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The degradation of performance 
of a state‑of‑the‑art skin 
image classifier when applied 
to patient‑driven internet search
Seung Seog Han1,2,11, Cristian Navarrete‑Dechent3,11, Konstantinos Liopyris4, 
Myoung Shin Kim5, Gyeong Hun Park6, Sang Seok Woo7, Juhyun Park8, Jung Won Shin8, 
Bo Ri Kim8, Min Jae Kim8, Francisca Donoso3, Francisco Villanueva3, Cristian Ramirez3, 
Sung Eun Chang9, Allan Halpern10, Seong Hwan Kim7* & Jung‑Im Na8*

Model Dermatology (https:// model derm. com; Build2021) is a publicly testable neural network that 
can classify 184 skin disorders. We aimed to investigate whether our algorithm can classify clinical 
images of an Internet community along with tertiary care center datasets. Consecutive images from 
an Internet skin cancer community (‘RD’ dataset, 1,282 images posted between 25 January 2020 to 
30 July 2021; https:// reddit. com/r/ melan oma) were analyzed retrospectively, along with hospital 
datasets (Edinburgh dataset, 1,300 images; SNU dataset, 2,101 images; TeleDerm dataset, 340 
consecutive images). The algorithm’s performance was equivalent to that of dermatologists in the 
curated clinical datasets (Edinburgh and SNU datasets). However, its performance deteriorated 
in the RD and TeleDerm datasets because of insufficient image quality and the presence of out‑
of‑distribution disorders, respectively. For the RD dataset, the algorithm’s Top‑1/3 accuracy 
(39.2%/67.2%) and AUC (0.800) were equivalent to that of general physicians (36.8%/52.9%). It 
was more accurate than that of the laypersons using random Internet searches (19.2%/24.4%). 
The Top‑1/3 accuracy was affected by inadequate image quality (adequate = 43.2%/71.3% 
versus inadequate = 32.9%/60.8%), whereas participant performance did not deteriorate 
(adequate = 35.8%/52.7% vs. inadequate = 38.4%/53.3%). In this report, the algorithm performance 
was significantly affected by the change of the intended settings, which implies that AI algorithms at 
dermatologist‑level, in‑distribution setting, may not be able to show the same level of performance in 
with out‑of‑distribution settings.

Abbreviations
AI  Artificial intelligence
AUC   Area under the curve
CNN  Convolutional neural network
OOD  Out-of-distribution
ROC curve  Receiver operating characteristic curve
RCNN  Region-based convolutional neural network

OPEN

1Department of Dermatology, I Dermatology Clinic, Seoul, Korea. 2IDerma Inc., Seoul, Korea. 3Department 
of Dermatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. 4Department 
of Dermatology, University of Athens, Andreas Syggros Hospital of Skin and Venereal Diseases, Athens, 
Greece. 5Department of Dermatology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, 
Korea. 6Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, 
Seoul, Korea. 7Department of Plastic and Reconstructive Surgery, Kangnam Sacred Heart Hospital, Hallym 
University College of Medicine, 1, Singil-ro, Yeong deong op-gu, Seoul 07441, Korea. 8Department of 
Dermatology, Seoul National University Bundang Hospital, 82 Gumi-Ro 173 Beon-Gil, Seongnam 463-707, 
Gyeonggi, Korea. 9Department of Dermatology, Asan Medical Center, Ulsan University College of Medicine, 
Seoul, Korea. 10Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New 
York, NY, USA. 11These authors contributed equally: Seung Seog Han and Cristian Navarrete-Dechent. *email: 
kalosmanus@naver.com; jina1@snu.ac.kr

https://modelderm.com
https://reddit.com/r/melanoma
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-20632-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16260  | https://doi.org/10.1038/s41598-022-20632-7

www.nature.com/scientificreports/

The advent of convolutional neural networks (CNNs) and the invaluable role of better quality and larger datasets 
have led to remarkable advances in both clinical images and dermoscopy machine learning  algorithms1–5. For 
clinical image analysis, several studies have showed dermatologist-level performance in retrospective experi-
mental settings. Fujisawa et al. developed a 14-disease classifier using 4,867 skin tumour images, with a Top-1 
accuracy of 76·5%6. Liu et al. developed a 419-disease classifier using 64,837 images, and their system increased 
the Top-1 accuracy of primary care physicians from 48 to 58% in a reader  test7,8. Masaya et al. reported on a 
59-disease classifier developed using 70,196 images, with a Top-1 accuracy of 57.9%9.

However, most algorithms have been tested using a small number of internal datasets generated by specialists 
in tertiary care centres. Although the expertise of a user can affect an algorithm’s performance in real-world set-
tings, few studies used images captured by patients; in contrast, most studies have been conducted using private 
datasets, and few benchmark studies have been  performed10,11.

In medical research, very few prospective studies have been reported, and there are only 11 randomized 
controlled trials evaluating deep learning  tools12,13. Considering that most of the failed prospective studies are 
not reported, it is doubtful whether the retrospective results of deep learning based algorithms are predictive 
of the real-world performance. In computer vision research, the change of object backgrounds and imaging 
viewpoints made a 40–45% drop in performance of the state-of-art  CNNs14. This implies that the performance 
of a CNN is vulnerable to out-of-distribution setting and a rigorous validation with diverse datasets is required 
to check the generalizability of algorithms.

Model Dermatology (https:// model derm. com) is an ensemble of CNNs that can classify 184 skin  diseases15–17. 
Because algorithm performance may vary depending on intended uses, we evaluated using various datasets 
with different characteristics. To validate the algorithm using layperson-captured images, we created a dataset 
comprising images posted by an Internet melanoma community (The ‘RD dataset’, Table 1). Additionally, we 
tested the algorithm using datasets obtained through teledermatological (TeleDerm  dataset18) and conventional 
dermatological care (SNU  dataset17 and Edinburgh dataset). In this study, the standalone performance in terms 
of Top accuracy in multi-class classification, sensitivity, specificity, and area under the curve (AUC) in binary 
classification for determining malignancy were analysed. The aim of this study is to demonstrate how the per-
formance of algorithms is affected by the change in settings by comparing the performance of the algorithm 
on datasets with different characteristics. In particular, the performance of the algorithm using the community 
images was compared because the community images are the typically out-of-distribution.

Results
Top-(n) accuracy represents that the correct diagnosis is among the top n predictions output by the model.

Binary classification of malignant versus benign disorders. When using the RD dataset, the AUC 
for determining malignancy was 0.800 (95% CI 0.761–0.839), which was lower than that obtained using the 
SNU dataset (0.969 CI 0.957–0.980; P < 0.0001, Delong method) and Edinburgh dataset (0.925 CI 0.910–0.939; 
P < 0.0001) (Figs. 1 and 2). In the subset analysis of the RD dataset, the AUC with the  RDadequate subset was 0.810 

Table 1.  Summary of the test datasets. a The ground truth of the RD dataset was voted on by five specialists, 
whereas the malignancies in the other datasets were determined by pathological examinations.

RD SNU Edinburgh TeleDerm

Number of cases 1282 2101 1300 340

Source Internet community Tertiary care center Tertiary care center Teledermatology

Photographer Patient Physician Professional photographer Patient

Fitzpatrick skin type – 3–4 1–2 1–4

Number of disease classes 62 133 10 87

Disease category

Inflammatory Dermatitis 12 (0.9%) 131 (6.2%) – 82 (24.1%)

Acne/rosacea – 51 (2.4%) – 78 (22.9%)

Autoimmune 2 (0.2%) 90 (4.3%) – 34 (10.0%)

Papulosquamous – 105 (5.0%) – 17 (5.0%)

Others inflammatory 30 (2.3%) 159 (7.6%) – 14 (4.1%)

Viral infection 39 (3.0%) 144 (6.9%) – 22 (6.5%)

Fungal infection 7 (0.5%) 85 (4.0%) – 20 (5.9%)

Bacterial infection 3 (0.2%) 125 (5.9%) – 9 (2.6%)

Parasitic infection – 15 (0.7%) – 1 (0.3%)

Benign neoplastic 896 (69.9%)a 620 (29.5%) 819 (63.0%) 28 (8.2%)

Malignant neoplastic 123 (9.6%)a 182 (8.7%) 481 (37.0%) 4 (1.2%)

Alopecia, scarring – – – 8 (2.4%)

Alopecia, non-scarring – 20 (1.0%) – 7 (2.1%)

Others 170 (13.3%) 374 (17.8%) – 16 (4.7%)

https://modelderm.com
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(CI 0.761–0.860), whereas that with the  RDinadequate subset was 0.784 (CI 0.722–0.845; P = 0.51 between  RDadequate 
and  RDinadequate).

When using the high sensitivity threshold, sensitivity/specificity was 67.5 (CI 58.5–75.6)/77.0 (CI 74.4–79.3)% 
in the RD dataset, 90.1 (CI 85.1–94.0)/91.7 (CI 90.4–92.8)% in the SNU dataset, and 97.7 (CI 96.3–99.0)/52.0 
(CI 48.5–55.6)% in the Edinburgh dataset. At the high specificity threshold, sensitivity/specificity was 44.7 (CI 
36.6–53.7)/91.8 (CI 90.2–93.4)% in the RD dataset, 80.8 (CI 74.7–86.8)/95.9 (CI 95.0–96.8)% in the SNU data-
set, and 90.6 (CI 87.9–93.1)/77.3 (CI 74.6–80.2)% in the Edinburgh dataset (Table 2). In the subset analy-
sis of the RD dataset, sensitivity/specificity at the high sensitivity threshold with the  RDadequate subset was 74.1 
(CI 64.7–82.4)/73.1 (CI 69.9–76.4), whereas sensitivity/specificity with the  RDinadequate subset was 52.6 (CI 
36.8–68.4)/82.7 (CI 79.4–86.2). Sensitivity/specificity at the high specificity threshold with the  RDadequate subset 
was 51.8 (CI 41.2–62.4)/90.6 (CI 88.3–92.7), whereas sensitivity/specificity with the  RDinadequate subset was 29.0 
(CI 15.8–42.1)/93.7 (CI 91.5–95.8).

In the reader test, the mean sensitivity/specificity of the 32 laypersons (cluster), calculated from their Top-1 
and Top-3 judgments were 64.2%/66.0% and 75.6%/56.9%, respectively. The mean sensitivity/specificity of the 
six general physicians, calculated from their Top-1 and Top-3 judgments were 30.0%/90.8% and 57.6%/71.1%, 
respectively.

Figure 1.  Binary classification for determining suspected malignancy using the Internet community (RD) 
dataset. (a) TEST = RD dataset (1,282 images). (b) TEST =  RDadequate subset dataset (787 adequate images). (c) 
TEST =  RDinadequate subset dataset (497 inadequate images), Red dot (TH1)-The algorithm at the high sensitivity 
threshold, Blue dot (TH2)-The algorithm at the high specificity threshold, Black dots-the six general physicians, 
Green dots-the layperson (cluster), × − Sensitivity and specificity derived from the Top-3 diagnoses of the 
participants, + − Sensitivity and specificity derived from the Top-1 diagnoses of the participants, The shaded area 
indicates the 95% confidence interval.

Figure 2.  Binary classification for determining malignancy using the hospital (SNU and Edinburgh) datasets. 
(a) TEST = Edinburgh dataset (1,300 images). (b) TEST = SNU dataset (2,201 images). (c) TEST = SNU public 
subset dataset (240 images), Red dot (TH1)-The algorithm at the high sensitivity threshold, Blue dot (TH2)-
The algorithm at the high-specificity threshold, + − Average of dermatologists, residents, and laypersons in 
the previous  study17. The mean sensitivity/specificity using 240 test images was adapted, and the result of the 
reader study is available at https:// doi. org/ 10. 6084/ m9. figsh are. 64549 73, The shaded area indicates the 95% 
confidence interval. The TeleDerm dataset was excluded in this malignancy analysis because it includes only 
four malignancies.

https://doi.org/10.6084/m9.figshare.6454973
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Multi‑class classification for diagnosing general skin disorders. The Top-1/3 accuracies were 
39.2%/67.2% (RD), 54.5%/77.6% (SNU), 64.0%/84.1% (Edinburgh), and 46.5%/66.8% (TeleDerm) (Table  S2 
for RD, S3 for Edinburgh, S4 for SNU, and S5 for SNU subset). In the RD dataset, the algorithm’s Top-1 accu-
racy (39.2%) was comparable to that of the six general physicians (36.8%; one-sample t-test, P = 0.25), but its 
Top-3 accuracy (67.2%) was higher than that of the general physicians (52.9%; one-sample t-test, P = 0.014). In 
the RD dataset, the Top-1/3 accuracy of the laypersons was only 19.2%/24.4% although Internet searches were 
allowed. In the SNU dataset, the algorithm’s Top-1/3 accuracy was comparable to that of two dermatologists 
(54.2%/71.8%) that was conducted in a previous  study17. However, in the TeleDerm dataset, the algorithm’s 
Top-1 accuracy (46.5%) was still lower than that of dermatologists (60.1%) that was conducted in a previous 
 study18.

In the subset analysis of the RD dataset, human readers and the algorithm reacted differently to images of 
inadequate quality. The algorithm’s Top-1/3 accuracy in the  RDadequate subset (43.2%/71.3%) was higher than 
that in the  RDinadequate subset (32.9%/60.8%; chi-squared test; P = 0.0003/P = 0.0001; Table S6). Unlike the dete-
rioration in the algorithm’s performance, there was minimal difference in the physicians’ performance between 
the  RDadequate and  RDinadequate datasets (mean Top-1/3 of six GPs = 35.8%/52.7% versus 38.4%/53.3%; Table S7).

Discussion
In this study, we demonstrated that our algorithm showed an equivalent diagnostic performance to derma-
tologists in classifying hospital images taken from tertiary care centres. The algorithm was also able to classify 
and triage suspected lesions from community images with a diagnostic performance similar to that of general 
physicians.

The data flow of dermatological evaluation starts with the patient’s decision to go for a medical evaluation 
(i.e. detecting a lesion of unknown significance by the patient). However, current images and metadata in avail-
able datasets are mostly derived from cases involving biopsies performed many levels above the flow of data, 
specifically, from tertiary care centres (or cancer centres). This is actually at the end of most data flow and likely 
represents only a minor portion of the real-world data. From the time a suspected lesion is identified at home 
to the time a biopsy is performed at the clinic, numerous cases are dropped from the data flow without being 
documented or included in currents datasets. Case selection depends on various factors, ranging from patient 
knowledge, socioeconomic status, among many others. In several instances, selections are also made due to the 
indications for laboratory tests in clinics. Cases without indications for biopsy or laboratory tests are not usu-
ally documented in detail, or photographs are simply not captured at all. Whether to perform a follow-up or 
not, and even the number of visits, may be affected by the severity or characteristics of the disease. Therefore, if 
a model is trained only with datasets and metadata originating from tertiary care centres, several biases would 
inevitably be transferred to the model.

We designed the present study to avoid biases that may result from testing only photographs captured by 
dermatologists at tertiary centres and test the algorithm in this real-world scenario. The following four combina-
tions are plausible situations, which can vary based on whether the layperson suspects skin cancer or whether 
the doctor diagnoses skin cancer. We verified all these combinations using various datasets captured by both 
physicians (Edinburgh, SNU) and laypersons (RD, TeleDerm).

Layperson suspects & doctor diagnoses cancer-RD, TeleDerm, SNU, Edinburgh.
Layperson suspects & doctor diagnoses benign condition-RD.
Layperson neglects & doctor diagnoses cancer-SNU, Edinburgh, TeleDerm.

Table 2.  Sensitivity, specificity, positive predictive value, and negative predictive value in the binary-class 
classification. PPV positive predictive value, NPV negative predictive value.

Test dataset Sensitivity Specificity PPV NPV

Binary Classification at High Sensitivity Threshold

RD/1,282 images 67.5 (58.5–75.6) 77.0 (74.4–79.3) 23.6 (20.8–26.6) 95.7 (94.6–96.7)

RDadequate/787 images 74.1 (64.7–82.4) 73.1 (69.9–76.4) 25.0 (21.8–28.3) 95.9 (94.5–97.2)

RDinadequte/495 images 52.6 (36.8–68.4) 82.7 (79.4–86.2) 20.2 (14.3–26.3) 95.5 (93.9–97.0)

SNU/2,201 images 90.1 (85.1–94.0) 91.7 (90.4–92.8) 50.6 (46.9–54.5) 99.0 (98.5–99.4)

SNU subset/240 images 85.0 (75.0–95.0) 94.0 (90.5–97.0) 74.4 (64.0–85.7) 96.9 (94.9–99.0)

Edinburgh/1,300 images 97.7 (96.3–99.0) 52.0 (48.5–55.6) 54.5 (52.7–56.4) 97.5 (95.9–98.8)

Binary Classification at High Specificity Threshold

RD/1,282 images 44.7 (36.6–53.7) 91.8 (90.2–93.4) 36.7 (30.7–43.5) 94.0 (93.2–94.9)

RDadequate/787 images 51.8 (41.2–62.4) 90.6 (88.3–92.7) 40.0 (32.7–47.8) 94.0 (92.7–95.2)

RDinadequte/495 images 29.0 (15.8–42.1) 93.7 (91.5–95.8) 27.3 (15.8–40.5) 94.0 (93.0–95.2)

SNU/2,201 images 80.8 (74.7–86.8) 95.9 (95.0–96.8) 65.5 (60.1–70.6) 98.1 (97.6–98.7)

SNU subset/240 images 77.5 (62.5–90.0) 95.0 (92.0–97.5) 76.2 (64.6–86.9) 95.5 (92.8–97.9)

Edinburgh/1,300 images 90.6 (87.9–93.1) 77.3 (74.6–80.2) 70.1 (67.7–72.9) 93.4 (91.6–95.0)
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Layperson neglects & doctor diagnoses benign condition-non-lesional crops (ISIC dataset in the Supple-
mentary Result).

In order to improve the poor generalizability of the old model, we attempted to improve the quality of the 
data (data-centric approach) rather than the architecture of the model (software-centric approach)20. First, we 
annotated a huge number of image crops to represent the various test situations. To improve the diagnosis of 
minor lesions that cannot be classified as a specific condition, a region-based CNN was used to detect various 
shapes of both lesional and non-lesional areas and to generate the training  dataset16,21. Second, training data were 
reinforced by crawling the Internet to collect and annotate images of common disorders (e.g., contact dermatitis) 
that have high prevalence rates in the intended use setting as well as to improve diagnostic accuracy in subjects 
of various ethnicities. Although the ground truth was somewhat inaccurate, the performance of the CNNs was 
 robust22, and we demonstrated that the model that was trained using a huge generated dataset (49,567 images) 
and that was based on image findings exhibited better performance in the binary classification of onychomy-
cosis than the model trained with a smaller number of images (3,741 images), with accurate ground  truths21. 
Finally, after removing unnecessary classes (e.g., graft-versus-host-disease) and adding classes corresponding 
to common conditions (e.g., erosion), 184 disease classes were finally selected to train the new model. With 
these enhancements, our algorithm exhibited dermatologist-level performance on using tertiary care datasets 
in the experimental setting where a diagnosis had to be reached based only on images provided (54.5% vs. two 
dermatologists, 54.2%; SNU, Table S4).

However, the accuracy is still not comparable to a dermatologist in a real-world setting. First, the algorithm 
was trained using data with limited relevance. Images do not provide enough information to accurately diagnose 
certain skin disorders (e.g. palpation, side illumination, context). Dermatologists in real-world clinical practice 
are much more accurate than in the reader  test23 and in-person examination was important even in a study using 
dermoscopic  images24.

Second, algorithms cannot predict at all for the out-of-distribution classes for which the algorithm was not 
trained. In the TeleDerm dataset, 10.3% of images (21 classes, 35 images) belonged to the out-of-distribution 
classes, and in the RD dataset, 1.3% of images (5 classes, 17 images) were out-of-distribution. As a result, the 
accuracy using the TeleDerm datasets was 46.5%, which was still inferior to that of dermatologists (60.1%)17,18. 
Third, photograph quality depends on a user’s skill and affects algorithm performance. In this study, the Top-1/3 
accuracy with the  RDinadequate subset (32.9%/60.8%) was lower than that with the  RDadequate subset (43.2%/71.3%), 
which implies that the inadequateness of image quality significantly reduced algorithm performance, as previ-
ously  reported18. Conversely, this marked deterioration with image quality was not observed in the human par-
ticipants (Table S7), which was also previously  reported18. In addition, not only did the performance decreased, 
the prediction of the algorithm at the cut-off thresholds changed to be very specific as shown in Fig. 2b. To detect 
poor-quality photographs, we developed a fine image  selector16. This is similar to the methods of Vodrahalli et al. 
who developed an automated image assessment pipeline capable of rejecting 50% of subpar quality images, while 
retaining 80% of good-quality  images25.

Due to these limitations, we hypothesize that our algorithm could be used an ‘assistant’ rather than a stan-
dalone ‘diagnostic tool’ at its current stage of development. Algorithms can provide second opinions and informa-
tion regarding potential diagnoses, thereby augmenting a user’s  judgment18. If a physician’s intelligence could be 
harmonised with the abstract experience of neural networks, ‘augmented intelligence’ may be achieved because 
the diagnostic pattern differs between the algorithm and participants (Figs. S2 and S3). In our reader test, the 
sensitivity and specificity were highly variable among physicians, as the decisions of some physicians were too 
specific while those of others were sensitive in determining malignancy. The algorithm may help to give a bal-
anced second opinion close to the mean.

Finally, the algorithm (Top-1/3 = 39.2%/67.2%) could provide more accurate information than random Inter-
net searches, and the algorithm’s accuracy was equivalent to that of general physicians (Top-1/3 = 36.8%/52.9%). 
In that respect, we hypothesize that the algorithm could ‘replace’ the role of the conventional internet searches. 
Social networks have become an essential tool for disseminating healthcare information; however, shared derma-
tology-related content is sometimes imprecise and  confusing26, despite attempts to improve disease-related con-
tent based on evidence  medicine27. The Top-1/3 accuracy of laypersons in the RD dataset was only 19.2%/24.4% 
despite Internet use being allowed (Table S2). Although there is extensive information available on the Internet, 
it is not easy for laypersons to find clues regarding diagnoses. The Top-3 accuracy of the laypersons (24.4%) was 
only slightly higher than their Top-1 accuracy (19.2%), which implies that merely narrow scope of information 
was delivered by a random Internet search.

Limitations
First, the ground truth of the RD dataset was not determined based on biopsy results, although the malignan-
cies of other test datasets were confirmed by pathological examinations. This has been used in prior studies, as 
biopsies are not usually performed in the most common dermatological  diseases8,18. It is ideal to collect all con-
tinuous data flow of “layperson’s evaluation”-“physician’s in-person evaluation”-“pathologic result” in subsequent 
studies. However, by including non-biopsied cases, we widened the inclusion criteria probably avoiding datasets 
inclusion bias. Second, the images in the RD dataset were mostly captured by young people. Further investiga-
tions are required to assess accessibility and efficacy in the elderly. Older people might be less used to digital 
photography and might capture lower quality images. There may be also a selection bias given persons who posted 
on Reddit are more interested in their skin and active in the Internet community. Third, it would be ideal if U.S. 
physicians were included in the reader test because Reddit is mainly a U.S. melanoma community. Nevertheless, 
the 1,282 images were evaluated by the 6 readers from different countries and different backgrounds. This is a 
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unique strength of the present study as few studies have had participants individually read and diagnose such a 
large number of images for  comparison28. Finally, the performance of the algorithm was not assessed in darker 
skin populations in detail. More efforts are required to acquire clinical data to accurately assess skin disorders 
in the black  population29.

In conclusion, the algorithm proposed here was shown to be capable of classifying tertiary care-originated 
datasets comparable to that of dermatologists. The algorithm was also able to triage Internet community-acquired 
images with the same accuracy level as that of general physicians, which is expected to be useful in a telederma-
tology environment. These results were achieved by augmenting a large number of training images based on the 
data-centric approach to address issues raised in academic  discussions18,19,30–32. We demonstrated the degradation 
of performance from curated clinical images (SNU and Edinburgh dataset), teledermatology images (Telederm 
dataset), and community images (RD dataset). Our result implies that algorithms should be validated in the 
intended use setting because algorithms may show uncertainty in diverse real-world  situations33. We expect the 
algorithm to be used as an adjunct tool that could aid medical professionals in diagnosing general skin disor-
ders and in triaging suspected malignancies. Further prospective studies are required to investigate whether the 
algorithm can improve clinical outcomes in subjects of various ethnicities.

Materials and methods
This study was reported per the STARD-201534 reporting guidelines for diagnostic accuracy studies. With the 
approval of the institutional review board (Kangnam Sacred Hospital Institutional Review Board, #2021-07-019), 
the informed consent was waived for this retrospective study. All experiments were performed in accordance 
with the relevant guidelines and regulations.

Test datasets. The RD dataset was created using images posted by a melanoma community on the Internet 
(https:// reddit. com/r/ melan oma). In the Internet community, laypersons ask about their suspicious lesions and 
get feedback on them. A total of 1,356 consecutive images were included by using a python library (https:// 
github. com/ alipa rlakci/ bulk- downl oader- for- reddit) from January 25, 2020, to July 30, 2021. The following 
50 images were excluded: postoperative photographs (26 images), dermoscopy images (6 images), intraocular 
lesion photographs (2 images), or non-clinical photographs (16 images). The ground truth was defined based on 
the consensus of a panel comprising four dermatologists and a plastic surgeon. Decisions were based on clinical 
photographs, clinical history, and if available, results of complementary testing. The ground truth was estab-
lished through four rounds of votes and an agreement of ≥ 50%. If a diagnosis was not possible due to the inad-
equate quality of photographs (mostly for blurry image) or lack of metadata, the case was excluded (24 images). 
Finally, a total of 1,282 images (1,201 cases) were analyzed (Table 1, Table S1, Fig. 3). We divided the data into 
two subsets based on image quality assessed by the algorithm’s fine image selector submodule  (RDadequate, 787 
images and  RDinadequate, 495 images; images were classified as ‘adequate’ if the submodule output was over 0.1; 
supplementary methods).

The SNU dataset was created using clinical photographs from Seoul National University Hospital, Inje Uni-
versity Hospital, and Hallym University Hospital (133 disorders, 2,201 images; the original dataset comprised 
134 disorders, but lichen amyloidosis and amyloidosis were combined). Among the 2,201 images, 240 images 
from the SNU dataset are publicly available for external testing (https:// doi. org/ 10. 6084/ m9. figsh are. 64549 73; 
As disclosed on this repository, the reference standard was either biopsy or clinical impression)17. The TeleDerm 
dataset was created using 340 clinical photographs captured in consecutive patients at Pontificia Universidad 
Católica in Chile between 27 March and 30 April 2020 (the reference standard was mostly clinical impression)18. 
The Edinburgh dataset is commercially available at https:// licen sing. edinb urgh- innov ations. ed. ac. uk/i/ softw are/ 
dermo fit- image- libra ry. html.

Algorithm. Model Dermatology (Build2021 https:// model derm. com) was developed, critiqued, and 
adjusted through academic  discussions15–17,19,23,31,32,35. The disease classifier in Model Dermatology is an ensem-
ble of ResNet variants that can predict 184 skin  conditions15,17. In all the tests, the results were recorded as incor-
rect in cases involving out-of-distribution disorders for which the algorithm was not trained. The malignancy 
score was the sum of malignant outputs and 0.2 × premalignant outputs as previously  defined16. Using the SNU 
dataset, the high sensitivity threshold for determining malignancy was defined as the threshold at which 90% 
sensitivity was obtained because the sensitivity of the attending dermatologists was at the level of 90%17,23. The 
high specificity threshold was defined as the threshold at which 80% sensitivity was obtained.

Reader test. Using the RD dataset, we tested the performance of laypersons (using search engines) and 
general physicians. Six general physicians participated in the study (two doctors in their first year after getting 
a medical license, one first grade dermatology resident, and one first grade plastic surgery resident in Korea; 
two general physicians in Chile with one year and three years clinical experiences, respectively); each physician 
diagnosed all 1,282 included cases. The performance of the layperson was measured in a cluster manner with 
32 participants (mean age [SD] = 30.7 [6.2]; 7 high school graduates and 25 college graduates; 23 females and 9 
males) diagnosing the “divided batch” (39–41 cases) of the 1,282 cases without overlap. Readers were provided 
with wide-field images without metadata. Only for laypersons, the use of Internet search engines (about 10 min 
per question) was allowed to render a diagnosis. All participants participated in the reader test with a short-
answer question, not a multiple choice type.

Statistical analysis. The AUC value was calculated with R software (version 3.5.0; pROC package version 
1.16.2) and Delong method was used for calculating statistical difference. Sensitivities, specificities, and Top 

https://reddit.com/r/melanoma
https://github.com/aliparlakci/bulk-downloader-for-reddit
https://github.com/aliparlakci/bulk-downloader-for-reddit
https://doi.org/10.6084/m9.figshare.6454973
https://licensing.edinburgh-innovations.ed.ac.uk/i/software/dermofit-image-library.html
https://licensing.edinburgh-innovations.ed.ac.uk/i/software/dermofit-image-library.html
https://modelderm.com
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accuracies were compared using the two-tailed t-test after the Shapiro test or chi-squared test. The 95% CI was 
generated for all samples using 2,000 stratified bootstrap replicates. In all analyses, P < 0.05 was taken to indicate 
statistical significance.

Data availability
The download links, ground truth, and raw results corresponding to the RD dataset are available at https:// doi. 
org/ 10. 6084/ m9. figsh are. 15170 853. Due to the cases deleted by users, the links of 860 cases were valid in July 
2021. The whole RD dataset is available to researchers who meet the criteria for access to confidential data; 
requests can be made to the corresponding author, Seung Seog Han (whria78@gmail.com), or Cristian Navarrete-
Dechent (ctnavarr@gmail.com). A subset of the SNU dataset (240 images) is publicly available at https:// doi. 
org/ 10. 6084/ m9. figsh are. 64549 73, and the Edinburgh dataset is commercially available at https:// licen sing. edinb 
urgh- innov ations. ed. ac. uk/i/ softw are/ dermo fit- image- libra ry. html. The TeleDerm dataset is private.
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