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Minimal and maximal 
lengths of quantum gravity 
from non‑hermitian 
position‑dependent 
noncommutativity
Latévi M. Lawson 

A minimum length scale of the order of Planck length is a feature of many models of quantum gravity 
that seek to unify quantum mechanics and gravitation. Recently, Perivolaropoulos in his seminal 
work (Perivolaropoulos in Phys. Rev. D 95:103523, 2017) predicted the simultaneous existence of 
minimal and maximal length measurements of quantum gravity. More recently, we have shown that 
both measurable lengths can be obtained from position-dependent noncommutativity (Lawson in 
J. Phys. A Math.Theor. 53:115303, 2020). In this paper, we present an alternative derivation of these 
lengths from non-Hermitian position-dependent noncommutativity. We show that a simultaneous 
measurement of both lengths form a family of discrete spaces. In one hand, we show the similarities 
between the maximal uncertainty measurement and the classical properties of gravity. On the 
other hand, the connection between the minimal uncertainties and the non-Hermicity quantum 
mechanic scenarios. The existence of minimal uncertainties are the consequences of non-Hermicities 
of some operators that are generators of this noncommutativity. With an appropriate Dyson map, 
we demonstrate by a similarity transformation that the physically meaningfulness of dynamical 
quantum systems is generated by a hidden Hermitian position-dependent noncommutativity. This 
transformation preserves the properties of quantum gravity but removes the fuzziness induced by 
minimal uncertainty measurements at this scale. Finally, we study the eigenvalue problem of a free 
particle in a square-well potential in these new Hermitian variables.

The idea of noncommutativity of space-time might provide deep indications about the quantum nature of 
space-time at a very small distance, where a full theory of quantum gravity must be invoked, has its root in 
string theory1. In fact, the noncommutativity of space-time is one of the promising candidate theories to the 
unification of quantum theory and General Relativity (GR). All the other candidate theories of unification such 
as string theory2, black hole theory3, loop quantum gravity4 predicted the existence of minimal measurement of 
quantum gravity at the Planck scale. To theoretically realize this minimal length scale in quantum mechanics, 
one has introduced a simple model, the so-called Generalized Uncertainty Principle (GUP)5–7 which is a gravi-
tational correction to quantum mechanics. Mostly, these theories of quantum gravity are restricted to the case 
where there is a nonzero minimal uncertainty in the position. Only Doubly Special Relativity (DSR) theories8–10 
suggest an addition to the minimal length, the existence of a maximal momentum. Recently, Perivolaropoulos 
proposed a consistent algebra that induces for a simultaneous measurement, a maximal length and a minimal 
momentum11. In this approach, the maximal length of quantum gravity is naturally arisen in cosmology due to 
the presence of particle horizons. Perivolaropoulos also predicted the simultaneous existence of maximal and 
minimal position uncertainties. More recently, we have shown that both position uncertainties can simultane-
ously be obtained from position-dependent noncommutativity and the minimal momentum is provided by the 
position-dependent deformed Heisenberg algebra12. In continuation of this work, we show that both lengths 
can also be derived from non-Hermitian position-dependent noncommutativity. The simultaneous presence of 
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both lengths at this scale form a lattice system in which each site represented by the minimal length is separated 
by the maximal length. At each minimal length point results of the unification of magnetic and gravitational 
fields. As has been recently shown13, the maximal length allows probing quantum gravitational effects with low 
energies and manifests properties close to the classical ones of General Relativity (GR).

It is well known that the existence of minimal uncertainties in quantum mechanics induces among other 
consequences14–18 a non Hermicity of some operators that generate the corresponding Hilbert space5,19–21. In the 
present case, the minimal length in the X-direction and the minimal momentum in the Py-direction lead to the 
non-Hermiticity of operators X̂ and P̂y that generate the noncommutative space12. Consequently, Hamiltonians 
Ĥ of systems involving these operators will in general also not be Hermitian. The corresponding eigenstates no 
longer form an orthogonal basis and the Hilbert space structure will be modified. In order to map these operators 
into their Hermitian counterparts. We introduce a positive-definite Dyson map η22 and its associated metric 
operator ρ which generate a hidden Hermitian position-dependent noncommutativity by means of similarity 
transformation of the non-Hermitian one i.e η

(

X̂, Ŷ , P̂x , P̂y , Ĥ
)

η =
(

x̂, ŷ, p̂x , p̂y , ĥ
)

=
(

x̂†, ŷ†, p̂†x , p̂
†
y , ĥ

†
)

 . Doing 
so, we tie a connection between the quantum mechanic noncommutativity with GUP23–32 and the non-Hermitic-
ity quantum mechanic scenarios33–47. Furthermore, this transformation preserves the uncertainty measurements 
at this scale but removes the fuzziness induced by the minimal uncertainty measurements. Finally, within this 
hidden Hermitian space, we present the eigensystems of a free particle in a box. We show that the existence of 
maximal length induces strong quantum gravitational effects in this box. These effects are manifested by the 
deformations of quantum energy and these deformations are more pronounced as one increases the quantum 
levels, allowing the particle to jump from one state to another with low energies and with high probability 
densities13. These properties are similar to the classical gravity of General relativity where the gravitational field 
becomes stronger for heavy systems that curve the space, enabling the surrounding light systems to fall down 
with low energies. The resulting time inside of this space runs out more slowly as the gravitational effects increase.

In what follows, we explore in section 2, the similarities between our recent deformed noncommutativity 
with GUP and the pseudo-Hermiticity quantum mechanic scenarios. We show that these deformations lead to a 
non Hermiticity of the position operator X̂ and the momentum operator P̂y . By constructing a Dyson map22 we 
provide their corresponding set of Hermitian counterparts. As a consequence of these deformations, we derive 
in section 3, the uncertainty measurements resulting from these deformations. In section 4, we study in terms 
of our new set of variables, the model of particles in a 2D box. We present our conclusion in section 5.

Non‑Hermitian position dependent noncommutativity
Given a set operators of X̂, Ŷ , P̂x , P̂y defined on the 2D Hilbert space and satisfy the following commutation 
relations and all possible permutations of the Jacobi identities12

where θ , τ ∈ (0, 1) are both deformed parameters that describe the frontier of the Planck scale. The parameter τ is 
the GUP deformed parameter5,48,49 related to quantum gravitational effects at this scale. The parameter θ is related 
to the noncommutativity of the space at this scale50–53. In the framework of noncommutative classical or quan-
tum mechanics, this parameter is proportional to the inverse of a constant magnetic field such that θ = 1/B52–54. 
Since the algebra (1) describes the space at the Planck scale, then such magnetic fields are necessarily superstrong 
and may play the role of primordial magnetic fields55. Obviously by taking τ → 0 , we get the θ-deformed space

Using the asymmetrical Bopp-shift42, we can relate the noncommutative operators (2) to the ordinary commuta-
tions ones as follows:

where the Hermitian operators x̂s, ŷs , p̂xs , p̂ys satisfy the ordinary 2D Heisenberg algebra

The operators ( ̂x0, ŷ0, p̂x0 , p̂y0) and ( ̂xs, ŷs , p̂xs , p̂ys ) from the algebras (2) and (4) respectevely, can be interpreted as 
the set of operators at low energies with the standard representations in position space. However the operators 
(X̂, Ŷ , P̂x , P̂y) of the algebra (1) can be interpreted as the set of operators at high energies with the generalized 
representation in position space. In terms of the standard flat-Hermitian noncommutative operators (2), we may 
now represent the algebra (1) as follows

(1)

[X̂, Ŷ ] =iθ(1− τ Ŷ + τ 2Ŷ2), [X̂, P̂x] = i�(1− τ Ŷ + τ 2Ŷ2),

[Ŷ , P̂y] =i�(1− τ Ŷ + τ 2Ŷ2), [X̂, P̂y] = i�τ(2τ Ŷ X̂ − X̂)+ iθτ(2τ Ŷ P̂y − P̂y)

[P̂x , P̂y] =0, [Ŷ , P̂x] = 0.

(2)
[x̂0, ŷ0] =iθ , [x̂0, p̂x0 ] = i�, [ŷ0, p̂y0 ] = i�,

[p̂x0 , p̂y0 ] =0, [x̂0, p̂y0 ] = 0, [ŷ0, p̂x0 ] = 0.

(3)x̂0 = x̂s −
θ

2�
p̂ys , ŷ0 = ŷs ,

(4)
[x̂s , ŷs] =0, [x̂s , p̂xs ] = i�, [ŷs , p̂ys ] = i�,

[p̂xs , p̂ys ] =0, [x̂s , p̂ys ] = 0, [ŷs , p̂xs ] = 0.

(5)X̂ = (1− τ ŷ0 + τ 2ŷ20)x̂0, Ŷ = ŷ0, P̂x = p̂x0 , P̂y = (1− τ ŷ0 + τ 2ŷ20)p̂y0 .
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Using the asymmetrical Bopp-shift (3), the above relation becomes

From these representations (5) and (6) follows immediately that some of the operators involved are no longer 
Hermitian. We observe

As is apparent, the operators X̂ and P̂y are not Hermitian. This situation is widely expected in various stud-
ies of quantum gravity since at this scale the space-time becomes fuzzy. This fuzziness is a consequence of 
existence of minimal uncertainties at this scale which induced a loss of Hermicities in X and P directions. In 
his elegant paper56, Kempf named this type of operators the unsharp degrees of fredoms which describe the 
space time at short distance. As an immediate consequence of the non Hermicities of the operators X and 
P is that, the Hamiltonian of the system involving these operators will in general also not be Hermitian i.e. 
Ĥ†(X̂ , Ŷ , P̂x , P̂y) �= Ĥ(X̂ , Ŷ , P̂x , P̂y) . In order to map these operators into Hermitian ones, some synonymous 
used concepts are introduced in the literature such as the PT -symmetry33–36, the quasi-Hermiticity37,38, the 
pseudo-Hermiticity39–41 or the cryptoHermiticity42–44. It has been clarified in34 that a non-Hermitian operator 
O having all eigenvalues real is connected to its Hermitian conjugate O† through a linear, Hermitian, invert-
ible, and bounded metric operator ρ such as ρOρ−1 = O† . Factorizing this operator into aproduct of a Dyson 
operator η and its Hermitian conjugate in the form ρ = η†η , it is established34 that the non Hermitian operator 
can be transformed to an equivalent Hermitian one given by o = ηOη−1 = o† . Schematically summarized, the 
latter can be described by the following sequence of steps

For the case at hand, we find that the Dyson map can be taken to be

so the hidden Hermitian variables x̂, ŷ, p̂x , p̂y can be stated in terms of θ-deformed space operators as follows

These operators satisfy the same deformed canonical commutation relations as their counterparts in the non-
Hermitian version of the theory (1)

As is well established in34, a consequence of the non-Hermiticity of an operator O , its eigenstates no longer 
form an orthonormal basis and the Hilbert space representation has to be modified. This is achieved by utiliz-
ing the operator ρ as a metric to define a new inner product �. | .�ρ in terms of the standard inner product �. | .� 
defined as

for arbitrary states ��| and |�� . The observables O are then Hermitian with respect to this new metric

An important physical consequence resulting from the algebra (1), is the loss of the Hermicity of certain opera-
tors which deformed the structure of the Hilbert space (15) as were predicted by the theory of Kempf et al5. 
In the next section, let us study Heisenberg’s uncertainty principle applied to a simultaneous measurement of 
operators of this algebra.

Minimal and maximal uncertainty measurements
For the system of operators satisfying the commutation relations in (1), the generalized uncertainty principle 
is defined as follows

(6)
X̂ =(1− τ ŷs + τ 2ŷ2s )x̂s −

θ

2�
(1− τ ŷs + τ 2ŷ2s )p̂ys , Ŷ = ŷs ,

P̂x =p̂xs , P̂y = (1− τ ŷs + τ 2ŷ2s )p̂ys .

(7)X̂† = X̂ − iθτ(1− 2τ Ŷ), Ŷ† = Ŷ , P̂†x = P̂x , P̂†y = P̂y + i�τ(I− 2τ Ŷ).

(8)O  =O
† ρ−→ ρOρ−1 = O

† η−→ ηOη−1 = o = o†.

(9)η = (1− τ Ŷ + τ 2Ŷ2)−1/2,

(10)x̂ =ηX̂η−1 = (1− τ ŷ0 + τ 2ŷ20)
1/2x̂0(1− τ ŷ0 + τ 2ŷ20)

1/2 = x̂†,

(11)p̂x =ηP̂xη
−1 = p̂x0 = p̂†x ,

(12)ŷ =ηŶη−1 = ŷ0 = y†,

(13)p̂y =ηP̂yη
−1 = (1− τ ŷ0 + τ 2ŷ20)

1/2p̂y0(1− τ ŷ0 + τ 2ŷ20)
1/2 = p̂†y .

(14)

[x̂, ŷ] =iθ(1− τ ŷ + τ 2ŷ2), [x̂, p̂x] = i�(1− τ ŷ + τ 2ŷ2),

[ŷ, p̂y] =i�(1− τ ŷ + τ 2ŷ2), [x̂, p̂y] = i�τ(2τ ŷx̂ − x̂)+ iθτ(2τ ŷp̂y − p̂y),

[p̂x , p̂y] =0, [ŷ, p̂x] = 0.

(15)��|��ρ := ��|ρ��,

(16)��|O��ρ = �O�|ρ��.
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where �A =
√

�(Â− �Â�ρ)2�ρ  and for B̂ . An interesting features can be observed through the following uncer-
tainty relations:

For τ = 0 , we recover the uncertainty relations of ordinary noncommutative quantum mechanics

In the Fig. 1, we plot the modified gravitational uncertainty (18) together with the ordinary quantum uncertainty 
(20). Alternatively, the generalized Heisenberg uncertainty (19) and the ordinary one (21) are plotted in the Fig. 4. 
As we pointed out in the above section, the uncertainty relations (20) and (21) describe states of representations 
at low energies characterized by a large value of the noncommutative parameter, e.g. θ = 0.9 . However, the 
generalized uncertainties (18) and (19) describes the high energy characterized by absolute minimal values of 
parameters θ and τ ( e.g. θ = τ = 0.1 ) which describe the Planck scale.

i) For the uncertainty relation (18), using �Ŷ2�ρ = �Y2 + �Ŷ�2ρ , the inequality (18) becomes

This Eq. (22) can be rewritten as a second order equation of �Y

By setting the Eq. (24) into

(17)�A�B ≥ 1

2
|�[Â, B̂]�ρ | for Â, B̂ ∈ {X̂, Ŷ , P̂x , P̂y},

(18)�X�Y ≥ θ

2

(

1− τ �Ŷ�ρ + τ 2�Ŷ2�ρ
)

,

(19)�Y�Py ≥
�

2

(

1− τ �Ŷ�ρ + τ 2�Ŷ2�ρ
)

.

(20)�x0�y0 ≥
θ

2
,

(21)�ys�pys ≥
�

2
.

(22)�X�Y ≥ θ

2

(

1− τ �Ŷ�ρ + τ 2�Ŷ�2ρ + τ 2�Y2
)

.

(23)�Y2 − 2

τθ
�X�Y + �Ŷ�ρ

(

�Ŷ�ρ − 1

τ

)

+ 1

τ 2
≤ 0.

= =0.1

=0; =0.9

Xmin 2 4 6 8 10
X

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Y

Figure 1.   The quantum uncertainty relation (20) and the quantum gravitational modification (22). The 
quantum uncertainty (orange curve) is plotted together with a modified gravitaional uncertainty relation (blue 
curve) respectively. The bue shaded region represents states that are allowed by quantum gravity but forbidden 
by regular quantum mechanics. The brown shade region represents states allowed by both quantum gravity and 
quantum mechanics.
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the solution are given by

The existence of real absolute minimal solution �Xmin of Eq. (25) is obtained by fixing �Ŷ� = 0 in X-direction

The Eq. (26) clearly shows that the absolute maximal length �Ymax corresponding to �Xmin is given by

Both solutions �Xmin and �Ymax confirm Perivolaropoulos’s prediction11. Different versions of minimal length 
uncertainties have been introduced in the literature56–65 which significantly improve the one proposed by Kempf 
et al5. These minimal length uncertainties are widely known to induce a singularity of position representation at 
the Planck scale i.e., they are inevitably bounded by minimal quantities beyond which any further localization of 
particles is not possible. In contrast to these findings, the obtained minimal length �Xmin = τ/B induces a broken 
singularity at the Planck scale as a result of an external magnetic field B. In fact this scenario can be regarded as 
the Landau quantization problem66, in which the Planck scale which is limited by the weak quantum gravitational 
field τ , is orthogonally subjected to the parallel universe superstrong magnetic field, causing it to bounce at this 
minimal point. This broken singularity manifested by a big bang unifies the weak quantum gravitational field 
and the superstrong magnetic field as minimal length (see Fig. 2).  A simultaneous measurement of the minimal 
length �Xmin and the maximal length �Ymax generates the inverse of the magnetic field as follows

If we iterate the process (28) n times, we generate a sequence of minimal lengths alternated by maximal lengths, 
such as

This sequence resembles a lattice structure in which each site represented by lmin is separated by lmax (see Fig. 3).
ii) Repeating the same calculation and argumentation in the situation of uncertainty relation (27) for simul-

taneous Ŷ , P̂y-measurement, we find the absolute maximal uncertainty �Ymax (27) and an absolute minimal 
uncertainty momentum �Pymin for �Ŷ�ρ = 0

(24)�Y2 − 2

τθ
�X�Y + �Ŷ�ρ

(

�Ŷ�ρ − 1

τ

)

+ 1

τ 2
= 0,

(25)�Y = �X

θτ 2
±

√

(

�X

θτ 2

)2

− �Ŷ�
τ

(

τ �Ŷ� − 1
)

− 1

τ 2
.

(26)�Xmin = τθ = τ

B
= lmin.

(27)�Ymax = 1

τ
= lmax .

(28)�Xmin�Ymax = 1

B
= lminlmax .

(29)...lminlmaxlminlmax ... ≃
1

Bn
.

Figure 2.   Representation of minimal length scale �Xmin.
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These results (30) are consistent with the ones obtained by Perivolaropoulos9. From these results, It’s worth 
noting that the GUP is reduced into �Ymax�Pymin = � . It is well known from the Heisenberg principle that the 
latter relation can be cast into

where �E = �Pymin c . Unlike the results obtained in the minimal length scenarios5,8,57–64, here the required 
uncertainty energy is weak since the dimension of length �Ymax is very large. This indicates that a maximal 
localization of quantum gravity induces weak energies for its measurement. Let us now consider the equation 
�Ymax = �tc . Inserting this equation in (31), one obtains

Since, the uncertainty energy is low in this space due to the maximal measurement of quantum gravity, then its 
time �t strongly increases i.e., the time runs more slowly in this space. In contrast to minimal length theories, 
the concept of maximal length quantum gravity developed in this paper admits a close analogy with the proper-
ties of gravity in GR in the sense that the gravitational field becomes stronger for heavy systems that curve the 
space, allowing the surrounding light systems to fall down with low energies. The resulting time inside of this 
space is dilated and length contraction takes effect. As will be demonstrated in the next section, the increase of 
the quantum gravitational parameter τ in an infinite square well potential curves the quantum levels to enable 
enable the particles to jump from one state to another with low energy and with high probability densities. The 
wavefunction compresses and contracts inward as one increases the effect of quantum gravitational effects.

iii) Finally, simultaneous measurements of operators (X̂, P̂y) , (X̂, P̂x) and (X̂, P̂y) are spatial isotropy since 
there is no minimal/maximal length or minimal momentum in their measurements.

Moreover, by repeating the GUP calculations with the hidden position-dependent noncommutativity (14), 
one generates the same uncertainty measurements

This indicates that the Dyson map does not remove the characteristics of quantum gravity at this scale i.e., it 
only removes the fuzziness induced by the singular points by shedding light on the hidden Hermitian space. 
Consequently, particles can be localized in precise ways in this new space. This situation could be compared to 
the gravitational holographic principle where the real information inside the black hole is virtually projected 
onto its event horizon. Taking this into consideration, the simultaneous representation of minimal length �Xmin 
and maximal length �Ymax (Fig. 3) can be illustrated as follows (Fig. 5)

 Hidden‑Hermitian free particle Hamiltonian in a box
The Hamiltonian of free particle in 2D non-Hermitian position-dependent noncommutative space reads as 
follows

(30)�Ymax = 1

τ
= lmax , �Pymin = �τ = pmin.

(31)�Ymax�E = �c =⇒ �E = �c

�Ymax
,

(32)�t = �

�E
.

(33)�xmin = θτ , �ymax = 1

τ
, �pmin = �τ .

Figure 3.   A simultaneous representation of minimal lengths �Xmin and maximal lengths �Xmax.
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As mentioned, any Hamiltonian depending on the operators X̂ or P̂y will obviously no longer be Hermitian. 
Thus, using the relations (5), we can transform the Hamiltonian (34) into the standard θ-deformed operator (2) 
as follows

Evidently this Hamiltonian is non-Hermitian Ĥ �= Ĥ† . Thus, the Hermicity requirement of this operator is 
achieved by means of a similarity transformation using the Dyson map. Thus, the Hermitian counterpart Ham-
iltonian becomes

(34)ĤF = 1

2m0

(

P̂2x + P̂2y

)

.

(35)ĤF = 1

2m0

[

p̂2x0 +
(

1− τ ŷ0 + τ 2ŷ20
)2
p̂2y0 − i�τ(1+ 2τ ŷ0)(1− τ ŷ0 + τ 2ŷ20)p̂y0

]

.

Pmin

=0.1

2 4 6 8 10
P

0.1

0.2

0.3

0.4

0.5

0.6

Y

Figure 4.   Generalized Heisenberg uncertainty (19) in accordance with ordinary Heisenberg uncertaity (21) 
after rescaling to dimensionless form. The blue shade region represents states allowed by both quantum gravity 
and quantum mechanics. This result is consistent with that of Perivolaropoulos11.

Figure 5.   Hidden Hermitian noncommutativity and Non-Hermitian noncommutativity.
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Using the relation (11,13), we rewrite the Hamiltonian in terms of the θ-noncommutative operators

Appealing to the nonsymmetric Bopp-shift (3), we may rewrite the above Hamiltonian as follows

The time-independent Schrödinger equation is given by

As it is clearly seen, the system is decoupled and the solution to the eigenvalue Eq. (39) is given by

where ψ(xs) is the wave function in the xs-direction and ψ(ys) the wave function in the ys-direction. Since the 
particle is free in the xs-direction, the wave function is given by26

where g(k) determines the shape of the wave packet and the energy spectrum is continuous26

In ys-direction, we have to solve the following equation

This equation is an agreement with the one introduced by von Roos67 for systems with a position-dependent 
mass (PDM) operator and it can be rewritten as68

where

being the PDM of the system strongly pertubated by quantum gravity13. The PDM is illustated in Fig. 6 as a 
function of the position ys (0 < ys < 0.3) . In this description, the effective mass of m(ŷs) increases with τ . This 
indicates that quantum gravitational fields increase with m(ŷs) . Otherwise, by increasing experimentally the PDM, 
one can make the quantum gravitational effects stronger for a measurement through the variation of the PDM 
of the system. Furthermore, the increase of PDM with the quantum gravitational effect will be a consequence of 
the deformation of the quantum energy levels, allowing the particle to jump from one state to another with low 
energy Figure 8. This observation is perfectly analogous to the theory of GR in which massive objects induce 
strong gravitational fields and curve space, allowing the surrounding light systems to fall down with low energies..

The Eq. (44) can be conveniently rewritten by means of the transformation ψ(ys) = 4
√

m(ys)/m0φ(ys) as in68

or

The solution of this Eq. (47) is given by13

(36)ĥF = ηĤFη
−1 = 1

2m0

(

p̂2x + p̂2y

)

.

(37)ĥF = 1

2m0

[

p̂2x0 + (1− τ ŷ0 + τ 2ŷ20)
1/2p̂y0(1− τ ŷ0 + τ 2ŷ20)p̂y0(1− τ ŷ0 + τ 2ŷ20)

1/2
]

.

(38)ĥF = 1

2m0

[

p̂2xs + (1− τ ŷs + τ 2ŷ2s )
1/2p̂ys (1− τ ŷs + τ 2ŷ2s )p̂ys (1− τ ŷs + τ 2ŷ2s )

1/2
]

.

(39)
ĥFψ(xs , ys) =Eψ(xs , ys),

(ĥxF + ĥ
y
F)ψ(xs , ys) =Eψ(xs , ys).

(40)ψ(xs , ys) = ψ(xs)ψ(ys), E = Ex + Ey

(41)ψk(xs) =
∫ +∞

−∞
dkg(k)eikxs ,

(42)Ex = Ek =
�
2k2

2m0
.

(43)
1

2m0
(1− τ ŷs + τ 2ŷ2s )

1/2p̂ys (1− τ ŷs + τ 2ŷ2s )p̂ys (1− τ ŷs + τ 2ŷ2s )
1/2ψ(ys) = Eyψ(ys).

(44)
(

− �
2

2m0

4

√

m0
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where � =
√

2m0Ey
�

 and A is the normalization constant. We notice that if the standard wave-function ψ�(ys) is 
normalized, then φ�(ys) is normalized under a τ-deformed integral. Indeed, we have

Based on this Eq. (50), the normalized constant A is determined as follows

so, we find

The next important point concerns, is the quantization of the energy spectrum; we will show below that this 
property comes directly from the orthogonality of these solutions. Since the operator ĥy is Hermitian, then the 
corresponding eigenfunctions ψ�(ys) are orthogonal. This property can be shown by considering the integral

which becomes, after an integration by parts,

Since these two integrals are equal, one has
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Figure 6.   PDM versus the position ys for different values of τ.
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The quantization follows from the Eq. (58) and leads to the equation

where one notices the case n = 0 i.e. � = �
′ , corresponding to the normalization condition considered in (54). 

Then, the energy spectrum of the particle is written as

As it is clairly obtained, the presence of this deformed parameter τ in ys-direction quantized the energy of a 
free particle. This fact comes to confirm the fundamental property of gravity which consists of contracting and 
discretizing the matter.

Then, the total eigensystem is given by

and

Now, we consider the above free particle of mass m0 captured in a two-dimensional box of length 0 ≤ xs ≤ a and 
heigth 0 ≤ ys ≤ a . The boundaries of the box are located. We impose the wave functions ψ(0) = 0 = ψ(a) . The 
eigensystems in xs-direction are given by

Taking the results (63) as a witness, we study what follows the influence of the deformed parameter τ on the 
system. In ys-direction, the solution is given by

where k =
√
2m0E′
�

 . Then by normalization, �ψk|ψk� = 1 , we have

so we find

Based on the reference8, the scalar product of the formal eigenstates is given by

This relation shows that, the normalized eigenstates (64) are no longer orthogonal. However, if one tends 
(k − k′) → ∞ , these states become orthogonal

These properties show that, the states |ψk� are essentially Gaussians centered at (k − k′) → 0 (see Fig. 7). This 
observation indicates primordial fluctuations at this scale and these fluctuations increase with the quantum 
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gravitational effects. The states |ψk� can be compared to the coherent states of harmonic oscillators69–72 which 
are known as states that mediate a smooth transition between the quantum and classical worlds. This transition 
is manifested by the saturation of the Heisenberg uncertainty principle �zq�zp = �/2 . In comparison with 
coherent states of harmonic oscillator, the states |ψk� strongly saturate the GUP ( �ψk

X�ψk
P = � ) at the Planck 

scale and could be used to describe the transition states between the quantum world and unknown world for 
which the physical descriptions are out of reach.

We suppose that, the wave function satisfies the Dirichlet condition i.e., it vanishes at the boundaries 
ψk(0) = 0 = ψk(a) . Thus, using especially the boundary condition ψk(0) = 0 , the above wavefunctions (64) 
becomes

The quantization follows from the boundary condition ψk(a) = 0 and leads to the equation

Then, the energy spectrum of the particle is written as

At the limit τ → 0 , we have

Thus, the energy levels can be rewritten as

The effects of the parameter τ in ys direction induce deformations of quantum levels, which consequently lead to a 
decrease in the amplitude of the energy levels. The corresponding wave functions to the energies (72) are given by
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Figure 7.   Variation of �ψk′ |ψk� versus k − k′ with a = 1.



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20650  | https://doi.org/10.1038/s41598-022-21098-3

www.nature.com/scientificreports/

The total eigenvalues of the system are given by

and

The wave function in xs, ys-directions are given by

At the limit τ → 0 , we have

The corresponding probability density is given by

Figure 8 illustrates the energy levels of the particle as functions of the quantum number n and the quantum 
gravitational parameter τ . As one increases the quantum number n from the fundamental level, the increase in 
τ gradually curves the energy levels (Figure (a)). For fixed values of τ , Figure (b) illustrates energy levels versus 
the quantum number n. Conversely to the graph obtained in68,73–75, one can see that, when τ increases, the 
amplitudes of energy levels Etn/E1 decrease. In fact, by increasing the quantum gravitational effects, it leads to the 
enhancement of binding quantum levels allowing particles to jump from one state to another with low energies13.

Figure 9 illustrates a comparison between eigenfunctions ψn(xs) and ψn(ys) for fixed values of n and τ . The 
wave function in xs-direction is taken as a witness with respect to that of the ys-direction where the effects of 
quantum gravity are strongly applied. For n ∈ {1; 5; 15; 20} , ψ(ys) compresses and contracts inward as one 
increases τ . This fact comes to confirm the fundamental property of gravity which is length contraction.

Unlike the figure reported in citations73,74, Fig. 10 depicts probability density plots for the three lower states 
n = 1; n = 5; n = 15; n = 30 for a fixed value of τ ( τ = 0.1) , it can be seen that the probability of finding a 
particle is practically the same everywhere in the square well and this probability strongly increases with the 
quantum number. This indicates that the deformations allow particles to jump from one state to another with 
low energies and with high probability densities.

Concluding remarks
In this paper, we revisited our recent concept of minimal and maximal lengths12 (previously predicted by 
Perivolaropoulos11) in the context of non-Hermitian position-dependent noncommutativity. We have shown 
that the existence of both lengths has interesting and significant properties of quantum gravity at the Planck 
scale. We showed that measuring both lengths at the same time produces a lattice system with each site rep-
resented by a minimal length lmin separated by a maximal length lmax . At each singular point, lmin results from 
the unification of strong magnetic and weak quantum gravitational fields. Furthemore, we have demonstrated 
that the maximal length of quantum gravity at this scale manifests properties similar to classical gravity and 
allows probing quantum gravitational effects with low energies. Moreover the existence of minimal uncertainties 
lead almost unavoidably to non-Hermicity of some operators that generate the noncommutative algebra (1). 
Consequently, Hamiltonians of systems involving these operators will not be Hermitian and the corresponding 
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Hilbert space structure is modified. In order to map these operators into Hermitian ones, we have introduced 
an appropriate Dyson map and by means of a similarity transformation, we have generated a hidden Hermi-
tian position-dependent noncommutativity (14). Furthemore, we have demonstrated that the maximal length 
of quantum gravity at this scale manifests properties similar to classical gravity and allows probing quantum 
gravitational effects with low energies. Moreover the existence of minimal uncertainties lead almost unavoidably 
to non-Hermicity of some operators that generate the noncommutative algebra (1). Consequently, Hamiltoni-
ans of systems involving these operators will not be Hermitian and the corresponding Hilbert space structure 
is modified. In order to map these operators into Hermitian ones, we have introduced an appropriate Dyson 
map and by means of a similarity transformation, we have generated a hidden Hermitian position-dependent 
noncommutativity (14). This transformation preserves the properties of quantum gravity but removes the fuzzi-
ness caused by the minimal uncertainties. Finally, to find the representation of a free particle in this new space, 
we have solved a non-linear Schrödinger equation. To do so, we have transformed this equation into von Roos 
equation67, then by an appropriate change of variable, we reduced this equation into a simple and solvable non-
linear Schrödinger equation. We observed that the increase of quantum gravitational effects τ in this region 
curves the quantum energy levels. These curvatures are more pronounced as one increases the quantum levels, 

Figure 8.   The energy En/E1 of the particle in 2D box of length a = 1 with mass m0 = 1 and � = 1.
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allowing the particle to jump from one state to another with low energies and with high probability densities. 
Furthermore, they contract and compress the wave function in ys-direction.

However, one can wonder about what happens in the case of a harmonic oscillator? In this way, the Hamil-
tonian of the system is given by

In terms of the θ-deformed variables, this Hamiltonian can also be re-written as follows

Since this Hamiltonian Ĥho is evidently non-Hermitian, we have to employ a Dyson map to convert it into Her-
mitian one as in the previous example
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Figure 9.   Comparison graph of ψn(xs) and ψn(ys) for a particle confined in an infinite square well of length 
a = 1 deformed by the gravity parameter τ in ys direction.
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This Hamiltonian may be also re-expressed as follows using the representations (10,11,12,13)

The eigensystems of the Eq. (84) are far more complicated to obtain with the same method as in the previous 
models, as the system viewed as a differential equation no longer decouples in x0 and y0 . We leave the construc-
tion of solutions for this model by alternative means to future work.
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−1 = 1

2m0

(

p̂2x + p̂2y

)

+ 1

2
m0ω

2(x̂2 + ŷ2).
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