variability of the data, which in turn could have worked against finding significant correlations. Accordingly, 
we are reluctant to draw strong conclusions from the absence of correlations related to the AUT.

Another potential limitation of our explorative study is the sample size, which in turn resulted from our 
use of already collected data. Larger sample sizes would be beneficial for probing brain-behavior relationships. 
Accordingly, we consider the outcomes of the present study as preliminary and in need of replication, but at the 
same time encouraging for further studies on the relationship between brain variability and metacontrol policies.

To conclude, we aimed to explore the relationship between resting-state BOLD signal variability and metac-
ontrol policies and compared two previously used brain variability estimation metrics. We demonstrated that 
temporal brain variability during resting-state is associated with metacontrol biases towards persistence or 
flexibility, highlighting the importance of temporal variability of brain activity in understanding the neural 
underpinnings of cognitive control. Moreover, we found that BOLD signal variability is antagonistically related 
to metacontrol biases towards persistence or flexibility, suggesting that the beneficial effect of brain variability on 
cognitive control may depend on the metacontrol modes involved. At last, the SD and MSSD indices of rsfMRI 
brain variability provide consistent pictures for predicting behavioral cognitive control.

Materials and methods
Participants.  Our sample consisted of thirty-two right-handed adults (21 females; age 18–35  years; 
M = 23.81, SD = 3.53). The raw dataset, which has been reported in a previous study66, included 40 university 
students reporting no history of psychiatric or neurological disorders. Six participants were excluded because of 
missing data for the Stroop task, RAT or AUT, or resting-state fMRI scanning; two participants were excluded 
because of extremely large or small Stroop effect size (i.e., exceeding group mean ± 2 standard deviations). 
The mean framewise displacement (FD) of all remaining participants was smaller than 0.5 mm. The present 
study was approved by the Psychology Research Ethics Committee of Leiden University. The original study was 
approved by the Internal Review Board of the Erasmus Research Institute of Management, and all participants 
provided written informed consent for their participation. The current study and original study were conducted 
in accordance with the Declaration of Helsinki.

Behavioral assessment.  Color‑word matching Stroop task.  An adapted version of the Stroop task35 was 
used. In this task, two rows of letters appeared on screen, and participants were instructed to decide as quickly 
as possible whether the color of the top row letters correspond to the color name written at the bottom row 
by pressing one of two buttons (see Fig. 5). In congruent trials, the top row consisted of a color word (“RED,” 
“GREEN,” “BLUE,” or “YELLOW”) printed in a color that matches its semantic meaning (e.g., “RED” presented 
in red ink), and the bottom row consisted of a color word printed in white ink. For incongruent trials, the color 
word in the top row printed in a color that mismatches its semantic meaning (e.g., “RED” presented in green 
ink). The bottom row letters were identical to the congruent condition. Participants performed 72 trials in the 
MRI scanner, containing 36 congruent trials and 36 incongruent trials. In half of the trials, the color of top row 
word corresponded to bottom color word (corresponding trials), while the color of top row word not corre-
sponded to bottom word in the other half (not corresponding trials).

Figure 5.   Examples for conditions and design of the color-word matching Stroop task. For the upper two 
examples, the correct answer would be “YES,” for the lower two examples, the correct answer would be “NO.”
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Each trial started with a fixation period of 2000–4000 ms, followed by the stimuli presented for a maximum 
time of 3000 ms. Afterwards feedback appeared for 1000 ms. To prevent participants from focusing on the 
bottom word and not attending the word in the top row, the top-row word was presented 100 ms before the 
bottom word. If no response was given within 3000 ms from the onset of the stimulus presentation, an incorrect 
response was registered.

We calculated two parameters from the Stroop task as estimations of metacontrol biases: first, the size of 
Stroop effect (mean RT for incongruent trials minus mean RT for congruent trials). As we mentioned before, 
a smaller Stroop effect indicates bias towards persistence, while a larger Stroop effect indicates bias towards 
flexibility. Note that in our word-matching version of the Stroop task, the size of the Stroop effect may depend 
on the type of answer (yes or no), i.e., on the color-word correspondence67. Specifically, in non-corresponding 
trials (when the answer was ‘NO’), the conflict generated by the Stroop effect may facilitate a ‘no response’, which 
may work against the Stroop effect. Hence, a standard Stroop effect may only occur with correspondence (when 
the answer was ‘YES’). Therefore, we calculated the Stroop effect by subtracting the mean RT for corresponding 
congruent trials from the mean RT for corresponding incongruent trials. As RT difference scores are sometimes 
unreliable in assessing individual differences39, we also calculated the intra-individual variability (IIV) of Stroop 
RT as a second metacontrol measure. The IIV of Stroop RT was estimated by the RT coefficient of variation 
across all trials (RT-CV: SD divided by mean). Greater RT-CV would reflect lesser stability of metacontrol states 
in the Stroop task, i.e., a bias towards flexibility. In contrast, smaller RT-CV would be taken as a bias towards 
metacontrol persistence. The mean accuracy across all trials was 0.90 (SD = 0.07) (see the supplementary Fig. S1 
for the histogram). The Stroop effect and RT-CV were calculated on correct trials only. The response latency in 
each trial ranged from 344 to 2995 ms.

Remote associates task (RAT).  In each trial of this task, participants were to find a single word that can be com-
bined with each of the three presented stimulus words (e.g., cottage, swiss, cake = “cheese”)40. Participants had to 
complete 17 trials within 5 min. This task was completed via Qualtrics outside the scanner. To complete the RAT, 
participants were assumed to engage in convergent thinking, which was assumed to rely on a persistence bias68.

Alternate uses task (AUT).  Participants were presented with two everyday objects (i.e., shoe, stone) and asked 
to name as many possible uses (up to 6 uses) for each object as they can. This task was completed via the Qual-
trics outside the scanner and participants had 3 min for both objects together. Performance on AUT was scored 
by two independent raters from four dimensions: flexibility (number of ideas in different categories), fluency 
(number of uses one can think of), originality (uniqueness of responses), and elaboration (the level of details 
in responses). As flexibility and fluency require switching between different ideas and considering multiple 
solutions44, we used flexibility scores and fluency scores which were averaged between two raters as metacontrol 
biases measures. Higher scores indicated more tendency towards flexibility, while lower scores indicated more 
tendency towards persistence44.

MRI data acquisition.  MRI scanning was performed on a 3 T Siemens Verio MRI system. Resting-state 
functional data were acquired by a T2*-weighted gradient-echo, echo-planar pulse sequence in descend-
ing interleaved order (repetition time (TR) = 2030  ms, echo time (TE) = 30  ms, flip angle = 75°, slice thick-
ness = 3.0 mm, in-plane resolution = 3.0 × 3.0 mm, 64 × 64 voxels per slice). In addition to functional imaging, 
a T1-weighted image was acquired at the resolution of 1.0 × 0.5 × 0.5 mm for anatomical reference (192 sagittal 
slices, TR = 1900 ms, TE = 2.26 ms, flip angle = 9°).

Resting‑state functional data preprocessing.  Data preprocessing was performed using DPASF (http://​rfmri.​org/​
DPARSF), a Matlab toolbox for resting-state fMRI data processing and analysis69,70. The first 10 volumes were 
discarded, and then slice-time correction and realignment were performed. Head motion was assessed by frame-
wise displacement (FD)71. All participants’ mean FD were smaller than 0.5 mm. Individual T1-weighted images 
were co-registered to the mean functional image and then segmented into gray matter, white matter (WM), and 
cerebrospinal fluid (CSF). Transformations from individual native space to MNI space were computed with the 
DARTEL tool72, and then the functional images were normalized to MNI space with warped parameters. Lastly, 
all functional images were smoothed with a 6 mm full width at half maximum (FWHM) Gaussian kernel.

Group independent component analysis.  As previous studies note that brain signal variability is region-spe-
cific16,47, we only selected control-related networks (i.e., independent components) which were obtained from 
the independent component analysis (ICA). ICA was performed using the GIFT Toolbox (https://​www.​nitrc.​
org/​proje​cts/​gift) to identify temporally coherent networks which are spatially distinct. Following the process-
ing protocol used in the previous study73, pre-processed functional images were firstly intensity-normalized. 
Subsequently, each participant’s data were reduced to 70 principal components. Then, group-level decomposi-
tion was performed using the Infomax algorithm74, which resulted in 25 spatially independent components 
(ICs) and associated time courses. To improve the reliability of IC-decomposition, the Infomax ICA algorithm 
was repeated 20 times using the ICASSO toolbox75. Afterward, the obtained 25 ICs were visually inspected to 
exclude noise components. We then compared all non-noise components’ spatial topology to the pre-defined 
resting-state network templates45,46. The ICs reflecting activities in the executive control network, attention net-
work, prefrontal, and parietal regions were identified and used for further analyses. Participant-specific spatial 
maps and time courses were then estimated using the dual regression back-reconstruction method76. We did 
not further scale the components due to the preprocessing step of intensity normalization, which returns back-

http://rfmri.org/DPARSF
http://rfmri.org/DPARSF
https://www.nitrc.org/projects/gift
https://www.nitrc.org/projects/gift
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reconstructed maps in units of percent signal change. Spatial maps for excluded components are shown in the 
supplementary Fig. S2.

Resting‑state BOLD signal variability calculation.  We estimated resting-state BOLD signal variability using 
component-wise within-participant measures. For each component and each participant, BOLD variability was 
calculated. Here, we used two brain signal variability measures listed below.

First, we calculated the standard deviation (SD) of BOLD signals for each component and each participant.
As a second measure, we estimated the variability of time courses in selected ICs via mean squared successive 

difference (MSSD)30,31. As a non-biased estimation to SD, MSSD reflects moment-to-moment BOLD signal vari-
ability that is less sensitive to low-frequency drift77 and independent from shifts in the mean7. For each IC and 
each participant, we subtracted BOLD signals in time point t from time point t + 1, and then squared the average 
of all subtractions across the entire time series. (Eq. (1): t and t + 1 are two successive time points belonging to 
the same component time course, n is the number of time points in each component).

Statistical analysis.  To examine the relationship between resting-state BOLD signal variability and indi-
vidual differences in metacontrol policies, we correlated the size of Stroop effect, Stroop RT-CV, RAT scores, 
AUT flexibility scores, and AUT fluency scores with brain variability estimated by SD and MSSD, respectively. 
As nine components were included for correlation analysis, Bonferroni correction was used to control for the 
increased risk of a type I error. Note that the theoretical meaning of the signs/directions of the correlations var-
ies with task scores: Whereas higher scores in the two Stroop measures and the AUT scores imply stronger bias 
towards flexibility (and lower scores stronger bias towards persistence), higher scores in the RAT imply stronger 
bias towards persistence (and lower scores stronger bias towards flexibility).

Resting‑state BOLD signal variability and metacontrol in an extended dataset.  The original 
study66 from which we obtained data for the current study collected behavioral and neural data from four sepa-
rate samples (two big and two small samples). Besides a big sample we reported above (referred to as Sample 1), 
there exists a N = 41 sample which will be referred to as Sample 2. Sample 2 consisted of a different population, 
and neural data was collected in a different scanner than Sample 1. Participants in Sample 2 only completed 
creativity tasks, and RAT was tested by different items from those in Sample 1 (Detailed information can be 
found in the Supplementary Material S1). To test the stability of the brain-behavior correlation, we replicated 
the analysis of the association between resting-state brain variability and RAT performance, AUT flexibility, and 
AUT fluency, respectively in an extended sample consisting of both Sample 1 and Sample 2 (see the Supplemen-
tary Material S1 for details).

Ethical approval.  Our study/analytical design and our hypotheses were developed and submitted for ethi-
cal approval after the data collection was completed but before we had access to the data.

Data availability
Data is publicly available in a repository which can be accessed by the following link: https://​datar​eposi​tory.​eur.​
nl/​artic​les/​datas​et/​Indiv​idual_​diffe​rences_​in_​dis_​hones​ty_​are_​repre​sented_​in_​the_​brain_s_​funct​ional_​conne​
ctivi​ty_​at_​rest_/​17091​323/1. In the present study, we used existing data initially collected for a project reported 
in the article Individual differences in (dis)honesty are represented in the brain’s functional connectivity at rest66. 
Note that this study, which served other theoretical purposes, included the collection of additional data and 
measurements that are not reported here.
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