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An agent‑based model of social 
care provision during the early 
stages of Covid‑19
Umberto Gostoli1,2 & Eric Silverman1,2*

Social care is a frequent topic in UK policy debates, with widespread concern that the country will be 
unable to face the challenges posed by the increase in demand for social care. While this is a societal 
problem whose dynamics depends on long-term trends, such as the increase of human lifespans and 
the drop of birth-rates, a short-term crisis, such as a pandemic, can affect the need and supply of social 
care to a considerable, although temporary, extent. Building on previous modelling effort of social 
care provision, we present an agent-based computational model to investigate social care provision 
in the context of a pandemic (using as an example, the early stages of the Covid-19 pandemic), and 
related mitigation policies, on social care demand and supply, using a proof-of-concept agent-based 
model (ABM). We show how policy solutions aimed at controlling the pandemic may have substantial 
effects on the level of unmet social care need and propose that such models may help policymakers 
to compare alternative containment policies, taking into account their side effects on the social care 
provision process.

Throughout much of the developed world, demographic trends, such as the increase of human lifespans and 
birth-rates drop, caused an increase in demand for social care, i.e., the provision of personal and medical care 
for people in need of assistance due to age, disability or other factors. In the UK, the social care supply is largely 
dependent on informal social care, or care provided free-of-charge by family members and loved ones, in order 
to meet the needs of the population. Informal care is enormously widespread in the UK and is much larger than 
the formal care infrastructure. The Family Resources Survey 2013/14 showed that there were 5.3 million informal 
carers in the UK1, while projections indicate that the number of people receiving informal care will increase by 
60% in the period 2015–20352. According to the Health Survey for England 2017, 68% of participants aged 65 
and over reported receiving help from unpaid helpers, while 21% said they had received help from both unpaid 
helpers and paid helpers3.

While the dynamics of unmet social care need depends mainly on long-run demographic trends, such as the 
increase of human lifespans and the reduction of birth-rates over many decades, relatively short-term crises, such 
as global disease outbreaks, can significantly affect social care provision, both directly and indirectly, through 
the effect of the policies which health authorities implement to contain the pandemic. The Covid-19 pandemic 
has, indeed, increased the pressure on informal carers significantly. Carers UK estimates that before the pan-
demic, the UK had 9.1 million unpaid carers, and that the impact of Covid-19 on vulnerable people generated 
an additional 4.5 million unpaid carers, for a total of 13.6 million4. Out of those already providing care before 
the arrival of the coronavirus, 81% report spending more time on care than they did previously5. Carers UK 
also estimates that carers had provided £135 billion of care between March and November 2020, representing a 
substantial increase over previous years.

One important feature of this pandemic, which makes it a good example to investigate the interaction with 
social care provision, is its highly unequal effect across demographic groups: the virus has affected vulnerable 
populations of older people and adults with disabilities particularly strongly. In the United Kingdom, for exam-
ple, Office for National Statistics data shows that 65% of deaths due to Covid-19 between 12 February 2021 and 
6 August 2021 were recorded in adults aged over 756. Amongst adults with disabilities, the risk of death due to 
Covid-19 was 3.1 times greater for more-disabled men as compared to non-disabled men, and 3.5 times greater 
for more-disabled women7. Given the greatly increased risk of death due to Covid-19 among the groups which 
have the highest levels of social care need, it is particularly important for policy makers to understand the 
interaction between the pandemic dynamics and social care provision, so that, when assessing the advantages 
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and disadvantages of alternative containment policies, their overall effect, i.e., including the effect on social care 
provision, is taken into account.

In this paper, we investigate the interaction between the social care provision process and pandemic dynam-
ics, using the example of the SARS-CoV-2 pandemic, commonly known as Covid-19. As such, this paper fills a 
gap between the (sparse) literature focusing on the modelling of social care provision and the growing literature 
focusing on agent-based models of pandemic dynamics. In this paper we present an agent-based simulation 
model of social care in the United Kingdom, which includes a model of the early stages of the Covid-19 pandemic 
and its impact on individuals. The novelty of our framework is represented by the integration of the pandemic 
dynamics with the process of informal social care provision, a framework through which we can therefore 
account for the interdependence between the two processes.

To be sure, the model we presented is not meant to provide specific policy recommendations, as they would 
require an evaluation of the desirability or value of various outcomes which can be only the result of a political 
process. Rather, we propose this framework as a tool allowing the policymakers to better assess the effects of the 
pandemic’s containment policies on social care provided. Moreover, while the demographic and institutional 
elements of the model presented in this paper have been developed to reflect the specific reality of the UK, the 
same framework can be straightforwardly used for other countries, by using the related country-specific demo-
graphic data and institutional settings.

Previous works.  Our model is composed of two main modules: a social care provision module and a Covid-
19 spread module. The social care provision module adopted in this paper is the latest development of a model-
ling effort spanning the last decade8–11, whose main features will be described in the next section.

The adoption of the agent-based methodology to model informal social care provision is quite recent and 
previous literature in this field is very sparse. One study related to the social care model used in this paper is a 
mixed micro-simulation/agent-based care supply and demand model, called DemoCare, recently proposed by 
Spijker et al12. This model takes into account fertility, mortality and marriage rates for cohorts born between 
1908 and 1968 to estimate the amount of care available from partners and children for people aged 50 or over. 
The DemoCare model uses micro-simulation to generate kinship networks of 10,000 representative agents, based 
on the demographic characteristics of each cohort, limiting the network to spouse, children, children-in-law and 
grandchildren. Then, through ABM simulations, they estimate the demand for care of these representative agents 
and the amount of this need which can be satisfied by spouse and children, taking into account whether they are 
working, their state of health and the needs for care of the rest of the family (e.g child care needs).

The social care provision model we adopt in this paper is fully agent-based, unlike DemoCare, and this meth-
odology allows us to account for the interactions between kinship networks (which occur when agents belong to 
more than one ego network). This interaction which is particularly important when enlarging the group of care 
suppliers beyond partners, children, children-in-law and grand-children to include brothers, nephews, aunts 
and uncles. Other important differences, such as a more extensive role for social status (which in the DemoCare 
model is represented by agents’ educational levels) and the endogenous determination of formal care though the 
working agents’ care-work choice, will be discussed in detail in the next section.

Agent-based modelling methodology has only recently been applied widely to the study of pandemics. The 
module presented in this paper shares some features with the work of Wilder et al.13, who proposed an agent-
based model of Covid-19 spread taking into account age and comorbidity distributions, age-stratified contact 
patterns and household structures. The model follows the standard SEIR agent classification, with four severity 
levels for infectious agents (asymptomatic, mild, severe and critical) and levels of infectiousness depending on 
the severity level (asymptomatic and symptomatic) and the stage of infection (before and after the onset of symp-
toms). In addition, agents are isolated if they are in the severe and critical severity levels while agents with mild 
symptoms become isolated after a number of days determined through a stochastic process. Agents can become 
exposed through in-household and out-of-household contacts, with the in-household contacts being more likely 
to transmit the virus. The out-of-household contacts are based on a country-specific contact matrix containing 
the mean number of daily contacts agents of an age group have with agents from each of the other age groups.

The model of Covid-19 spread we present in this paper, it the first attempt, to the best of our knowledge, to 
integrate social care provision with the pandemic’s dynamics (although limited to the first stages of it). As such, 
it includes significant differences compared to the above mentioned works. While the investigation of social care 
provision within the context of a pandemic represents certainly an addition to the literature on social care, our 
model contains important novel elements also with regards to Covid-19 modelling effort of Wilder et al. First, 
because of the integration with a social care provision model, our pandemic model has an additional exposure 
setting, represented by the social care-related interaction between agents. Second, in our model the agents have 
additional attributes such as their homes’ geographical location and the social status. These attributes have an 
important role in the generation of the contact networks (as we assume that agents close in location and social 
status are more likely to be part of the same contact network). Moreover, the agents’ social status affects the prob-
ability they will develop conditions of different severity levels (according to the epidemiological phenomenon of 
the social gradient in health). Finally, our model includes a behavioural module representing the decision process 
determining the agents’ degree of isolation, as a response to the various kinds of risks associated with Covid-19.

Results
In this section, we present the simulations’ results with a particular emphasis on the inequalities characterising 
both the pandemic and the social care outcomes.

The following graphs show, for each output, the mean across 20 repetitions, with 95% confidence intervals. 
Figure 1 demonstrates the model’s capacity to approximate the distribution of people hospitalized by age group. 
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We can see that, under a lockdown policy which allows freedom of movement for social care purposes (which 
is, among the policies we considered in these simulations, the one which most resemble the policy adopted by 
the UK government), the empirical shares of hospital admissions by age, as reported in14, are within the 95% 
confidence interval for all the age groups, except for the 0-19 age group, which appears to be at the lower limit 
of the confidence interval (note, however, that there is a slight discrepancy between the grouping of14, where the 
first age group is the 0–17 group, and the grouping of the simulations’ outcomes, where the first age group is the 
0–19 group. If we consider that the hospitalization rate increases with age, the empirical shares are higher for 
the 0–19 group and lower for the 20-39 group than they appear in Fig. 1).

Empirical studies have shown that, among non-pharmaceutical interventions, lockdowns have been the 
most effective ones in reducing the spread of Covid-1915,16. In the next set of figures, we compare the effects of 
two lockdown policies to the benchmark ‘no-lockdown’ scenario. In these figures, Policy 1 refers to the partial 
lockdown policy, i.e. a lockdown which allows movement for social care purposes, while Policy 2 refers to the ‘full 
lockdown’ policy. In both cases, the lockdown is imposed 3 days after the first death, and is lifted after 90 days.

Regarding the effects of these policies on the pandemic, we can see from Fig. 2a and b that the two policies 
reduce the height of the peak significantly; even a partial lockdown reduces the maximum number of people in 
hospital and on the ventilator by half. Figure 3a and b confirm this positive effect, by showing the total number 
of days of hospitalization and intensive care. We can see that Policy 1 and Policy 2 reduce the number of days of 
hospitalization by 40% and 60% respectively compared to the benchmark, and the percentage reduction of the 
number of days of intensive care is higher still.

The last four graphs show the effect of these two policies on social care provision. Figure 4a shows that the 
two policies have opposite effects on the amount of informal care provided: while total lockdown reduced the 
amount of informal care (as potential suppliers cannot provide care to people in need living in other households), 
partial lockdown increases the informal care provided, as under partial lockdown people have more time to 
allocate to social care (an effect which is consistent with empirical observations). The effect of this variations of 
care supply on unmet care need are shown in Fig. 4b, where we can see an increase of unmet care need under 
Policy 1 and a decrease of it under Policy 2.

Figure 1.   Share of hospitalized by age group.

Figure 2.   Policy comparison: outcome dynamics.
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The following two figures show the differences between policies in terms of care provision and unmet care. 
From Fig. 5a and b we can see that the two policies have opposite effects on the amount of informal care and, 
therefore, unmet care need. While Policy 1 has a positive effect with regards to social care provision and unmet 
care need, the opposite is true for Policy 2, with the level of unmet care need with this latter policy being more 
than 20% higher than the level of unmet care need under the former policy.

Figure 3.   Policy comparison: aggregate outcomes.

Figure 4.   Policy comparison: care dynamics.

Figure 5.   Policy comparison: care aggregate outcomes.
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To sum up, we can say that our simulations show that while Policy 1 has a positive effect on hospitalisations, 
intubations and unmet care need, in the case of Policy 2 the policy maker faces a trade-off posed by the even 
greater positive effect on the pandemic outcomes and an increase of about 13% of the level of unmet care need.

Sensitivity analysis
Typically, the results of ABM simulations depend on many parameters which are characterized by a high degree 
on uncertainty. In our model, in particular, there are parameters related to the agents’ behaviour and the social 
networks which are not empirically determined and for which we must perform a sensitivity analysis in order 
to determine their importance in driving the simulations’ outcomes. In this sensitivity analysis, we chose the 
number of hospitalisations as the main output of interest.

Table 1 shows the total effect on the outcome’ variance for the eight parameters we included in the sensitivity 
analysis, the first four of which determine the agents’ behaviour, while the last four affect the size and structure 
of the social networks. To determine the ranges, we halved (lower bound) and doubled (higher bound) the 
parameters’ benchmark values.

We can see that the ‘base’ sensitivity to risk factors ( µ ) and the effect of income ( ω ) on the overall sensitivity 
are two of the most important parameters, with an effect on the overall variance of total hospitalizations of 35% 
and 27% respectively. The effect of the knowledge of infection on the behaviour within the household and during 
the care provision ( φ ) is the second most important parameter, determining about 33% of the total variance of 
the outcome. The other-regarding preferences (affecting the behaviour of knowingly infected people) and the 
parameters affecting social network size and structure appear to have a marginal role in driving the outcome 
we considered.

Discussion
In this work, we presented a ‘proof of concept’ of an agent-based framework integrating a model of social care 
provision with a model of Covid-19 spread, during the early stages of the pandemic. This novel framework, 
allowed us to study the effect on the provision of social care of both the Covid-19 spread and the public health 
measures taken to contain it. We showed that the model could be used to evaluate the relative advantages and 
disadvantages of alternative policies, and can therefore represent an important decision-support tool for policy-
making decisions in this complex and highly uncertain context.

The model results demonstrate that policy-makers have a trade-off to consider when imposing public health 
restrictions in these circumstances. When lighter restrictions are imposed, informal social care provision 
increases, as informal carers have more time available and are not restricted from providing care; however, 
under these conditions the negative outcomes of the pandemic are more modestly reduced. Conversely, under 
more severe restrictions informal social care between households becomes impossible, worsening care outcomes 
through a significant increase in unmet care need, while the effects of the pandemic are more effectively con-
tained. Models like this one could be used to investigate the nature and extent of these public health trade-offs, 
so that policy-makers may make informed decisions based on the current state of the pandemic.

The results also reflect the social gradients of health and care present in these scenarios. Unmet social care 
need is distributed highly unequally, with the lowest income quintile having four times as much unmet care need 
as the highest quintile. The sensitivity analysis shows that the number of contacts is a significant factor driving 
these results, which suggests that the higher income quintiles benefit from having jobs with greater inherent 
flexibility, which enables them to work from home in larger numbers and take more time off work to provide 
informal care.

Being this work a proof-of-concept, the framework presented in this paper contains many simplifications as 
our purpose was not to provide a complete model to make accurate forecasts but rather to develop a minimal 
model focusing on the interdependence between the pandemic dynamics and the informal social care provision 
process. Therefore, we included a ‘minimal’ model of the Covid-19 spread, which we aim to extend in future 
works. For this reason, We did not include, at this stage, important factors affecting the pandemic dynamics, such 
as the environmental and the institutional context, and we restricted our analysis to the stage of the pandemic 
prior to the introduction of vaccines. In addition, we did not include the effects of common interventions such 
as face coverings. In our future work we will continue to refine and extend this model to maximise its utility for 
public health policy-makers.

Table 1.   Sensitivity analysis.

Parameter Behaviour affected Range Total effect

φ Domestic/care prudence [0.25, 1.0] 2.0

ξ Other-regarding concern [0.005, 0.02] 33.04

ω ‘Income-effect’ [0.25, 1.0] 2.28

µ ‘Base’ sensitivity to outcomes [20, 80] 27.06

s Number of contacts [0.05, 0.2] 35.54

r Same-class contacts [0.1, 0.4] 0.68

h Same-area contacts [0.001, 0.004] 1.05

k Same-friends contacts [0.05, 0.2] 2.81
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Methods
This computational modelling study was carried out following all relevant guidelines; note that we only use pub-
licly available population data, such as the Human Mortality Database17, Eurostat18 and the Office for National 
Statistics19. No human experiments were performed, nor was any human data collected during the course of 
this study.

The model is composed of three main modules:

•	 A demographic module (from year 1860 to year 2019, with yearly steps).
•	 A social care module (from year 2020, for 180 daily steps).
•	 A Covid-19 spread module (from year 2020, for 180 daily steps).

First, the demographic module creates a population on the UK with a realistic demographic structure, starting 
in the year 1860 and running until the year 2020 in one-year time steps. Then, from the beginning of the year 
2020, a social care module and a Covid-19 spread module generate the social care provision process and the epi-
demiological progression of the pandemic respectively. These process then proceed for 180 one-day time steps 
(i.e., we simulate the first 6 months of the pandemic).

The demographic module.  The initial population of couples is randomly distributed on a 812-cell grid 
approximating the geography of the United Kingdom. Agents live in houses which form towns, with the density 
of those houses varying in rough proportion to UK population density. The agent population is scaled down 
from real UK levels at a factor of roughly 1:10,000. The simulation begins in the year 1860, which allows suffi-
cient time for the population dynamics to stabilise before 1951, at which point UK Census mortality and fertility 
data is incorporated into the simulation17,19. Agents form partnerships, have children, start working (and earn an 
income), relocate, retire and die, according to sub-modules the details of which have been described in previous 
works8–11 and a summary of which is reported in the Supplementary Information.

Here we only mention the socioeconomic structure of the population generated by the demographic mod-
ule: agents belong to one of five socioeconomic status groups (SES groups), based on the Approximated Social 
Grade from the Office for National Statistics, redistributed as in Gostoli and Silverman10. Moreover, the model 
contains a social mobility process: an agent is assigned the SES group associated with the education level he has 
reached, with a probability of moving further up the education ladder depending on the household’ income and 
the parents’ level of education. The introduction of SES groups has a number of effects on the various stages of 
agent life-courses: a higher SES is associated with lower mortality and fertility rates; higher hourly salaries; and 
lower salary growth rate. Socioeconomic status affects the agents’ wealth, which is randomly assigned to agents 
according to their accumulated salaries to reproduce the 2016 UK wealth distribution. The socioeconomic posi-
tion of an agent affects social care supply within the household through the agent’s income, as we assume that 
the share of income allocated to care supply increases with the household’s per capita income. Moreover, the 
inclusion of agents’ SES allows us to take into account the social gradient in health, which affects both the social 
care demand, with the probability of transition to higher levels of care need being higher for agents of lower 
SESs, and the pandemic dynamics, with the probability of developing more severe infection courses depending 
negatively on the agents’ income level.

The social care module.  The social care module simulates the social and child care provision processes, 
starting from the year 2020, for 180 days. This module is based upon previous work on simulating child care 
provision11. The social care module can be conveniently described by looking at three key aspects:

•	 The care demand.
•	 The care supply.
•	 The care provision process.

Care demand.  In the model, total care demand is given by two components: childcare and social care demand. 
As for the latter, agents begin the simulation in a state of good health, and subsequently may develop care needs 
according to age-, gender- and SES-specific probabilities. Table 2 shows the five possible categories of care need, 
and the hours of care need required at each level. In line with the current understanding of care need progres-
sion, we assume that agents who develop a condition requiring care do not recover, but instead progress to 
higher levels of severity and care need over time. This progression through the care need levels depends on age, 

Table 2.   Care need categories/levels and number of hours of care required.

Care need category Care need level Weekly hours of care required

None 0 0

Low 1 8

Moderate 2 16

Substantial 3 36

Critical 4 84
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gender, SES, and the cumulative unmet care need experienced by that agent. We therefore assume that large 
amounts of unmet care need increase frailty.

As for childcare need, we assume that all children, with the exception of newborns, have identical childcare 
need, requiring 10 hours of care each day. The net care need for each child agent varies by age, given the presence 
of child care and education policies targeted at specific age groups. Newborns have a much higher care need 
which must be provided by their mother, who in turn allocates all her care supply for the newborn.

Care supply.  In this model, the care is provided through three main sources: informal care, privately paid-for 
formal care and government care. As for informal care, it is provided by the agents’ network of relatives. Agents 
requiring care have kinship networks linking them to households with members having a consanguineous or 
affinal relationship with that agent. Within these networks we define ‘degrees’ of kinship, based on the distances 
between the agent and each household in the network. This kinship distance ranges from 0 for agents in the 
same household, to III (uncles and aunts, or nieces and nephews). The supply of social care available to an agent 
is determined by the size of its kinship network, the kinship distances in that network, and the individual states 
of household members contained in that network. The hours of care supply that can be provided by each agent 
according to status and network distance are shown in Table 3. In addition to kinship distance, physical distance 
also impacts care provision. In this model we assume that care receivers may only receive informal care if the 
provider is in the same town. We also assume that kinship distance restricts the provision of formal care; private 
paid-for care occurs only between members of the same household, or between parents and children.

Formal care may be provided within the care receiver’s household or by households with first-degree kinship 
relationships to the receiver. Income allocated for care may be used to buy private paid-for care, or to reduce 
hours spent at work in order to provide informal care (meaning that the income allocated in this case represents 
unearned income, rather than spent income). The care receiver may also purchase private care with their own 
wealth. The share of their wealth allocated to formal care is positively correlated to their overall financial wealth.

As outlined in previous work11, agents with care needs may be eligible for publicly funded care, via a govern-
ment-funded care scheme based upon the framework in place in England (see the Supplementary Information 
for details).

Care provision process.  In this model we adopt the care allocation process developed in our previous work11. 
We simulate care allocation as a negotiation taking place across agent kinship networks. We assume that child-
care needs have priority over social care needs. Therefore, the allocation process unfolds in two stages: 1) the 
available care supply (available time/income for care) is allocated to child care need; 2) remaining resources 
are provided to social care needs (we refer the reader to the Supplementary Information for details of the care 
allocation process).

In both stages the allocation process randomly samples one care-receiving unit (which is an individual in the 
case of social care, or a household in the case of child care), with a probability proportional the unmet care need 
of that unit. The care receiver is then linked with a care-providing household in the receiver’s kinship network; 
potential care-giving households are sampled with a probability proportional to that household’s care supply. 
After the care supplier has been chosen, a 2-hour unit of care is provided from one member of that household 
with available supply to the care receiver. If the supplying household is at distance I, then that household may 
choose to provide either time (in the form of informal care) or income (in the form of formal care).

When choosing between providing assistance in the form of income or time, the choice is made depending 
on the hourly wage of the worker in the supplying household with the lowest wage. If the price of formal care is 
higher than that wage, then the supplying agent will prefer to take time off work to provide informal care; if the 
price of formal care is lower, then the agent will prefer to purchase that care and remain in work.

The Covid‑19 spread module.  Building on the framework underlying our previous social care models, 
we introduce a model of Covid-19 spread which takes into account UK demographic structure, income distribu-
tion, age- and income-specific social mixing patterns, household structure and social care provision networks. 
The model does not include a range of environmental and institutional factors (e.g. weather, temperature, public 
health spending, among others) which have been found to affect the different pandemic dynamics between 
countries20–22. By modelling the pandemic dynamics in a single country (the UK),  we can consider these con-
textual elements to be fixed, and we can focus on the socio-economic factors determining the inequalities of the 
Covid-19 outcomes within the UK.

Table 3.   Amount of care agents can provide depending on their status and kinship distance from the care 
receiver. *Employed agents can provide additional care if they choose to reduce their working hours (i.e. in 
case it is more convenient than using income to pay for formal care. See the Formal Care section for details).

Agent status Household (D 0) D I D II D III

Teenager 12 0 0 0

Student 16 8 4 0

Employed* 16 12 8 4

Retired 56 28 16 8
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As in the standard SEIR model, the agents can be in one of four states: susceptible, exposed, infectious or 
removed (i.e. recovered or deceased). As for the conditions of the infected agents after the virus incubation period, 
we distinguish between: asymptomatic, mild symptomatic (i.e., not hospitalized), severe (i.e., hospitalized but not 
in intensive care) and critical (i.e., in intensive care).

An infected agent is given a viral load, which is sampled from a standard uniform distribution. The viral 
load determines the agent’s contagiousness and, together with their age and income quintile, the severity of their 
symptoms (which we call the agent’s symptoms severity index ( π)). The severity index affects both the agent’s 
mobility (which is equal to 0 for those hospitalized) and the probability that it takes a test to determine whether 
it is infected.

The main features characterizing our model of the pandemic are:

•	 The inclusion of a behavioural module determining the agents’ behavioural response to the risks of being 
infected or infect others.

•	 A multi-setting exposure process, composed of: a social setting, a domestic setting, and a social care setting.
•	 Age-, income- and gender-specific probabilities of developing different virus infection courses.

Behavioural module.  While in standard SEIR models, the behavioural reaction is implicit in the probability of 
disease transmission, agent-based modeling allows us to develop an explicit model of the way the agents’ modify 
their behaviour in response to the pandemic’s spread. In this model, the agents react to the risks posed by the 
pandemic by reducing their social and work activities – by self-isolating. We assume that the agents can be con-
cerned about two kinds of risk:

•	 The risk of being infected, if susceptible or if unknowingly infected (e.g. asymptomatic agents).
•	 The risk of infecting others, if knowingly infectious.

Infected agents become aware of their infection status if they take a test, which is taken with a probability that 
depends on the severity of their symptoms.

As for susceptible agents, who will be concerned about the risk of being infected, the factor by which they 
reduce their social and work activity (the mobility reduction rate (m)) depends on their sensitivity to the virus 
spread. The variable measuring the spread ( ρ ) is represented by the weighted moving average of the number of 
new cases, relative to the size of population. Formally, the mobility reduction rate is given by:

where g represents the susceptible agent’s overall sensitivity to the risk of being infected, which depends funda-
mentally on two parameters of the behavioural model:

•	 The infection fatality rate (f). It is a characteristic of the virus, and it is constant as during the simulation the 
virus does not evolve. For the agents, it represents the expected ‘cost’ of being infected and it depends on the 
agents’ age, income and gender.

•	 The ‘base’ sensitivity to infection’s outcomes ( µ ). It is a behavioural parameter representing the ‘strength’ of 
the agents’ reaction to a unit increase of the infection fatality rate.

For a not-working agent (e.g., a retired agent), the degree of isolation does not affect its income and the occupa-
tional factor is not relevant, so the agent’s sensitivity to risk becomes:

In case the agent is working, their sensitivity to the risk of being infected depends also on:

•	 The agent’s income factor ( ω)
•	 The agent’s occupation factor ( σ)

If the agent is working, indeed, reducing its mobility may mean reducing its working hours and therefore its 
income. Agents with a relatively high income can afford a higher reduction of their working hours compared 
to agents with a low income. Finally, agents with different kinds of occupations differ in their capacity to work 
from home. In line with empirical observations23, we assume that people of low social status have jobs with less 
inherent flexibility and are less able to work from home, compared to the jobs of people of high social status. 
The agent’s income quintile is used as a proxy for its social status. Formally, the agent’s sensitivity to the risk of 
being infected for a working agent is given by:

where g is a proportionality parameter and ω is an increasing function of the agents’ income quintile.
For the reasons mentioned above, therefore, we should expect old people of high social status to be the most 

sensitive to the risk of being infected, and young people of low social status to be the least sensitive; in other 

(1)mb =
1

egρ

(2)gsu = fµ

(3)gsw = fµωσ



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16534  | https://doi.org/10.1038/s41598-022-20846-9

www.nature.com/scientificreports/

words, we should expect agents of the former category to adopt a stricter isolation regime compared to the latter, 
for a given increase in case numbers.

As for the knowingly infectious agents, who will be concerned about the risk of infecting others, we assume 
that their mobility reduction depends on their sensitivity to the share of the susceptible population S:

For working agents, once again the sensitivity depends on the income and occupation, but differently from the 
susceptible agents, we assume that it depends on the general infection fatality rate, F, (as opposed to the agent-
specific infection fatality rate) as it is the variable measuring the virus fatality among the population. Formally, 
the infectious agents’ sensitivity to the share of susceptible is given by:

and for unemployed agents:

where ξ is a parameter representing the ‘strength’ of the agents’ social (or other-regarding) preferences (i.e., how 
much they care about others’ well-being).

Apart from behavioural reactions to pandemic risks, the mobility of infected agents who are not asymptomatic 
may be reduced because of the debilitating effect of the virus. We assume that the extent to which the infected 
agent’s mobility is reduced depends on its symptoms severity index, π , according to the formula:

where η is a parameter determining how the mobility decreases as the severity of the agent’s symptoms increase. 
Therefore, the overall agent’s mobility reduction rate m, will be given by:

Exposure settings.  In this model, a susceptible agent can become exposed in three settings:

•	 Informal social care setting.
•	 Domestic setting.
•	 Social setting.

As for the social care setting, agents with social care needs interact with relatives providing care from other 
household, a process through which the virus spreads. We assume that the probability of being infected by the 
care receiver or the care supplier depends on the contagiousness of the infected agent, on the duration of the 
interaction and, if the person carrying the virus is the care receiver, on whether the person knows about their 
infection status. If the receiver knows they are infectious, we assume that both the care receiver and the care sup-
plier adopt a prudent behaviour which reduces the risk of contagion by a certain factor φ which is a parameter 
of the model. When the care supplier is infectious and aware of their status, we assume instead that they do not 
provide any care supply.

With regards to domestic interaction, agents can be infected through interactions within their household. 
The capacity of an infected household member to transmit the virus to a susceptible agent depends on their 
contagiousness (their viral load) and whether the infected agent knows they are infected. If the agent knows they 
are infected, we assume that households adopt a prudent behaviour reducing the risk of contagion by a certain 
factor φ which is a parameter of the model.

Finally, agents engage in a series of social interactions through which they come into contact with agents 
which are part of their ego network. These ego network of an agent is characterized by a size (i.e. the total num-
ber of contacts) and a distribution of contacts by age group, which depend on the agent’s age group, according 
to empirical findings on social mixing patterns (24–26). In line with findings of empirical studies of the effect of 
social status on social networks27, we assume that the network size increases with the agents’ social status (rep-
resented by their income quintile), according to a factor s which is a parameter of the model. The probability 
that two agents are part of the same network depends negatively on the geographical and social status distances 
and positively on the number of common friends, with the ‘strength’ of these three factors being regulated by 
three parameters of the model (indicated in the sensitivity analysis below as, respectively, h, r and k). Once a 
link is created between two agents, a weight is assigned to the link equal to the probability of its creation, so that 
the interaction between pairs of agents is more ‘intense’ the closer they are geographically and socially, and the 
higher the number of common friends.

Because of the physiological effect of the virus (for infected agents with symptoms) and the agents’ behavioural 
reaction to the risks posed by the pandemic (see the previous sub-section), during the pandemic the capacity and 
availability of the agents to engage in social interactions may be reduced by a certain factor, which we call the 
agent’s isolation rate (i). The values of i can go from 0 to 1 for hospitalized agents. The isolation rate affects the 
size and the composition of the list of the agent’s daily contacts. First, the mean number of contacts for an agent 
is reduced by a factor equal to the product of that agent’s isolation rate and the weighted average of its contacts’ 

(4)mb =
1

egS

(5)giw = µξFωσ

(6)giu = µξF

(7)mv = (1− π)η

(8)m = min(mb,mv)
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isolation rates (with the weights being the strength of the network’s links); second, the weights of the links are 
reduced by the contacts’ isolation rates (so that the agent is less likely to meet people with higher isolation rates).

On any given day, the probability that a given agent becomes exposed, depends on three indexes representing 
the intensity of the interaction in the three settings mentioned above, and the interactions’ contagiousness, which 
is 0 for interactions with susceptible or exposed (i.e. infected but not yet contagious) agents. Formally, an agent’s 
probability of becoming exposed pe is given by:

where r is the total risk of infection, which is given by:

with s being the risk of exposure by social contact, d the risk of domestic exposure and c the risk of being infected 
through the social care process (multiplied by the respective proportionality factors, which are parameters of 
the model).

The risk of exposure by social contact, in turn, is given by:

where n is the number of daily contacts and v̄ is the contacts’ average contagiousness.
The risk of domestic exposure, is given by:

where h is the size of the household, vi is the contagiousness of household member i and θ is a prudential behav-
iour, risk-reducing factor, which is equal to 1 if the agents are not infected or are infected but are unaware of 
this fact, while θ < 1 otherwise.

Finally the risk of exposure through social care is given by:

where k is the number of social care interactions (the number of people met to receive or provide for care), ti 
is the number of hours of care in interaction i, θ is the test-dependent, risk-reducing factor, φ is a parameter 
determining how the risk grows with the time of care (in our simulations, φ < 1 , meaning that the risk grows 
with time but at a decreasing speed) and vi is the contagiousness of the agent met in interaction i.

Virus infection courses.  Once an agent has become exposed through one of the three spread settings described 
above, it is assigned one infection course over four possible courses, listed below in order of growing severity:

•	 Asymptomatic
•	 Mild conditions (symptomatic not hospitalized)
•	 Severe conditions (hospitalized not in intensive care)
•	 Critical conditions (in intensive care)

In accordance with empirical studies, we assume that the probabilities through which each exposed agent is 
assigned one of these conditions depends on the agent’s age, social status (income quintile) and gender, with 
the probability of developing more serious conditions growing with age, decreasing with social status and being 
higher for males than for females28–34.

Upon exposure, the agent is also assigned an incubation period, which, in line with empirical observations35,36, 
is drawn from a log-normal distribution with mean of about 5 days, and a recovery period, whose length depends 
on the severity level assigned to the agent (in line with the empirical findings, we assume that the more severe the 
infection the longer the recovery period), in order to reproduce a log-normal distribution of the recovery period 
with mean of about 12 days at the population level. The exposed agent is also assigned a viral load, ǫ , which is 
drawn from a standard uniform distribution.

After the incubation period, the agent starts to develop symptoms (if not asymptomatic) and, in line with 
empirical observations37, we assume that the exposed agent becomes infectious 2 days before the emergence of 
symptoms (therefore, 3 days after exposure, on average). We assume that the agent’s contagiousness v is a grow-
ing function of its viral load:

with δ being a parameter regulating the relationship between viral load and contagiousness.
We differentiate the conditions of symptomatic agents by assigning them a symptoms severity index, between 

0 and 1 exclusive, with the probability of the agent being assigned a higher value increasing with its viral load 
and its age, decreasing with its income quintile and being higher for males than for females. The closer to 1 the 

(9)pe =
er − 1

er

(10)r = αs + βd + γ c

(11)s = nv̄

(12)d =

h∑

i=1

viθ

(13)c =

k∑

i=1

(tiθ)
φvi

(14)v = εδ
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symptoms severity index, the more severe are the symptoms, the greater is the reduction of the agent’s mobility 
and the higher the probability that the agent will take a test.

After the recovery period, some agents will die, with a probability that also depends on age, social class and 
gender. All other agents recover and we assume that they are immune to Covid-19 thereafter.

The pandemic‑social care interaction.  The pandemic and the social care provision process affect each 
other, and one of our main goals in this paper is to investigate this complex relationship, especially in terms of 
unmet social care need inequalities across social classes.

In the previous subsection, we have already seen that the social care provision process affects the dynamics 
of the pandemic as the care-related interactions represent a channel through which the pandemic spreads. On 
the other hand, the pandemic affects both the demand and the supply of social care.

On the demand side, agents who are hospitalized receive all the care they need in hospitals, and therefore 
these parts of social care demand are reduced to 0 for the duration of the hospitalization period. On the other 
hand, we assume that infected people may develop symptoms that, although not severe enough to require hos-
pitalization, are sufficiently debilitating that they generate additional social care needs (other than reducing the 
capacity to provide for social care to nil, if the agents were normally care suppliers). Further, we assume that in 
infected children with symptom severity above a certain threshold, though below hospitalisation level, are not 
able to attend school and therefore increase the child care load of their household.

On the supply side, symptomatic agents who are not hospitalized have their care supply reduced to nil if the 
severity of their symptoms exceeds a certain threshold or if they become aware of their infected status. If the 
symptom severity of non-hospitalized agents remains below the threshold, the social care they can normally 
supply is reduced by a certain factor which depends on their symptom severity.

Besides the pandemic’s direct effects on social care provision, the model we present is a useful tool to inves-
tigate the effects of policies implemented to prevent the spread of Covid-19, such as lockdowns. In the Results 
section below, after presenting the results for the ‘No-lockdown’ benchmark scenario, we will show the effects 
of two lockdown policies: a ‘full lockdown’ policy, under which the agents are not allowed to visit other house-
holds, and a ‘partial lockdown’ policy, under which people can visit other households for social care purposes. 
In the latter case, we expect the total care supply to increases as we assume that the normally occupied agent 
(i.e. workers or students) will have more time available for social care provision, given their reduced level of 
‘pre-pandemic’ activity. The effect of ‘full lockdown’ case on social care supply will be more complex as, if on one 
hand the normally occupied agents will have more time for social care, on the other, under this policy, people 
are not allowed to visit other households, so there will be a decrease of carer as people in need can only count 
on the carers within their household. In both cases, the simulations allow us to assess the extent to which social 
care supply is affected and to take into account these effects in the assessment of the overall desirability of these 
policy, in comparison to other policies.
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