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Adaptability and sustainability 
of machine learning approaches 
to traffic signal control
Marcin Korecki

This study investigates how adaptable Machine Learning Traffic Signal control methods are to 
topological variability. We ask how well can these methods generalize to non-Manhattan-like 
networks with non-uniform distances between intersections. A Machine Learning method that is 
highly reliable in various topologies is proposed and compared with state-of-the-art alternatives. 
Lastly, we analyze the sustainability of different traffic signal control methods based on 
computational efforts required to achieve convergence and perform training and testing. We show 
that our method achieves an approximately seven-fold improvement in terms of CO
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 emitted in 

training over the second-best method.

Due to the continuous increase of the global population and rising migration from rural areas into urban environ-
ments, there emerges a necessity for the evolution of the concept of the city. As cities become bigger, denser, and 
more populated the solutions to problems such as traffic control that were previously efficient become ineffective1. 
At the same time, new challenges caused by this paradigm shift exacerbate the limitations of the old model of 
the city. An answer to these issues is the new paradigm of the smart city, where the traditional infrastructure is 
combined with information and communications technology and coordinated via emerging digital technologies2.

One of the key issues of the modern city is its environmental impact on the immediate surroundings as well 
as its citizens. Urban pollution’s detrimental health effects3 as well as its negative impact on perceived happiness4 
have been well-documented. As such, one of the main goals of the new concept of a city—a smart city is to allow 
for creation of technologies that can be integrated into the city infrastructure for greater efficiency and sustain-
ability in order to create cities that are not only smart but also sustainable5.

A key contributor to the lack of urban sustainability is the common transportation model relying on motor-
ized vehicles. The frequent congestion of traffic causes increased emissions, loss of time, and sound pollution. 
Moreover, noise and air pollution caused by vehicles are considered key indicators of pedestrian perception 
of urban spaces6. Therefore, improving the current transportation paradigm is of crucial importance for the 
development of sustainable smart cities7.

Some promising approaches addressing the negative effects of traffic are the introduction of electric vehicles 
and alternative modes of transportation8. However, traffic signal control remains the most widespread solution 
to limiting congestion and increasing the efficiency and sustainability of traffic. A recent trend in the sustainable 
smart city paradigm is to address traffic congestion with Machine Learning and Internet of Things technologies9.

Cities and even more so smart cities are highly dynamic environments, thus they require adaptable 
approaches. For instance, in order to make the street network more environmentally friendly or to avoid heat 
island effects10 the road network might need to be adjusted (for example to introduce more greenery11). Simi-
larly, a recent trend aims at rethinking the streets themselves to, among other things, reduce the number of cars 
allowed on them12. Machine Learning shows great promise as a traffic signal control approach, yet the training 
of advanced models is computationally expensive which often translates into environmental costs13. Moreover, 
most proposed Machine Learning methods are trained on particular city topology and traffic flow and might 
not readily adapt to temporal and spatial changes. A model requiring retraining when the topology changes or 
the training of a separate model for different parts of the city would require significant resources and would 
not be sustainable. Thus a good traffic control model needs to be able to adapt to changes in the road network 
at least to some extent.

We note that most Machine Learning approaches to traffic signal control focus on idealized Manhattan-like 
grids which are not representative of the cities in, for example Europe (see Fig. 1)14,15. It is important to investigate 
how well these models generalize to less idealized conditions of more heterogeneous networks.
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In this paper we introduce a novel, Machine Learning solution to the problem of traffic signal control, that 
does not require frequent and costly retraining, and compare it with state-of-the-art alternatives. We show that 
a clever design of the state space of a Reinforcement Learning (RL) algorithm, along with pretraining the algo-
rithm on a simple scenario yields an adaptable and highly efficient model. In the interest of sustainability, we not 
only consider the efficiency of the compared methodologies but also their environmental impact. Furthermore, 
we study how well different traffic signal control methods adapt to changes in the road network topology and 
compare their results on non-Manhattan-like road networks. We conclude that the proposed method is able to 
outperform alternative classical and RL approaches in terms of average travel time achieved due to its length-
invariant state design (able to account for heterogeneous road lengths) and analytic exploration. Moreover, the 
method boasts a superior environmental efficiency. do to employing a pretraining procedure.

Background
In this section, we formulate the description of the traffic signal control problem as well as define the Reinforce-
ment Learning approach to it.

Glossary of terms. 

•	 Movement: Represents traffic flow moving through an intersection from an incoming lane to an outgoing 
lane. The movement from lane a to b is denoted as (a, b). The intersection in Fig. 2a consists of 12 movements, 
each indicated with an arrow.

•	 Phase: Represents the set of all movements that are allowed at a given time (given green light). In Fig. 2a, the 
phase allows for 6 movements indicated in green and corresponding to phase 1 in Fig. 2b.

•	 Movement Pressure: Represents the imbalance between the number of cars of all incoming lanes of the 
movement and the number of cars on all outgoing lanes of the movement, adjusted for the maximum number 
of cars possible on the lane17, according to Eq. (1). 

 where w(l, o) is the pressure of movement (l, o), x(l) represents the number of cars on incoming lane l, x(o) 
the number of cars on the outgoing lane o and xmax(l) and xmax(o) corresponds to the maximum number of 
cars possible on lanes l and o.

(1)w(l, o) =
x(l)

xmax(l)
−

x(o)

xmax(o)
.

Figure 1.   A comparison of the road networks of two large cities, note the difference between the grid like 
structure of Manhattan and the more chaotic network of Zurich16.
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•	 Intersection pressure: represents the imbalance of cars on outgoing and incoming lanes across all the pos-
sible movements of the intersection, following Eq. (2). 

 Here Pi is the pressure of the intersection i and the rest follows the notation from Eq. (1).

Reinforcement learning for traffic signal control.  Arguably, the most common Machine Learning 
approach to traffic signal control is Reinforcement Learning18. Each intersection of a given road network is asso-
ciated with a Reinforcement Learning agent which observes the state of the intersection. The data representing 
the observed state at the particular decision step is fed to the agent, which then selects an action, that is the phase 
to be set. The goal of the agent is to select the actions so that some reward function is maximized. Depending on 
the design of the agent, the state and reward definitions might differ significantly leading to different results. A 
detailed review of Reinforcement Learning approaches to the traffic control problem can be found in19.

Related literature
In this section, we present some of the relevant literature on the topic of traffic signal control.

Conventional.  The traditional method of controlling traffic lights in cities is to employ cyclic traffic plans, 
rotating over the phases20. In more advanced versions of this approach, the cycles are enacted with offsets and 
the green times given to each phase may vary20. An improvement over the cyclical plans is the SCOOT system 
(split, cycle and offset optimization technique), which is a data-driven method that is able to adapt to changing 
and unusual conditions21. Further improvements around adaptive methods included prioritization of public 
transport and privileged vehicles22. At the beginning of the 21st century the conventional methods have begun 
to be replaced by more intelligent and real-time measurement based solutions. An example of such a method 
would the hierarchical control architecture—RHODES that decomposed the control problem into several sub-
problems and included a module for prediction of traffic flow23.

Due to the high variability of urban traffic conventional approaches are usually ineffective in avoiding the 
creation of traffic jams and have been consistently outperformed by the methods related below.

Self‑organizing.  The goal of the self-organizing approaches to traffic signal control is to achieve emergent 
optimization by allowing individual agents to control their behavior in a decentralized manner24. The control 
mechanism is often designed so that negative interactions between agents are avoided and cooperation is maxi-
mized.

One self-organizing approach relies on an analytic model of traffic derived from queuing theory25 and base 
decision making algorithm on two rules: an optimization and stabilization rule. The optimization rule relies on 
a short-term anticipation of future arrivals and calculating the minimum green time needed to clear a queue. 
The stabilization rule makes sure the algorithm avoids situations where a large queue overflows to the previous 
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Figure 2.   A representation of an intersection with 12 possible movements indicated by the arrows, and 8 
possible phases. The green arrows indicate currently allowed movements, which correspond to phase 1 from 
Fig. 2b. 8 possible phases for the intersection in Fig. 2a. Right turn is considered to be allowed in all phases as 
it does not conflict with any movement. Note that only non conflicting movements can be allowed in a given 
phase.
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intersection. A control scheme based on this method has been successfully deployed in Dresden, Germany, and 
Lucerne, Switzerland26,27.

Reinforcement learning.  Many recent traffic signal control algorithms rely on Deep Reinforcement 
Learning18. They differ in their state and reward description as well as the particular type of learning algorithm 
used. The main learning algorithms in Reinforcement Learning are value-function learning and policy gradient 
and they have both been applied to traffic signal control28. An example of the value-function learning would be 
any algorithm that relies on a DQN (Deep Q-network), an example of a policy gradient method would be DDPG 
(Deep Deterministic Policy Gradient). The key difference between the two is that DQN outputs discrete actions, 
while DDPG is able to output continuous actions. Furthermore, DQN requires training of one neural network 
while DDPG, being an actor-critic algorithm requires at least two networks to be trained (the actor network and 
the critic network and often two additional target networks).

The design of the reward function has a crucial effect on the efficiency of the algorithm, which has been 
studied in some depth29. One of the approaches to the reward design is to use the concept of pressure (Eq. 2)14. 
Similarly, the design of the state space is of great importance29, depending on its design the algorithm might be 
limited to work only for intersections with a particular number of movements30. An example of state descrip-
tion is to use the queue length, the number of vehicles, the waiting times and an image representation of the 
intersection31. Some research has also investigated how the state description can be structured, including prior 
knowledge to achieve better learning outcomes30. An important distinction is weather the agents operate inde-
pendently, or share some information in a centralized manner. In32, the authors compare different decentralized 
algorithms such as traditional Q-Learning and advantage actor critic in the context of traffic signal control. 
Some publications have highlighted the benefits of agents sharing information with neighbors33 or sharing the 
neural network parameters in training and deployment14. One recently proposed method, GuidedLight, aimed 
to combine the benefits of Reinforcement Learning with analytic approach by injecting analytic knowledge into 
the exploration procedure of the Reinforcement Learning agent15.

An overview of the recent state-of-the-art Reinforcement Learning methods can be found in34,35. These 
Reinforcement Learning approaches show great promise and convincing results in simulated homogeneous, 
grid-like environments. It is not clear, however, how well these models can adapt to changes in the topology of 
the road-network or how well they perform in non-Manhattan like settings.

Meta‑reinforcement learning.  A limitation of classical Deep Reinforcement Learning is that the learned 
models, while achieving good results in the scenarios they were trained on, tend to lack the ability to generalize 
to different scenarios. In a sense the neural networks at the core of Deep RL can overfit to the data that is pro-
vided to them in training. When they later, in deployment, encounter data that they have not been exposed to in 
training they might recommend actions that are not optimal. The main goal of task generalization is to design 
learning models that are able to generalize to unseen environments36. Since in RL it has been a standard practice 
to train and test the models on the same environment it is not clear what is the models’ (including the ones in 
traffic signal control) ability to generalize37. Training and testing in different environments is one of the ways of 
addressing the issue and so we employ it in our experiments.

Another method that has been designed to address the task generalization is Meta-Learning. It deals with 
methods that can generalize well to an array of scenarios38. It is worth noting that Deep Q-Learning (or value-
function learning) has been shown to possess some Meta-Learning qualities if given access to a context variable 
that represents the past trajectory39. Approaches that show increased adaptability to changing traffic flows have 
already been proposed. One way is to use a gradient-based model agnostic meta-learning40 for periodically alter-
nating global and individual adaptation and leveraging the experience gotten from learning different scenarios41. 
In a similar manner, better generalization can be achieved by leveraging model agnostic meta-learning and flow 
clustering42. A recent study has implemented a meta learning model-based framework to address the need to 
improve data efficiency and limit the number of interactions with the environment that are needed to learn an 
efficient model43. Another approach to meta-learning has focused on incorporating both short and long term 
information in the learning process through the use of decentralized advantage actor-critic approach44. On the 
other hand, a solution based on a meta learning spatial-temporal graph attention network along with a long 
short-term memory unit has been proposed to deal with neighbor information processing45. Most of the meta-
learning methods proposed in recent years can be characterized by a rather high complexity of the proposed 
models. The methods differ in the exact area they focus on (neighbor information, data efficiency etc.) as well 
as in the way they could be implemented in real world (centralized, decentralized). However, little attention 
has been given to adaptation to topological variability of the scenarios, which we aim to address in this paper.

Methods
In this section, we will describe in detail the implementation of the proposed agent, that controls the traffic 
signal at an intersection, and the experimental setup used to showcase and compare its results. As the basis for 
our proposed agent, we use the GuidedLight agent, which has been shown to perform favorably when compared 
to other Machine Learning methods as well as analytic self-organizing methods15. We have decided to focus 
on Deep Q-learning methods as they have been shown to achieve comparable results to other methods such as 
DDPG46,47. Furthermore, DQN requires training of fewer deep neural networks as compared to DDPG (which 
needs an actor network, a critic network and often two additional target networks), since we are interested in 
decreasing the environmental impact of training the models it makes sense to focus on models which require 
less computational time to be trained.
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We will introduce the features of the proposed agent’s state, exploration and learning algorithm design. We 
will then introduce the novel pretraining procedure and summarize the proposed experimental design.

Length invariant state design.  The usual state design of the Reinforcement Learning agent for traffic 
signal control includes the observations available to a single intersection. This most often consists of the number 
of cars in the incoming lanes, as well as the number of cars on the outgoing lanes along with the current phase 
of the intersection. Since the aim is to create an agent which can adapt well to a variety of different road network 
topologies, we wish to make the state as invariant to topological heterogeneity as possible.

Our aim is to make the agent perform well not only on intersections where the length of incoming and out-
going lanes is the same but also on ones where these lengths vary. In real-life conditions, especially in European 
cities (Fig. 1b), it is common that the distances and so lengths of roads between intersections are not uniform. 
Because of that, we propose to express the number of cars on in/outgoing lanes, not as an absolute number but 
rather the proportion of the lane that is occupied. A 50-m long lane with five 5-m cars on it would be covered in 
50%, on the other hand, a 25-m long lane with the same cars would be 100% covered. Even though both lanes 
have the same number of cars waiting on them it makes more sense to prioritize the one that is full to avoid an 
overflow. Our agent needs to distinguish between such cases so that it can work well in situations where the lanes 
have non-uniform lengths. Hence, we introduce the length invariant state design where the occupancy of the 
lane is expressed in terms of coverage and not simply the absolute number of cars on it.

Analytic exploration.  Like all Reinforcement Learning approaches, GuidedLight agent needs to explore its 
environment before the model becomes sufficiently effective. Exploration is more likely to happen in the early 
stages of training and the chance that it occurs decreases with time. Instead of exploring randomly (choosing 
random actions instead of actions suggested by the model), GuidedLight uses analytic exploration ( α-explora-
tion). Rather than taking random actions at times, it takes actions that would be selected in a given state by an 
analytic algorithm25. This approach not only speeds up convergence but also leads to better results.

Deep Q‑learning.  GuidedLight agent implements the Deep Q-Learning approach. The learning process is 
based on a Q-function mapping state and action pairs to the expected reward. This function is learned using 
function approximation capabilities of a deep neural network. The mapping is based on the expected future 
reward as in Eq. (3).

Here Qnew is the Q-value after an update for the state-action pair ( St ,At at time t), Q is the previous Q-value 
for the state-action pair, ℓ represents the learning rate and γ weights the effect of short-term vs. long-term gains. 
Rt is the reward at time t and maxA Q(St+1,A) is the estimate of the highest obtainable Q value if one starts 
from state St+1 and selects optimal actions. In Deep Q-Learning, the Q-function is approximated using a Deep 
Q Network (DQN). The GuidedLight Agent implements the Double Deep Q-Network (DDQN) approach for 
greater learning stability48.

GuidedLight agent.  The agent controls the phase of a single intersection in the traffic network. Guided-
Light design is as follows.

•	 State: consists of the percentage coverage of each of three equal segments of the incoming lanes, the cover-
age of the outgoing lanes and the current phase (one-hot-encoded). The separation of incoming lanes into 
segments was shown to improve results14.

•	 Actions: consist of all possible phases at the given intersection.
•	 Reward: based on the concept of pressure of the intersection as in Eq. (2) and following Eq. (4). 

 
where R is the reward of intersection i. By maximizing the negative of its pressure the agent balances the number 
of cars between its incoming and outgoing lanes which leads to maximization of throughput and minimization 
of average travel time17. An individual GuidedLight agent is deployed at each intersection, however, the agents 
share the same DQN and store and replay the memory from a shared buffer. This data sharing speeds up the con-
vergence and leads to better results30. Thus in a scenario with 16 intersections there would be 16 agents deployed. 
These agents, however, would share the same DQN and would add their experience to the same memory replay 
that would then be available to all other agents. The further details of the implementation of the GuidedLight 
agent are found in the following sections.

Pretraining.  To study GuidedLight’s generalization ability we train the model on a synthetic, uniform, Man-
hattan-like road network. The network is shown in Fig. 3a and the flow is the same as for scenario I (Table 1). 
The trained model is then tested on the non-uniform and more complex scenarios with different topologies and 
different traffic flows. The model only learns on the simple network and no further learning occurs in subsequent 
tests. This way we can assess GuidedLight’s resilience to changing conditions.

(3)Qnew(St ,At) = Q(St ,At)+ ℓ · (Rt + γ ·max
A

Q(St+1,A)− Q(St ,At))

(4)Ri = −Pi
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Experiments.  To test the GuidedLight agent’s efficiency and performance we conduct a series of experi-
ments. First, we compare the average travel time, which is considered to be a good indicator of overall 
performance14,31,41,42, achieved by GuidedLight on six different simulated scenarios with the results of state-of-
the-art alternatives, which we have chosen based on their good performance. We follow with an ablation study 
where we compare GuidedLight’s performance on our most complex scenario—NY196—against versions of 
GuidedLight that do not use analytic exploration and/or the improved state design. Lastly, we conduct a com-
parison of the training times of each of the compared methods with their results on the NY196 scenario as well 
as convergence analysis for the learning algorithms. The non-pretrained, learning methods are trained on each 
scenario separately and the results of the best model tested on the corresponding scenario is reported.

The details of the road networks used for the experiments and their flows can be found in Table 1. A visuali-
zation of the road networks’ topologies is presented in Fig. 3. The regular topologies of the networks have been 
disrupted by elongating the roads at random leading to a situation, where a single intersection has non-uniform 
lanes’ lengths.

The NY16 scenario follows real-world traffic flow data from Upper East Side14 but with a modified network 
topology. Similarly, NY196 follows real-world data from Manhattan33 with a modified topology of the net-
work. We are especially interesting to test how the compared methods scale with the increase in the number of 

Table 1.   Traffic flows and road lengths assumed in the simulation scenarios.

Configuration Arrival rate (vehicles/s) Demand pattern (arrival rate variance) Average road length (m)

I 0.388 0.3 447.23± 115.82

II 0.388 0.6 447.23± 115.82

III 0.416 0.3 447.23± 115.82

IV 0.416 0.6 447.23± 115.82

NY16 1.89 0.00008 397.42± 133.00

NY196 0.803 0.0011 425.79± 108.72

Figure 3.   The four road networks used in the experiments, blue dots indicate intersections, black lines indicate 
roads. Note the varied lengths of the roads in (b–d).
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intersection. Hence the NY196 scenario is of most interest to us as it represents a scale at which these methods 
could be deployed in real life.

The learning agents in this study take decisions every 10 s. When changing phases, 2-s all-red signal (allowing 
only right turns) is emitted. All scenarios are run for 1800 simulation steps corresponding to 30 min of real-time. 
Cityflow simulator49 is used for all experiments. The learning agents are trained for 150 learning epochs, where 
one epoch is a full run of the 1800 simulation steps. The DQN used for GuidedLight and PressLight has two 
layers of 128 and 64 nodes, learning rate of 0.0005 with Adam optimizer is used for training. The training uses 
mini-batches of 64 samples, the memory is limited to 10000 data points and γ is set to 0.8. The parameters have 
been selected through grid search. The Simple DQN and FRAP agents use the parameters from50.

Compared methods. 

•	 FixedTime: static method, rotating through all possible phases one after another, included for comparison20.
•	 Random: an agent choosing actions at random, a safety baseline below which no learning algorithm should 

fall.
•	 Analytic: an advanced analytic method based on short term traffic anticipation and self-organization, imple-

ments an optimization and stabilization rule51.
•	 SimpleDQN: a simple Reinforcement Learning method32 using a Deep Q-Network. Each agent uses a dif-

ferent network and the parameters are not shared.
•	 FRAP: a state-of-the-art Reinforcement Learning method30, that uses state design invariant to symmetrical 

cases, thus reportedly being able to generalize to more diverse situations.
•	 PressLight: a state-of-the-art Reinforcement Learning method14. It uses a regular DQN (not the double 

DQN), random exploration., and absolute number of cars on incoming and outgoing lanes in the state.
•	 Pretrained PressLight: a PressLight model trained on the synthetic 4× 4 scenario.
•	 GuidedLight: a Reinforcement Learning method described above, relying on analytic exploration and length 

invariant state description. Key differences between PressLight and GuidedLight are the exploration proce-
dure, state design and the use of DDQN instead a DQN.

•	 Pretrained GuidedLight: a GuidedLight model trained on the synthetic 4× 4 scenario.

The code used for all experiments and agents (except Simple DQN and FRAP which are available https://​github.​
com/​mKafo​uros/​PlanL​ighthere) is available at https://​github.​com/​mbkor​ecki/​rl_​traff​icthis repository.

Results
In this section, we present the results of the experiments outlined in the previous section.

Overall performance.  In Table 2 we present the results of the tested methods on the 6 experimental sce-
narios in terms of the average travel time achieved by the methods. The table shows that the best results for 
most settings are achieved by the Pretrained GuidedLight model. Only in the NY16 scenario does the result of 
the Pretrained GuidedLight share first place with PressLight. This might be caused by the fact that for the NY16 
scenario each intersection has at most two neighbors. Due to that, the problem of overflow, which GuidedLight 

Table 2.   Average travel time of different traffic signal control methods for 4 configurations of 4× 4 synthetic 
scenario and two real-world based scenarios. The values in brackets are standard deviations of the last 10 
training epochs. Pretrained methods do not include standard deviations as they are trained and tested on 
different scenarios. Best results are presented in bold, second best are underscored. The NY196 scenario has 
not been run with FRAP and Simple DQN as the implementation of these agents is prohibitively slow and 
energy consuming for large scenarios50.

Model

Avg. travel time (s)

I II III IV NY16 NY196

Fixed time 547.40 480.45 547.05 491.20 511.12 774.37

Random 502.17 466.43 509.30 485.51 424.41 765.45

Analytic 285.90 287.31 291.07 305.48 261.82 669.00

SimpleDQN
619.09 607.85 661.13 636.20 609.5 –

(10.70) (11.13) (13.63) (8.52) (9.25)

FRAP
560.82 520.75 538.33 526.14 534.84 –

(22.61) (15.10) (37.22) (22.36) (16.48)

PressLight
288.65 278.36 296.96 297.42 243.84 706.36

(1.87) (2.08) (2.66) (2.15) (4.31) (3.93)

Pretrained PressLight 289.77 280.43 300.17 314.26 287.98 697.71

GuidedLight
274.36 270.03 289.25 293.46 255.95 660.58

(1.78) (3.06) (1.98) (2.96) (2.48) (5.77)

Pretrained GuidedLight 271.44 265.55 277.07 285.84 246.71 647.45

https://github.com/mKafouros/PlanLight
https://github.com/mKafouros/PlanLight
https://github.com/mbkorecki/rl_traffic
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addresses with it length invariant state design, is less pronounced as the negative interactions between neighbors 
are less likely. For all settings except for NY16 GuidedLight is the second best. It is also worth noting that the 
analytic algorithm’s performance is exceptionally high and in most scenarios within 1–2% of the best result. Fur-
thermore, we note that in 5 out of 6 scenarios the Pretrained PressLight achieves worse results than PressLight, 
only in NY196 is the Pretrained version better, but by a very small margin. The situation is different with Guid-
edLight, where the pretrained version is significantly superior to the non-pretrained version in all scenarios. 
Moreover, it is clear that the NY196 scenario, being the most complex one, shows the biggest differences between 
the algorithms. It is also apparent that two of the ML methods—SimpleDQN and FRAP—perform surprisingly 
bad on the tested scenarios. In fact the performance of both these methods is worse than the performance of 
the Random and Fixed Time methods. Thus, we do not include these methods in the training, test time and 
convergence experiments.

Ablation study.  In Table 3, we report the results of the ablation study. We can see that the removal of the 
length invariant state description (GuidedLight-% state) leads to significantly worse results. The same is true of 
the removal of α-exploration. Finally, the removal of both of these features leads to the worst results. Interest-
ingly, it seems that the removal of the length invariant state description also increases the standard deviation of 
the last 10 training epochs which can be interpreted as the training process being less stable. It is worth noting 
that GuidedLight without % state and α-exploration is still better than PressLight, showcasing the benefits of 
using Double Deep Q-Network.

Training/test times and convergence.  In Fig. 4, we report the test and train times for the compared 
models as well as their results in terms of average travel time. All models were run on a cluster using AMD EPYC 
7742 CPU and requiring at least 8 cores, 2 GeForceRTX2080Ti GPUs and 2048 MB of RAM. As can be seen, the 
models have varied train time with GuidedLight requiring most training time and analytic requiring no training 
at all. On the other hand, at test time the analytic algorithm is most time-consuming.

It is important to note that the main source of the computational strain for the GuidedLight and the analytic 
algorithm is the calculation of the rates of arrival and departure. Due to the design of the simulation, computing 
these values requires some costly operations. In deployment, such values can be easily detected using inductive 
loops52. Thus the computational costs in the deployment of GuidedLight would be much closer, if not the same, 
as PressLight’s. Similarly, the analytic test time cost would become lower in deployment.

Table 3.   Results of the ablation study on the NY196 scenario. Bold Indicates result with the lowest average 
travel time. -% state indicates a model using absolute number of vehicles instead of road length adjusted 
coverage, - α-exploration indicates a model using random exploration. The values in brackets indicate the 
standard deviations of the last 10 training epochs.

Model Avg. travel time (s)

GuidedLight - α-exploration -% state 688.8 (9.33)

GuidedLight - α-exploration 682.97 (5.23)

GuidedLight -% state 684.66 (9.34)

GuidedLight 660.58 (5.77)

Figure 4.   Training and test times vs. the avg. travel time on the NY196 scenario. PT stands for pretrained.
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In Fig. 5, we report the convergence for training learning algorithms along with the results of the pretrained or 
non-learning approaches. We can see that for the synthetic scenarios the final results are similar for all compared 
methods. The largest differences occur in the NY196 scenario. It is interesting to note that the performance of the 
analytic algorithm in the NY196 is very high and that the GuidedLight trained on this scenario takes a around 
80 epochs to converge to the analytic results and even the best model barely surpasses the analytic results. Lastly, 
it can be seen that GuidedLight converges faster and towards better results than PressLight.

Discussion and conclusion
In this paper, we proposed a Machine Learning agent for traffic signal control that achieves, in the majority of the 
scenarios studied, better results than both state-of-the-art Machine Learning and analytic alternatives. Moreover, 
we have shown that our agent shows high levels of topological adaptability. Namely, a model pretrained on a 
simple setting with uniform distances between intersections achieved results surpassing all compared alterna-
tives when run on more complex scenarios with non-uniform distances between intersections. We showed 
that PressLight does not appear to adapt well to changes in topology, since the pretrained version of PressLight 
performed worse than PressLight. At the same time pretrained GuidedLight was shown to perform better than 
the non-pretrained version showcasing its topological adaptability. The success of the pretraining procedure in 
case of GuidedLight can be explained by its length invariant state design, which allows it to generalize its experi-
ence to different topological conditions. On the other hand PressLight is not able to perform such generalization 
as it will experience completely different states in different topological conditions. Our ablation study further 
confirmed the power of proposed improvements, both the length invariant state as well as the α-exploration 
approach. We also showcased the faster convergence of the GuidedLight agent over PressLight, which is due to 
the effects of α-exploration.

Moreover, we compared the training and test times of the studied methods. These values can be under-
stood as indicators of the environmental impact of the methods as computational time translates into energy 
expenditure13. Using a Machine Learning CO2 calculator53 we can perform some high level approximation of the 
actual amount of carbon emitted during training. We assume the world average value of carbon efficiency of 475 
g/kWh from 201954. Under these assumptions the training of GuidedLight on the NY196 scenario would emit 
0.56 kg of CO2 which is equivalent to burning 0.28 kg of coal or driving 2.26 km with an average car. On the other 
hand using the pretrained GuidedLight would yield only 0.08 kg of CO2 corresponding to burning 0.04 kg of coal 
or driving 0.32 km with an average car. That is 7 times less CO2 when using the pretrained model, a significant 
improvement. Furthermore the analytic solution would emit no CO2 altogether as it does not require training. 
It is worth noting that depending on the country where the computational power is located and the potential 
offsets employed these values may vary significantly. These calculations stress the importance of limiting the 

Figure 5.   Average travel time achieved through learning epochs for PressLight and GuidedLight along with the 
results achieved by the non-trained methods: analytic and two pretrained (PT) models.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16681  | https://doi.org/10.1038/s41598-022-21125-3

www.nature.com/scientificreports/

number of times the models need to be retrained and furthermore showcase how one can decrease the training 
costs by employing methods such as pretraining on a simpler scenario.

We noted the high training and test costs of GuidedLight but also noticed that the Pretrained GuidedLight’s 
testing and training times are very low. Thus the proposed pretraining procedure not only allows for great adapt-
ability but also increases the environmental friendliness of the method. Why train the model on a highly complex 
setting if it can adapt to it better after being trained on a simple, less demanding scenario. It is also important to 
note that the analytic method while performing worse than GuidedLight does not need any training. In some 
cases, it might be more beneficial and sustainable to deploy such a method even if there is a slight drop in effi-
ciency (in terms of avg. travel time for instance).

We also note the apparent lack of effectiveness of the SimpleDQN and FRAP methods, which, while being 
consistent with the results in other work50 (where both these methods perform worse than Fixed Time in real-
world scenarios), is still surprising. This low performance is likely due to the methods focusing on fully individual 
agents, with no parameter sharing or communications. Such agents require much more training data to learn 
optimal behavior. These findings reflect the need for strong baselines that can be used to judge the performance 
of ML methods. In a similar vein it reflects the need of varied testing scenarios. For example FRAP has been 
shown to perform better than some baselines in some simple scenarios30, but in more complex, realistic scenarios 
it appears to falter, as shown in this work.

With this work we hope to contribute to the trend of sustainability-conscious Machine Learning, which has 
recently seen growing interest. While we see the great potential of the Machine Learning for the particular prob-
lem of traffic signal control, exemplified by our results, we also believe it important to quantify and weight the 
environmental costs of such methods. Future directions for study include further investigating the pretraining 
procedure and identifying what properties of the smaller network used for pretraining lead to high adaptability of 
the model as well as considering models that are adaptable to disruptions in both topology as well as traffic flows.

In summary, we have presented and compared the topological adaptability and sustainability of some Machine 
Learning and analytic methods. We have shown the value of pretraining and intelligent state design as well as the 
benefits of injecting analytic knowledge into the Machine Learning models via exploration. Lastly, we were able 
to propose an adaptive and sustainable Machine Learning method—the Pretrained GuidedLight which boasts 
superior performance to the alternatives.

Data availability
The datasets generated and analyzed during this study are available from the corresponding author on reason-
able request. The code used to run the experiments is available https://​github.​com/​mbkor​ecki/​rl_​traff​ichere.
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