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Chemical forms of cadmium in soil 
and its distribution in French 
marigold sub‑cells in response 
to chelator GLDA
Hongchuan Li1, Deming Kong1, Borui Zhang1, Yusef Kianpoor Kalkhajeh2, Yingying Zhao1, 
Jieying Huang1* & Hongxiang Hu1*

The use of degradable chelating agents to facilitate phytoextraction is a promising low‑cost method 
for the remediation of heavy metal‑contaminated soils. However, there are few studies on how plants 
and soils respond to the chelating agents. In this study, the responses of French marigold (Tagetes 
patula L.) and soil cadmium (Cd) to the chelator tetrasodium glutamate (GLDA) was investigated in 
a 180 d field trial. Five GLDA treatments (0, 292.5, 585, 1170, and 2340 kg  hm−2) were carried out in 
a Cd‑contaminated soil (0.47 mg  kg−1) under French marigold plantation. The results showed that 
the application of GLDA promoted the transformation of other forms of Cd in soil to exchangeable 
state, and the exchangeable Cd and Fe–Mn oxide bound state increased by 42.13% and 32.97% 
(p < 0.05), respectively. The cell wall Cd accumulations significantly increased 9.39% (p < 0.05) and the 
percentages of soluble fractions increased by 460.33% (p < 0.05). Furthermore, increases occurred 
in soil pH, as well as DOC and DTPA‑Cd contents with increasing the total amount of GLDA. The 
composite application of GLDA (2340 kg  hm−2) with French marigold reduced the total soil Cd content 
by 7.59% compared with the soil background. Altogether, results of this study suggested that the 
application of GLDA can effectively activate soil Cd and enhance the capability of French marigold for 
the remediation of Cd‑contaminated soils.

Soil heavy metal pollution is a major ecological problem in urban  areas1. Among which, cadmium (Cd) is one of 
the most mobile and biotoxic elements threating soils  health2. If enters the plant in excess amounts, Cd can dam-
age plant growth and development, inhibiting photosynthetic respiration of leaves and reducing their uptake of 
nutrient  elements3. In human bodies, Cd can cause damages to the bones, immune system, and nervous system, 
resulting in serious risks of carcinogenesis, teratogenesis, and  mutagenesis4. Therefore, it is of major importance 
to reduce the Cd content in the soil.

Chelator-enhanced plant uptake and accumulation of heavy metals is one of the most promising technologies 
for the remediation of heavy metal contaminated  soils5. Chelating agents can form soluble complexes with insolu-
ble heavy metals to facilitate their transfer from soil to the  plants6. The organic chelator tetrasodium glutamate 
diacetate (GLDA) is a novel green and harmless chelator with sufficient  biodegradability7. The degradation rate 
of GLDA can reach more than 60% within 28 days, and its degradation products have no adverse effects on the 
 environment8. The drenching test showed that GLDA has a strong activation capacity for soil heavy metals, and 
it can be used to enhance plant uptake and accumulation of soil heavy  metals9. Some hyperaccumulative plants 
can accumulate large amounts of Cd in their above ground parts without being affected by Cd toxicity; Although 
different genotypes of crops accumulate the identical amount of Cd in each organ, but the degree of damage 
varies greatly that, in turn, is closely connected to the subcellular distribution of intracellular  Cd10. Subcellular 
localization of heavy metals can reveal the accumulation and tolerance mechanisms of plants to heavy  metals11–13. 
Results of subcellular distribution of Cd in some woody plants suggested that cell walls and vesicles play impor-
tant roles in the heavy metals’ tolerance  process14–17. At present, only some indoor and potted experiments have 
been conducted to prove that GLDA has good potential for strengthening plants such as Southeast Jingtian 
and elephant  grass18,19. However, most of the plants studied had low biomass and poor resistance to cadmium 

OPEN

1Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, School of Resource 
and Environment, Anhui Agricultural University, Hefei 230036, People’s Republic of China. 2Department of 
Environmental Science, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, 
Wenzhou 325060, Zhejiang, People’s Republic of China. *email: hjy@ahau.edu.cn; hongxianghu@ahau.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-20780-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17577  | https://doi.org/10.1038/s41598-022-20780-w

www.nature.com/scientificreports/

 stress20. To our best knowledge of literature review, there are few studies addressing the subcellular distribution 
of Cd in French marigold. Likewise, the morphological transformation of soil heavy metals after the application 
of activators have received relatively less attention. Furthermore, the effect of actual agricultural soil remedia-
tion by GLDA may be significantly different from the potted trials due to runoff leaching and biodegradation.

Therefore, in this paper, GLDA was combined with French marigold to carry out a plot experiment for the 
remediation of a Cd-contaminated farmland soil. In this experiment, we investigated the responses of subcellular 
distribution of Cd fractions in French marigold, as well as soil DOC, and Cd morphology to the application of 
different doses of GLDA. We are hopeful that the results of this study can provide a methodological reference 
for the remediation of Cd-contaminated soils.

Materials and methods
Experimental materials and instruments. Site Description: The experimental site was selected around 
a small enterprise in Anhui Province, China, in a northern subtropical monsoon climate zone (Longitude: 
117.17; Latitude: 32.48). In this area, the average annual temperature and precipitation are about 13  °C and 
1100 mm, respectively. The topography is hilly-terrain and the soil type is Luvisols. Table 1 shows the basic 
physical and chemical properties of the study soils.

Plant. Yellow variety of French marigold. Buy from Jiangsu Forest Tree Seed Industry Company.

Materials. Tetrasodium glutamate diacetate (GLDA) was purchased from Anhui Cool Biological Engineering 
Co. Sucrose; Tris–HCl, Dithiothreitol,  MgCl2, NaAc-HAc, and  NH2OH-HCl were purchased from Shanghai 
Aladdin Biochemical Technology Co. Other reagents (HCl,  HNO3,  HClO4, etc.) were guaranteed grade reagents, 
and could be used without further purification.

Instrument. Acidimeter (STARTER 3100) for soil pH; Coolable thermostatic shaker (IS-RDD3, USA) for tem-
perature regulation and control during DTPA-Cd extraction; Graphite furnace-flame spectrophotometer (iCE 
3500 Thermo, Thermo Fisher Scientific Ltd.) for the determination of Cd concentration; and TOC analyzer 
(TOC-V CPN FA, CN200, Shimadzu Corporation, Japan) for the determination of soil DOC.

Experimental design. After rototilling the cultivated layer of the farmland, 15 plots with an individual area 
of 4  m2 (2 m × 2 m) were divided within the contaminated field. A ditch (20 cm width and 30 cm depth) was dug 
between the plots. To eliminate the surface runoff, plastic plates were inserted into ditches. For individual Cd 
contamination classes, five different treatments were practiced including control (CK), total GLDA application of 
292.5 kg  hm−2 (A1), total GLDA application of 585 kg  hm−2 (A2), total GLDA application of 1170 kg  hm−2 (A3), 
and total GLDA application of 2340 kg  hm−2 (A4). In GLDA amended plots, the total GLDA was divided in two 
averaged applications with 15 days interval. In each plot, 12 French marigold seedlings were transplanted evenly 
on May 10, 2020. The first part of GLDA was applied after 60 days of cultivation, and the second application took 
place 15 days later. To do so, GLDA was dissolved in deionized water and uniformly applied to the inter-root soil 
with 25-L buckets. French marigold and soil samples were collected 180 days after seedlings’ transplantation. We 
applied identical fertilization scheme for all plots, i.e., compound fertilizer (25:10:16 N:P2O5:K2O) was applied 
simultaneously with seedlings’ transplantation at a rate of 200 kg  hm−2, and urea (total N ≥ 46.0%) was added 
30 days after seedlings’ transplantation at a rate of 1100 kg  hm−2. Compound fertilizer and urea were applied by 
burrowing and spreading, respectively. All treatments were replicated three times.

Sample collection and analysis. Determination of Cd content in each part: The above-ground and 
below-ground dry samples were weighed, 0.2 g each was digested by 10 mL  HNO3-H2O2 in microwave for 5 h. 
After digestion and volume determination, Cd concentration was determined by graphite furnace-flame spec-
trophotometer via the quality control of national standard plant sample of celery (GBW 10048).

Subcellular distribution of Cd in French marigold: 0.50 g of the deionized water-washed fresh leaves was 
washed in a pre-chilled buffer [0.25 M sucrose, 1.0 mM dithioerythritol, and 50 mM Tris–HCl (pH 7.5)], and then 
grounded to homogenate to a final volume of 20 mL. All these steps were performed at 4 °C. The homogenates 
were centrifuged at 3000 r  min−1 for 15 min, and the precipitated fraction obtained was the cell wall fraction (F1); 
the resulting supernatant was centrifuged at 15,000 r-min−1 for 30 min and separated again to obtain the organelle 
fraction (F2); the supernatant was the cell-soluble soluble fraction (F3). All fractions were extracted and digested 
with  HNO3:HClO4 (9:1, v/v) as described above. A graphite furnace atomic absorption spectrophotometer (iCE 
3500 Thermo, Thermo Fisher Scientific Ltd.) was used to determine the concentration of subcellular Cd.

Table 1.  Physical and chemical properties of the soil.

pH
Total soil Cd
mg·kg−1

DTPA-Cd
mg·kg−1

Organic 
matter/g·kg−1

Alkali-
hydrolyzable 
nitrogen/ 
mg·kg−1

Olsen-P
mg·kg−1 DOC/mg·kg−1

Viscous 
particles /%

A disposal 6.53 0.47 0.09 30.71 253.06 53.51 82.98 23.42
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Soil sample collection and analysis: Composite soil samples were collected to the depth of plant roots. Prior to 
the analyses, plant residues were removed, soil samples were air-dried and sieved through 1 mm and 0.149 mm, 
respectively, and then stored in self-sealing bags. Total amount of soil Cd was determined according to GB/T 
17141-1997. Weigh 0.15 mm soil sample 0.2000 g, put it in the microwave effect tube, add 1 mL of  HCLO4, 2 mL 
of HCL, 5 mL of  HNO3. Efficient reaction was carried out at 160 °C. DTPA-Cd was determined according to HG 
804-2016. Finally, the concentration was determined using a graphite furnace-flame spectrophotometer (iCE 
3500 Thermo, Thermo Fisher). The detection limit was 0.02 μg·L−1, and each sample was measured three times, 
and then the quality control of the national standard sample (GSS-5) was used, and the recovery rate of Cd was 
97.2–102.4%. DOC was determined with a TOC analyzer at a water-soil ratio of 5:121. Cd morphology grading 
in soil: the five-step sequential extraction method proposed by Tessier et al. (1979) was used. This method parti-
tions the heavy metals into five operationally defined chemical fractions: exchangeable, carbonate bound, iron 
and manganese oxides bound, organic matter bound, and residual.

Data analysis. In this study, the correlation coefficients were calculated via the following equations:

where BCF is the enrichment factor, indicating the ability of aboveground plant to enrich soil Cd; TI is the 
transfer factor, indicating the ability of aboveground plant to transfer Cd from the roots;  Cds is the Cd content 
(mg  kg−1) of aboveground plant;  Ct is the total Cd content in the soil (mg  kg−1); and  Cg is the root Cd content 
(mg  kg−1).

The mean and standard deviation of the data were calculated using Excel 2010. The significance of differ-
ences, correlation analyses, and linear fitting were carried out using SPSS 20.0. The data were plotted using 
Origin 2017C.

Results and discussion
Effect of GLDA application on the biomass、enrichment and transfer of Cd in French mari‑
gold. The enrichment and transfer coefficients can reflect the enrichment and transfer characteristics of Cd 
in the soil-French marigold  system22. As shown in Table 2, taking all treatments into account, French marigold 
biomass rises first and then declines, A3 treatment improved 32.26% compared to ACK. This is due to the low 
concentration of GLDA in promoting plant growth, while the high concentrations are inhibitory. The Cd con-
tents of the upper and the lower parts of the peacock meadow were 0.19–0.37 and 0.54–0.84 mg  kg−1, respec-
tively. The BCF values of A1, A2, and A3 were all significantly higher than that of CK (p < 0.05), indicating that 
a small amount of GLDA application significantly improved the aboveground enrichment of soil Cd. However, 
there was no significant difference between A3 and A4, which may be due to the imbalance between the too fast 
DTPA-Cd translocation rate and the rate of DTPA-Cd uptake by French marigold itself, resulting in a blocked 
uptake of DTPA-Cd and inhibiting the significant accumulation of aboveground Cd with increasing total GLDA 
 application23. The mean TI value of 0.43 was significantly higher than CK-TI of 0.35, indicating that GLDA 
application promoted the transfer of Cd from the roots to the  aboveground24.

Effect of GLDA application on subcellular distribution of heavy metals in the upper part of 
French marigold. Effects of different rates of GLDA application on subcellular distribution of Cd in the 
upper part of French marigold are shown in Fig. 1. As can be seen, GLDA application significantly increased the 
Cd content in the cell wall (F1), organelles (F2), and soluble fractions (F3) of French marigold (p < 0.05) (Fig. 1). 
Correspondingly, the subcellular distribution of Cd fractions were ordered as cell wall (F1) > organelle (F2) > sol-
uble fraction (F3). The percentages of cell walls and organelles decreased by 19.35% and 2.87%, respectively, 
whereas that of soluble fractions increased by 460.33%. The plant cell wall (F1) is the first site for Cd fixation 
after its transportation to the plant cells due to its proteins and polysaccharides components, adsorbing Cd ions 
and restricting their transport across the cell  membrane25,26. Moreover, the surface of the plant cell wall is nega-
tively charged and the Cd ion is positively charged, thereby facilitating Cd  complexation27. The decrease in the 
proportion of Cd in the organelle (F2) may be due to the fact that the cell wall and empty vesicles sequester most 

(1)BCF = Cds/Ct

(2)TI = Cds/Cg

Table 2.  Cd content and enrichment, and transport coefficient of maidenhair in different GLDA treatments. 
In the figure, there is a significant difference between different treatments for lower case letters (p ＜ 0.05), the 
same below.

Biomass kg/m2

Cd content/mg  kg−1

BCF TIAbove-ground plant parts Foot end

ACK 0.31 ± 0.03a 0.19 ± 0.02d 0.54 ± 0.01e 0.43 ± 0.03d 0.35 ± 0.02c

A1 0.32 ± 0.01a 0.24 ± 0.01c 0.63 ± 0.01d 0.54 ± 0.01c 0.38 ± 0.01bc

A2 0.35 ± 0.03a 0.31 ± 0.02b 0.64 ± 0.01c 0.71 ± 0.05b 0.48 ± 0.03ab

A3 0.41 ± 0.01a 0.35 ± 0.01ab 0.78 ± 0.01b 0.83 ± 0.03a 0.45 ± 0.02ab

A4 0.32 ± 0.02a 0.37 ± 0.02a 0.84 ± 0.01a 0.91 ± 0.03a 0.44 ± 0.01a
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of the Cd entering the plant, enhancing the compartmentalization of the cytoplasm and mitigating Cd damage 
to the cells, as well as maintaining the normal physiological and metabolic functions of the  plant28. The soluble 
fraction (F3) mainly consists of vesicles, which contain many proteins, sugars, and organic acids. The latter can 
bind heavy metals to reduce their effectiveness and to decrease their transportation to the  organelle29,30, thus 
reducing the stress of cadmium on plants. A significant increase occurred in the percentage of cellular soluble 
Cd content with increasing GLDA application, likely due to the high content of sulfur-rich states and organic 
acids in the vesicles that chelate and segregate Cd, thus eliminating Cd damage to the  organelles31. The increase 
of Cd content in soluble fraction was flatten followed by a reduction, similar to Floodgate’s  principle32. Less Cd 
entered the cell at low DTPA-Cd concentrations, but when the Cd concentration exceeded a certain threshold, 
the Cd transport to the cell would suddenly increase, leading to an increase in the percentage of soluble fraction. 
It indicates that applying glda enhances the absorption of Cd in soil by French marigold.

Effects of GLDA application on soil pH and DOC. Soil pH is the main factor affecting the release of 
heavy  metals33,34. Along with DOC, soil pH can affect plant growth and Cd  bioavailability35. Figure 2 shows the 
soil pH of different treatments. Accordingly, GLDA application significantly increased soil pH from 6.84 in CK 
to 7.2; The average pH value of A1 to A4 was 7.08, which increased with increasing the total GLDA application, 
revealing a significant increase in soil pH after GLDA application. The hydrolysis process of -COO- content 
of GLDA is as follows: –COO– + H2O=–COOH + OH–, thereby increasing the OH- ions in soil solution and 
subsequently solution  pH36.

From Fig. 2, the DOC mass concentration of CK was 86.94 mg  kg−1, and those of A3 and A4 were 147 mg  kg−1 
and 221 mg  kg−1, respectively, significantly higher than CK. This suggests that GLDA application significantly 
increased the mass concentration of soil DOC. The main source of DOC in soil systems is the decomposition 
of living organisms, and the increased DOC from the GLDA application may contain: soluble small molecule 
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Figure 1.  Subcellular distribution of Cd in maidenhair.
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organic matter from GLDA degradation; GLDA on the activated portion of organic matter originally presents in 
the soil; stimulation of soluble organic acids and microbial secretion in French marigold roots by GLDA; soluble 
fraction of decomposition of other living  organisms37,38. The GLDA degradation of DOC (up to 98% in 21d) 
was notably higher than that originally presents in the soil (generally not more than 2% of the total soil organic 
carbon) and the fraction that could be activated to DOC, suggesting that the increased DOC in this experiment 
was mainly from the GLDA  degradation39,40. This shows that GLDA can improve the soil DOC content.

Effects of GLDA application on soil total Cd and DTPA‑Cd content. Chelators can induce the release 
of soil Cd and increase the DTPA-Cd content that, in turn, increases its enrichment by plants and decreases the 
total soil Cd  content41,42. It can be seen from Fig. 3 that the soil total Cd content of each treatment decreased 
significantly with increasing GLDA application. The lowest soil total Cd content was 0.41 mg  kg−1 under GLDA 
application rate of 2340 kg  m−2, 7.59% lower than the CK.

GLDA application rate of 2340 kg  m−2 significantly increased the effective Cd content by 35% compared with 
CK, while the effective Cd content did not change remarkably with increasing GLDA application (Fig. 3). This 
is in agreement with the results of Wang et al.43 who studied the effect of EDTA on Cd enrichment in foliar red 
beets. It can be seen that, due to the limitation of the background value of soil Cd at a certain concentration, 
large application GLDA can increase the soil DTPA-Cd content until it is stabilized.

Effect of GLDA application on Cd morphology in soil. The fugitive morphology of heavy metals in 
soils directly affects their toxicity and environmental  behavior44. Figure 4 shows that Cd in CK soils was mainly 
existed in the residual state, followed by the exchangeable state, Fe–Mn oxide bound state, and carbonate bound 
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state, with the least availability in organic bound state; A1, A2, A3, and A4 treatments significantly increased 
the exchangeable Cd by 8.57%, 19.86% , 34.29%, and 42.13%, respectively, compared with CK; Fe–Mn oxide 
bound state increased by 32.97% under A4 treatment, and the residual and organic bound states both decreased 
to the different degrees by 31.34% and 74.84%, respectively. This indicates that GLDA application promoted 
the conversion of other forms of soil Cd into the exchangeable state, with the greatest decrease of 29.97% in the 
residual Cd state.

Exchangeable state is the most activated form of heavy metals, that is highly mobile and toxic, and directly 
plant accessible; residual state is the most stable form of heavy metals that cannot be removed and used by the 
plants; other forms are less active but undergo transformation under certain specific  conditions45,46. Figure 4 also 
demonstrates that GLDA application changed the fugitive morphology of soil Cd, and facilitated its extraction 
by French marigold by increasing and decreasing the contents of exchangeable and residual Cd, respectively, 
thus increasing the effectiveness of Cd.

Conclusion

(1) GLDA application significantly increased the Cd content in the upper part of French marigold and pro-
moted its transfer from the roots to the above ground. Besides, GLDA could increase the Cd content in 
the soluble part of the plant cells and promote cell wall fixation of Cd.

(2) GLDA application significantly increased soil pH, as well as DOC and DTPA-Cd contents, while reducing 
soil total Cd content by 7.59% for 120 d of French marigold planting.

(3) GLDA application significantly increased the contents of soil exchangeable and Fe–Mn oxide Cd, and 
reduced the contents of residual and organic bound Cd.

(4) The less environmentally risky and biodegradable chelator GLDA has a major potential to enhance the 
phytoremediation of Cd-contaminated soils.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.

Received: 3 August 2022; Accepted: 19 September 2022
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