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learning segmentation 
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CBCT scans
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Ziyuan Lin2,3, Ari Hietanen3, Osku Sundqvist3, Vesa Varjonen3, Vesa Mattila3, 
Sangsom Prapayasotok4 & Sakarat Nalampang4

Deep learning approach has been demonstrated to automatically segment the bilateral mandibular 
canals from CBCT scans, yet systematic studies of its clinical and technical validation are scarce. To 
validate the mandibular canal localization accuracy of a deep learning system (DLS) we trained it 
with 982 CBCT scans and evaluated using 150 scans of five scanners from clinical workflow patients 
of European and Southeast Asian Institutes, annotated by four radiologists. The interobserver 
variability was compared to the variability between the DLS and the radiologists. In addition, the 
generalisation of DLS to CBCT scans from scanners not used in the training data was examined 
to evaluate its out-of-distribution performance. The DLS had a statistically significant difference 
(p < 0.001) with lower variability to the radiologists with 0.74 mm than the interobserver variability 
of 0.77 mm and generalised to new devices with 0.63 mm, 0.67 mm and 0.87 mm (p < 0.001). For the 
radiologists’ consensus segmentation, used as a gold standard, the DLS showed a symmetric mean 
curve distance of 0.39 mm, which was statistically significantly different (p < 0.001) compared to those 
of the individual radiologists with values of 0.62 mm, 0.55 mm, 0.47 mm, and 0.42 mm. These results 
show promise towards integration of DLS into clinical workflow to reduce time-consuming and labour-
intensive manual tasks in implantology.

There has recently been a rapid increase of studies demonstrating that Artificial Intelligence methodologies, 
especially those based on deep learning neural networks, can distinguish structural patterns in medical imag-
ing data with excellent accuracy1, and serve radiologists as augmenting tools for clinical workflow2. However, 
in dental and maxillofacial radiology, so far there have been relatively few studies that have used deep learning 
approaches for localising or segmenting the bilateral mandibular canals3–8, each hosting a neurovascular bun-
dle containing an artery, veins, and the inferior alveolar nerve. The mandibular canals have two openings; the 
foramen mandibulae posterior in the ramus area and foramen mentale anterior in the parasympheal area. What 
makes the canal localization in CBCT images challenging is that there are a number of anatomical variations in 
the pathway and shape of the canal, and also ethnic variability is known to play a role9,10. As the inferior alveolar 
nerves supply motor and sensory innervations, any damage to them can cause temporary or permanent nerve 
injuries. In order to avoid compression or other surgical complications, in implantology, a 2 mm safety margin 
above the mandibular canal is recommended11. Therefore, the accurate knowledge of mandibular canal locations 
is extremely important for various oral and maxillofacial surgical operations, and in the diagnosis of neurogenic, 
vascular, or adjacent lesions to the canals.
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The first studies using deep learning convolutional neural network (CNN) approach to automatically localise 
the bilateral mandibular canals in CBCT images appeared as recently as in 20203,4. In the first study, multiple 
CNNs were used on images of 102 patients from a single scanner, where it was found that a 3D U-Net CNN could 
outperform 2D CNNs with a mean intersection over union value of 0.5773. At the same time, another study4 
also proposed a 3D U-Net style CNN approach, but using a larger number of clinically heterogeneous CBCT 
images of 637 patients using four different scanners. As the performance measures, they reported the average 
symmetric surface distance value of 0.45 mm, mean curve distance value of 0.56 mm, and Dice similarity coef-
ficient (DSC) value of 0.61.

Recently two other studies have used CNNs for mandibular canal segmentation with multiple CBCT scan-
ners using a smaller number of images5,6. First of these studies5 used 235 patient images from four scanners 
and the second study6 used 138 patient images from three scanners, and they reported DSC values of 0.774 and 
0.580, respectively. There have also been two studies that have used a rather small number of images from a 
single CBCT scanner7,8. The first of these studies7 used 187 patient images and reported the DSC value of 0.57, 
mean intersection over union value of 0.70, and mean curve distance value of 0.62 mm as the performance 
measures. The second study8 used 81 multiplanar reconstructed patient images and reported the DSC value of 
0.93, average symmetric surface distance value of 0.16 mm, and mean curve distance value of 1.59 mm as the 
performance measures.

Although the previous works have shown promising results, the majority of these studies have had datasets 
with limited clinical diversity in terms of ethnicity and patient age groups, and there have been only limited or 
no description on patient specific heterogeneities. In addition, the algorithms have not been compared to the 
assessments of multiple radiologists to account for the interobserver variability, and the generalisation of these 
systems to CBCT images from new scanners has not been comprehensively studied. In these works, there are 
a variety of generally used and valid performance measures such as the Dice similarity coefficient, the mean 
intersection over union, the average symmetric surface distance, and the mean curve distance. The first three 
of these measures are used to evaluate the segmentation performance and the mean curve distance measures 
the deviation between the paths of two curves, namely between the ground truth and the prediction curves4,7,8.

In the present study, we focus on validating a fully convolutional neural network-based deep learning system 
(DLS) for mandibular canal segmentation, introduced in a recent study4, from the clinical and technical points 
of view. To comprehensively analyse the system, we use a larger and clinically more heterogeneous dataset of 
CBCT scans than reported in any of the previous studies. Indeed, our database has images from five different 
CBCT scanners from four different vendors and patient cohorts of two different ethnicities that we use to train 
a new version of the DLS.

In the clinical validation process, we compare the performance of the DLS against four experienced dental 
and maxillofacial radiologists. Performance is estimated by comparing the interobserver variability between 
the radiologists and evaluate if there is a statistically significant difference to the variability between the deep 
learning system and the radiologists, with the null hypothesis of “the deep learning system and radiologists 
do not differ in the segmentation performance”. For technical validation, we analyse the out-of-distribution 
generalisation capability of a version of the deep learning system4, which was trained with 509 images from 
ProMax 3D Max/Mid and Scanora 3Dx devices. This includes temporal and geographical generalisation, as 
we analyse three different devices with a portion of the imaged patients from another country as well as more 
recent images from previously used devices. The generalisation capability is similarly evaluated by observing 
if there is a statistically significant difference to the interobserver variability, with the null hypothesis of “the 
deep learning system and radiologists do not differ in the segmentation performance for scans from new CBCT 
devices”. To evaluate the quantitative performance between the DLS and the radiologists, we construct consensus 
segmentations from the four radiologists’ segmentations, and evaluate it and the radiologists on them. Moreover, 
to analyse the qualitative performance, a senior radiologist evaluated the automatic and expert segmentations 
to identify the types of errors in them. The contributions of this study are novel performance evaluation of a 
deep learning neural network approach when compared to the interobserver variability of multiple radiologists 
and out-of-distribution generalisation capability in terms of new scanners and ethnicity in dental and maxil-
lofacial radiology CBCT imaging.

Methods
Data collection and cohort description.  The CBCT imaging data was acquired from the Cranio and 
Dentomaxillofacial Radiological Department of the University Hospital of Tampere (TAUH), Finland as the 
first cohort, and from the Department of Oral Radiology, Faculty of Dentistry, Chiang Mai University (CMU), 
Thailand as the second cohort. All the data in this study is from a normal clinical workflow that represents 
pre- and postoperative examinations of patients of 10 to 95 years old. The reasons for radiological examination 
include normal findings and anatomy, but also various traumas, benign or malign pathological conditions, and 
syndromes. The CBCT scans were randomly and retrospectively selected and pseudonymised, before the anno-
tation process.

The collected dataset of CBCT scans consisted of 1103 individuals, with 869 Finnish patients (79%) and 234 
Thai patients (21%). In the Finnish population, with the mean age of 53.7 years, 56% were females and 44% males. 
The Thai patient population with the mean age of 39.8 years, consisted of 51% females and 49% males. In the 
dataset, 649 CBCT scans (57%) were imaged using ProMax 3D Max/Mid; (Planmeca, Helsinki, Finland), 125 
(11%) using Viso G7; (Planmeca, Helsinki, Finland), 124 (11%) using Scanora 3Dx; (Soredex, Tuusula, Finland), 
120 (11%) using DentiScan; (The National Science and Technology Development Agency, Pathum Thani, Thai-
land), and 114 (10%) using GiANO HR; (NewTom, Bologna, Italy). The first three scanners were used in the first 
cohort and the latter two scanners in the second cohort. The scan resolution ranged from 0.1 to 0.6 mm isotropic 
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voxel-sizes with most commonly 0.2 mm (59%), 0.4 mm (23%) or 0.3 mm (13%). All the volumes were resampled 
into 0.4 mm isotropic voxel spacing using linear interpolation before deep learning analysis. Human annotators 
had access to the scans in the original resolution and could augment the view of the scans using software tools.

The deep learning methodology is driven by data such that in order to estimate the performance of the model, 
a partition of the data is held out and only used for validation of the results. This set is called the test set and it was 
randomly selected with uniform distribution of scanners. The rest of the data was used for the DLS development, 
and thus called the development set. Flowchart for data collection is presented in Fig. 1.

The mandibular canal was annotated using Planmeca developed Romexis 4.6.2. software, which has a built-
in tool for mandibular canal annotation using control points and spline interpolation. The control points were 
standardised to be 3 mm apart from each other, and in the foramen mentale curvature area the canal was anno-
tated using multiple control points, when necessary. Four dentomaxillofacial radiologists participated in this 
study referred to as Expert 1–4. Experts 1, 3, and 4 are working as senior specialists in TAUH, having 11–35 years 
of experience in dentistry and Expert 2 who works as a senior consultant in the private sector with 35 years of 
experience in dentistry. The annotation of the development set was performed by Experts 3 and 4 with 90% and 
10% proportions of the set, respectively. The test set was annotated independently by all radiologists. Since the 
end-point of the mandibular canal in the mandibular foramen region is ambiguous, the end-point was selected 
to match the shortest annotation in the superior direction, thus improving the sensitivity of the canal localization 
in the foramen mentale and dental regions rather than highlighting differences in the canal path lengths. The set 
was also subjectively annotated for the clarity of mandibular canal visibility to be either Clear or Unclear. The test 
set scans were also annotated for the following conditions if present: movement artefact, bisagittal osteotomy, 
metal artefact, difficult pathology, and difficult bone structure including difficult anatomy and osteoporosis.

This study is based on a retrospective and registration dataset and as such does not involve experiments on 
humans and/or the use of human tissue samples and no patients were imaged for this study. A registration and 
retrospective study does not need ethical permission or informed consent from subjects according to the law 
of Finland (Medical Research Act (488/1999) and Act on Secondary Use of Health and Social Data (552/2019)) 
and according to European General Data Protection Regulation (GDPR) rules 216/679. The use of the Finnish 
imaging data was accepted by the Tampere University Hospital Research Director, Finland October 1, 2019 (vote 
number R20558). Certificate of Ethical Clearance for the Thai imaging data was given by the Human Experimen-
tation Committee, Faculty of Dentistry, Chiang Mai University, Thailand (vote number 33/2021) July 5, 2021. 
According to the Thailand legislation informed consent was not needed.

Validation of the deep learning system.  We utilised the previously proposed CNN-based method4 as 
our deep learning model, i.e. a type of fully convolutional neural network using a U-net style architecture12. The 
model utilises three dimensional convolutional layers that enables the recognition of patterns in axial, coronal, 
and sagittal planes, simultaneously. The model was trained with volume patches from randomly flipped and 
translated volumes using the Dice-loss objective for 60 epochs. The model parameters were updated using the 

Figure 1.   Flowchart for data collection. Patients were selected from recent clinical workflows at the Cranio and 
Dentomaxillofacial Radiological Department of the University Hospital of Tampere, Finland (TAUH), and from 
the Department of Oral Radiology, Faculty of Dentistry, Chiang Mai University (CMU), Thailand. Combined 
dataset had a total number of 1132 scans from 1103 patients that were split into a training set, internal validation 
set, and holdout test set with 853, 100, and 150 patients, respectively.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18598  | https://doi.org/10.1038/s41598-022-20605-w

www.nature.com/scientificreports/

Adam optimizer13 and the final parameters were selected from checkpoints after each training epoch, based on 
the best validation set performance. The model architecture is shown in Fig. 2. We developed an improvement to 
the canal extraction post processing algorithm from the model segmentation. In short, mandibular canal route 
segments are obtained from the CNN output using a skeletonization routine14, route segments are concatenated 
using a heuristic, and then the routes with anatomical characteristics of mandibular canals are selected. Finally, 
the pair of routes with the most symmetricity is chosen as the pair of canals.

Statistical analysis.  For the evaluation of the mandibular canal localization performance, we used the 
mean curve distance (MCD), similar to previous works4,7,8, and in addition we propose the symmetric mean 
curve distance (SMCD). In the case of MCD, for each point, i.e. a three dimensional coordinate, on a ground 
truth curve, the distance to the closest point on another estimator curve is computed and then these distances are 
averaged. Thus, it estimates the average distance from one curve to another in three dimensional space. However, 
by definition, the MCD is computed from the point of view of the ground truth curve, effectively measuring the 
sensitivity in curve localization, and thus, there are cases when the MCD does not reflect the errors well. For 
example, if the ground truth curve and estimator curves are well aligned, but the estimator curve is longer from 
either or from both ends. Hence, we propose the SMCD measure, which is calculated as the average of the MCD 
values computed both ways. In addition, the SMCD is useful in summarising the interobserver variability, as the 
role of the ground truth and estimator curves are not well defined. Note that a visualisation of how the MCD is 
computed is presented in the Supplementary.

In mathematical terms, let T and E be the sets of points that define the ground truth curve and the estimator 
curve, respectively. We perform the mandibular canal segmentation in three dimensional space, and thus the 
points are the three dimensional coordinates of the discretized mandibular canal path curves. The point to curve 
distance function d(x,S) is defined such that it computes the minimum Euclidean distance from a point x to the 
set of points S that defines a curve:

Then the MCD is computed as:

(1)d(x, S) = min
s∈S

� x − s �2 .

Figure 2.   The architecture of the deep learning system. (a) A U-net style deep learning system architecture 
with a contracting pathway and an expanding pathway. The contracting pathway is visualised with red arrows, 
each marking a convolution block with a stride of two. The expanding pathway is visualised with green arrows, 
each marking a transpose convolution block with a stride of two. The pathways are connected with feature 
concatenation marked using arrows with the letter C. The number of feature maps is shown on each block 
and all the convolutions except the last one have a kernel size of 3 × 3 × 3. The last convolution has one feature, 
a kernel size of 1 × 1 × 1, no layer normalisation, and uses the sigmoid nonlinearity. (b) Each block includes 
two convolutions with a stride of one, batch normalisation (BN), and ReLU non-linearities with elementwise 
summation marked using arrows with a plus sign.
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The SMCD is computed using Eq. (2) and a permutation of the arguments:

We have also evaluated the proportion of the canal path within a 2 mm radius in order to evaluate the localiza-
tion accuracy that approximates the 2 mm safety margin above the canal that is used as a guideline for implant 
planning11. Volumetric segmentation measures, such as the Dice similarity coefficient, were deemed unsuitable 
for our main results, since the annotation tool in our study was designed to use a fixed diameter for the canal. 
However, the results measured with the Dice similarity coefficient are reported in the Supplementary Figs. S2–S5.

We evaluated and analysed the variability between the Experts and the deep learning system by comparing the 
radiologists’ canal annotations and the segmentations produced by the deep learning system in a pairwise man-
ner. In order to estimate the highest level of interobserver variability, for each CBCT scan we selected the pair of 
Expert annotations with the highest mean curve distance. Similarly, we selected one Expert annotation with the 
highest mean curve distance with the deep learning system, by treating the Expert annotation as the ground truth 
curve and the automatic segmentation as the estimator, to estimate the highest variability between the system 
and an Expert. The generalisation capacity of the previously published system4 was evaluated similarly by select-
ing the Expert annotation with the highest mean curve distance to the segmentation produced by the system.

We estimated the objective performance between the Experts and the deep learning model by constructing 
a label voting scheme of the expert annotations as the reference ‘ground truth’ using SimpleITK library15 and 
evaluated the performance using SMCD. Specifically, voxels are assigned a background or mandibular canal 
label with maximum votes and undecided voxels are marked as a canal label. After this, the segmentation was 
skeletonized and the curve was determined with connected component analysis. Statistical significance of all the 
main results were computed using the two-tailed Wilcoxon signed-rank test with alpha value selected at 0.001 
using statannotations Python package16.

Inclusion/exclusion criteria.  There was no exclusion criteria in the diagnostically acceptable patient scans.

Results
Patient cohorts.  The dataset used in this study includes 982 and 150 CBCT scans from 953 and 150 patients 
for the development and test set, respectively. All reported results are computed for the test set, in which each 
scan included the two mandibular canals. The sample characteristics are presented in Table 1 while the distribu-
tion of the devices of the subsets are shown in Table 2 for the development set and holdout test set. The deep 
learning system training and internal validation sets are described in detail in Table S1.

Unambiguous heterogeneities were marked with at least one expert label: movement artefact (7, 2%), metal 
artefact (9, 3%), and bisagittal osteotomy (4, 1%). More ambiguous heterogeneities were assessed by using major-
ity voting: difficult bone structure including difficult anatomy and osteoporosis (99, 33%), and difficult pathology 
(3, 1%). There were 275 (92%) canals marked Clear and 25 (8%) Unclear, also determined using majority voting. 
Comparison of the performance in each heterogeneity group is reported in Supplementary Fig. S1.

Interobserver variability.  The results of the individual variability analysis are presented in Fig. 3, where 
the Experts and the deep learning system are compared in a pairwise manner for all the possible combinations, 
to obtain a fine-grained analysis. In Fig. 3a, the MCD results are presented. The DLS and Expert 4 had overall the 
highest agreement measure with 0.46 mm median MCD and the lowest agreement with Expert 1 with 0.69 mm 
median MCD. In terms of the interobserver variability, the highest agreement was with Expert 3 and Expert 4 
with 0.48 mm median MCD and the lowest agreement between Expert 1 and Expert 3 with 0.70 mm median 
MCD. The proportion of the canal within the specified 2 mm margin, as evaluated in a pairwise manner, is pre-

(2)MCD(T ,E) =
1

|T|

∑

t∈T

d(t,E).

(3)SMCD(T ,E) =
1

2
(MCD(T ,E)+MCD(E,T)).

Table 1.   Characteristics of the study sample with percentages in parentheses. Cohort 1 from University 
Hospital of Tampere (TAUH) and Cohort 2 from Chiang Mai University (CMU). a Mean and standard 
deviation.

Parameter Cohort 1 (n = 869) Cohort 2 (n = 234)

Age (y)a 54.9 ± 33.2 39.8 ± 17.0

Gender

Female 487 (56) 119 (51)

Male 382 (44) 115 (49)

Race

Caucasian 869 (100) 2 (1)

Asian 0 (0) 232 (99)
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sented in Fig. 3b. On average, all the observers had very similar performance, indicating that most of the time 
the annotated canal paths did not vary more than 2 mm, as the largest difference of 96%, which was between 
Expert 1 and Expert 2.

In the evaluation of the highest variability, there was a statistically significant difference in the mean rank of 
highest interobserver and model variability (p < 0.001) with the DLS having lower median SMCD. The median 
[interquartile range] and mean (standard deviation) of the highest Expert to Expert, i.e. interobserver, SMCD 
were 0.77 [0.25] mm and 0.84 (0.28) mm, respectively, whereas the highest DLS to Expert SMCD median 
[interquartile range] was 0.74 [0.28] mm and mean (standard deviation) 0.81 (0.41) mm. In the device-wise 
comparison, the DLS had a non-significant difference with highest variability performance against the Experts 
on Scanora3Dx (p = 0.84) with 0.89 [0.29] mm and Viso G7 (p = 0.10) with 0.82 [0.19] mm, a significant differ-
ence with lower median SMCD on DentiScan (p < 0.001) with 0.66 [0.22] mm, GiANO HR (p < 0.001) with 0.60 
[0.15] mm, and ProMax 3D Mid (p < 0.001) with 0.72 [0.29] mm. The full results are presented in Fig. 4 and a 
scatter plot comparison is presented in Supplementary Fig. S4.

The previously published system was able to produce results for 299 out of 300 canals with the highest vari-
ability analysis having a median of SMCD of 0.78 [0.33] mm and mean (standard deviation) 0.91 (0.63) mm, 
with a significant difference to the current system (p < 0.001). In the device-wise comparison, the previously 
reported system had a non-significant difference with highest variability performance against the Experts on 
Scanora3Dx (p = 0.09) with 0.93 [0.34] mm, a significant difference with lower median SMCD on DentiScan 
(p = 0.001) with 0.67 [0.31] mm and GiANO HR (p < 0.001) with 0.63 [0.17] mm, and a significant difference 
with a higher median SMCD on ProMax 3D Mid (p = 0.002) with 0.74 [0.34] mm and Viso G7 (p < 0.001) with 
0.87 [0.21] mm. The full results are presented in Fig. 4.

Reference segmentation.  There was a statistically significant difference in the performance between all 
the Experts and the deep learning system against the reference segmentation (p < 0.001). Expert 1 had the largest 
median [interquartile range] of SMCD with 0.62 [0.23], Expert 2 with 0.55 [0.22], Expert 3 with 0.47 [0.14], and 
Expert 4 the lowest with 0.42 [0.14] mm, whereas the DLS had the smallest median SMCD of 0.39 [0.11] mm. In 

Figure 3.   Pairwise comparison of the Experts and the deep learning system (DLS). Each row represents which 
assessment was used as the ground truth and each column which was used as the estimate. The mean curve 
distance measure is asymmetric, which results in asymmetric matrices. (a) Median and interquartile range 
[IQR] of curve distances in millimetres. (b) The mean (SD) of the proportion of the canal within a 2.0 mm 
margin.

Table 2.   Distribution of scans with five CBCT scanners and patients for each of the subsets.

Manufacturer and device

Development Holdout

Scans Patients Scans Patients

Planmeca ProMax (3D, 3D Max, 3D Mid) 619 (63%) 590 (62%) 30 (20%) 30 (20%)

Planmeca Viso G7 95 (10%) 95 (10%) 30 (20%) 30 (20%)

Soredex Scanora 3Dx 94 (10%) 94 (10%) 30 (20%) 30 (20%)

NSTDA DentiScan 90 (9%) 90 (9%) 30 (20%) 30 (20%)

NewTom GiANO HR 84 (9%) 84 (9%) 30 (20%) 30 (20%)

Total 982 953 150 150
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addition, the DLS had the lowest mean (standard deviation) of SMCD with 0.46 (0.39) mm, while Expert 1 had 
mean of SMCD of 0.68 (0.38), Expert 2 0.62 (0.39), Expert 3 0.52 (0.38), and Expert 4 0.47 (0.40) mm. There were 
considerable missing parts in the reference segmentation for a total of two canals, as there was no agreement 
between the radiologists’ segmentations. These are seen as the two outliers with highest SMCD results for all the 
Experts and amongst the outliers of the DLS. The results are presented in Fig. 5a and Table S2.

We also examined, for both the left and right canals, how the distance to the reference annotation is related to 
on which approximated position of the mandibular canal curve it is measured. In practice, 200 uniformly spaced 
interpolation points were used to have a dense representation of the curve, and the point to curve distance was 
computed using Eq. (1). A visual examination of Fig. 5 shows that the average performance of the deep learning 
system is similar to the expert performance for both the left and right canals, but the deep learning system can 
be seen to perform better than the experts near the mandibular foramen for the right canals. It can also be seen 
that there are no major differences in the deep learning system and the radiologists’ performances between the 
left and the right canals. Visual illustration of the average performance is presented in Fig. 5b for the left canal 
and in Fig. 5c for the right canal.

Qualitative assessment.  The qualitative analysis of the test images was done visually by a senior radi-
ologist, who compared the deep learning outcome and the annotations of each radiologist. The deep learning 
system produced three significant errors (> 1/3 of the canal was missing) out of 300 evaluated with one segmen-
tation error and two post-processing errors. The likely cause for the segmentation error was a technical artefact 
of the CBCT machine. Other 297 out of 300 (99%) canals analysed were correct. Figure 6 presents four example 
scans from the test dataset using maximum intensity projection, each overlaid with the segmentation from the 
DLS and the Experts.

The qualitative interobserver variance and the variance between the deep learning system and radiologists 
can be classified into two categories, i.e. differences in markings and human errors. The differences in markings 
were caused by the preference of each radiologist in selecting the middle of the canal and the spacing between 
markings. This in turn is due to differences in human anatomy such as difficult bone structure, bone porosity, 
pathological conditions, variable thickness, shape and curvature areas of the canal path, and other sources like 
metallic structures and imaging artefacts, thus making standardised markings difficult or even impossible. How-
ever, this variance turned out not to be substantial. In contrast, the variance due to human error was found to be 
considerable, i.e. 29 out of 1200 (i.e. 2.4%) human annotations were outside the actual canal for a few markings, 
but appeared in the areas not considered to have major clinical relevance. There were no major differences in 
error rate between the Experts.

Discussion
To summarise, the deep learning system can accurately segment the mandibular canal with better performance 
than the radiologists for a clinically and technically heterogeneous dataset with statistical significance. In addi-
tion, we have demonstrated that the previously introduced system generalises to new devices and to a geographi-
cally and ethnically separate clinical data with statistically significant differences with a lower median SMCD on 
DentiScan and GiANO HR, and with a higher median SMCD on Viso G7.

In the pairwise comparison, when measured with the median of the mean curve distance and with the 
proportion of canal being within 2 mm radius, the DLS had a similar performance to the pairwise comparison 
between the Experts. Specifically, there was better agreement between the DLS and Expert 3 and Expert 4, than 

Figure 4.   Tukey’s boxplot comparison of interobserver variability (IV), DLS to expert variability (DV), and 
previous method4 to expert variability (DVprevious), measured in symmetric mean curve distance (mm). Statistical 
significance measured with Wilcoxon signed-rank test. (a) Comparison of full test dataset (N = 300). (b) Device-
wise comparison between the groups (N = 60 per device).
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with Expert 1 and Expert 2, which may be due to their role in the development set annotation. We note that the 
highest agreement was with Expert 4 even though most of the development set was annotated by Expert 3. When 
compared with the highest disagreement, the DLS showed lower median disagreement than the interobserver 
disagreement with a statistically significant difference. In the device-wise comparison, there were statistically sig-
nificant differences between the DLS performance and interobserver variability with lower disagreement between 
the DLS and radiologists for the ProMax 3D Mid, DentiScan, and GiANO HR, but not for the Scanora3Dx and 
Viso G7 scanners. When the Experts and the DLS were compared to a majority vote consensus segmentation, 
the DLS gave the lowest median of symmetric mean curve distance with statistically significant difference to the 
Experts. In addition, the deep learning system turned out to have similar variability in the anatomic localiza-
tion specific error as the human observers had, with the largest errors appearing near the mandibular foramina.

The generalisation capability of the artificial intelligence algorithms in radiology is considered to be one of 
challenges, due to large variances between the imaging parameters, such as protocols, technical solutions, field 
of view, imaging parameters, and voxel sizes, as well as heterogeneities such as patient anatomy and pathology2. 
In addition, the CBCT image quality is affected by patient movement and metallic artefacts caused by dental 
or oral surgical materials17–19. Despite this, we observed that the deep learning system had similar performance 
across the different imaging devices as well as a variety of patient specific heterogeneities. When measuring the 
out-of-distribution generalisation using the previously published system, which was trained with scans from 
the ProMax 3D Mid and Scanora 3Dx from a single hospital, the performance appeared to be practically similar 
across all evaluated devices and both imaging centres for the majority of cases. However, definite conclusions 
about the deep learning system or interobserver performance in case of ethnic variability are left for future work 
with a larger dataset and controlled study protocol.

The visual quality assessment of the DLS segmentation revealed negligible amounts of errors, which were dis-
similar to the errors produced by the radiologists. Notable errors produced by the DLS were incomplete canals, 
whereas the radiologists’ errors were mostly deviations of the canal path, in both cases re-annotation would be 
required. The qualitatively assessed error rate was 1% for the DLS and 2.4% for expert annotators, which dem-
onstrates at least comparable performance to human professionals.

These results indicate that the deep learning system could be utilised in maxillofacial radiology for automatic 
segmentation of the mandibular canal to augment expert annotators. The applicability of deep learning for man-
dibular canal segmentation from volumetric imaging data is promising and encourages continuing to limited 

Figure 5.   Measuring interobserver variability and DLS performance against a majority voted reference 
segmentation from expert assessments. (a) Tukey’s boxplot comparison of the performances of DLS and the 
experts against the reference segmentation. (b) SMCD in millimetres with respect to the approximate position 
of the left canals (c) SMCD with respect to the approximate position of the right canals.
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clinical testing and validation under surveillance of radiologists. After clinical validation and acceptance to 
clinical use, DLS can be considered as a valuable tool in everyday dental, surgical and radiological work to avoid 
complications in minor and major operations, and reduce time in computer assisted operation planning and 
authoring radiological reports. Most common operations are mandibular third molar extractions and implantol-
ogy. The third mandibular molar or its multiple roots may be in close proximity with the mandibular canal. In 
addition, the DLS may improve visualisation of anatomical relations, in comparison to stationary reconstruc-
tion images, and reading radiological reports, as well as reduce the time consumed in implantological or other 
surgical planning. Moreover, reporting the anatomical relations of the mandibular canal to other anatomical 
or pathological structures is of paramount importance in radiological work, where DLS assisted visualisation 
would be time- and labour saving. In addition, these outcomes could encourage deep learning approaches for 
other clinical and research tasks with CBCT and computed tomography scans such as tissue segmentations, 
cephalometric landmark detection, bone density estimation, and utilisation of ALARA (as low as reasonably 
achievable) principle to minimise harmful effects of the ionising radiation.

Limitations.  We acknowledge the following limitation of the deep learning system: deep learning neural 
networks that are trained without defining diagnostically important features may have an inherent limitation of 
possibly learning features that are unknown or ignored by medical experts. In addition, the evaluation dataset 
did not include children.

Conclusions
Within the limitations of our study the following conclusion can be drawn. The DLS showed lower variability 
than the interobserver variability of the radiologists. The out-of-distribution generalisation capability of the DLS 
to new CBCT scanners and ethnic groups of patients not used in model training was found to be similar across 
all evaluated devices and both radiological centres for the majority of cases, showing promising temporal and 
geographic generalisability. When compared to radiologists’ consensus segmentation as a gold standard, the DLS 
had a lower symmetric mean curve distance than the radiologists. These results encourage integration of the DLS 
into clinical workflow under control of radiologists.

Data availability
The datasets used in model training, validation, and testing were provided by TAUH and CMU, and as such is not 
publicly available and restrictions apply to their use according to the Finnish law and General Data Protection 
Regulation (EU) and to the Thai law, respectively.

Figure 6.   Maximum intensity projection of CBCT with overlaid expert and DLS segmentations. Every image 
on each column is annotated by the same expert, shown in red, DLS annotation shown in green, and overlap 
shown in yellow. (a) GiANO HR with 0.3 mm spacing, (b) a DentiScan with 0.4 mm spacing, and (c,d) 
DentiScan with 0.25 mm spacing, (a,b) Low interobserver variability (IV) and low DLS to expert variability 
(DV) on a scan with no heterogeneities and the both canals were labelled as Clear. (c) High IV with a scan 
labelled with difficult bone structure (DBS) and the left canal was labelled Unclear. (d) High DV where the DLS 
outcome was incomplete with a scan labelled with DBS, movement artefact, and the right canal labelled Unclear.
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Code availability
The code used for pre- and postprocessing and the deep learning techniques includes proprietary parts and 
cannot be released publicly. However, the proposed method can be replicated using the information in the 
“Methods” section.
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