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The distribution of initial 
estimates moderates the effect 
of social influence on the wisdom 
of the crowd
Abdullah Almaatouq1,5*, M. Amin Rahimian2,5, Jason W. Burton3 & Abdulla Alhajri4

Whether, and under what conditions, groups exhibit “crowd wisdom” has been a major focus of 
research across the social and computational sciences. Much of this work has focused on the role 
of social influence in promoting the wisdom of the crowd versus leading the crowd astray and has 
resulted in conflicting conclusions about how social network structure determines the impact of 
social influence. Here, we demonstrate that it is not enough to consider the network structure in 
isolation. Using theoretical analysis, numerical simulation, and reanalysis of four experimental 
datasets (totaling 2885 human subjects), we find that the wisdom of crowds critically depends on the 
interaction between (i) the centralization of the social influence network and (ii) the distribution of the 
initial individual estimates. By adopting a framework that integrates both the structure of the social 
influence and the distribution of the initial estimates, we bring previously conflicting results under one 
theoretical framework and clarify the effects of social influence on the wisdom of crowds.

In its classical definition, the concept of “the wisdom of crowds” refers to the idea that the aggregate estimate 
of a group of individuals can be superior to that of individual, credentialed experts1,2. Recent applications of 
this concept include technological, political, and economic forecasting3; performance evaluations4; preference 
elicitation5; and public policy design6. Conventional statistical accounts of the wisdom of crowds rely on the 
following two assumptions: (i) the individual errors are uncorrelated or negatively correlated7, and (ii) the indi-
viduals are unbiased; that is, they are correct in mean expectations2.

However, social influence processes, in which people exchange information about their estimates, can cause 
individuals to revise their judgment in estimation tasks8–12. Therefore, a simple averaging of the revised (post-
influence) estimates is not the same as simply averaging the initial (pre-influence) estimates. Prior research 
yields conflicting findings on the effects of social influence on the wisdom of crowds. For instance, despite the 
evidence that social influence can significantly benefit group and individual estimates10,12–17, it has also been 
found to induce systematic bias, herding, and groupthink8,9.

In response to these inconsistencies, notable reconciliation efforts have focused on investigating how social 
network theories interact with the process of collective belief formation. The results of these efforts, including 
seminal theoretical works11,18 and laboratory experiments10, have established that the wisdom of crowds is pre-
served only if the influence of the most influential individual vanishes (i.e., becomes negligible) as the group size 
grows11. This condition is satisfied in decentralized influence structures, wherein everyone has an equal voice, as 
opposed to centralized structures in which one or more individuals have disproportionate influence. Intuitively, 
the wisdom of crowds benefits from larger group sizes because even if individuals are on average biased, their 
collective estimate has lower variance; however, centralized influence diminishes this benefit by reducing the 
collective estimate to the “wisdom of the few.”

While these results appear to broadly suggest the superiority of decentralized influence, their conclusions 
rest on the premise that the distribution of the initial estimates is centered around the truth. In such situations, 
there are no opportunities for the crowd to improve with social influence11. However, empirical distributions 
of numerical estimates tend to be right-skewed with excess kurtosis: most estimates are low, with a minority 
falling on a fat right tail9,19,20. The skewness of the distribution could emerge due to systematic bias (a tendency 
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to over- or underestimate the actual value19,21,22) or dispersion (the spread of the estimates) in the population. 
Therefore, it is when the crowd is not initially centered around the truth, as observed in many empirical settings, 
that centralized influence could present an opportunity to promote crowd wisdom.

In this study, we ask when centralized influence structures improve or hinder the wisdom of crowds in estimation 
tasks. Our results demonstrate that the effect of social influence varies systematically with the distribution of 
the initial estimates and, therefore, is more heterogeneous than previously suggested. Specifically, we analyze — 
theoretically, numerically, and empirically — the effect of the distribution of initial estimates on the suitability 
of a crowd to benefit from influence centralization.

Theoretical model
To illustrate this, we consider a group of n agents tasked to estimate or forecast, with maximal accuracy, some 
unknown positive quantity such as the unemployment rate in the next quarter, life expectancy of an ill patient, 
number of calories in a meal, prevalence of global influenza infections in two weeks, or number of jellybeans 
in a jar. To model the population of the agents performing a particular estimation task, we endow each agent 
with an initial estimate based on a biased and noisy signal about the truth. Let the group of n agents be indexed 
by i = 1, . . . , n , and denote their initial estimates by ai,0 . The initial estimates are independent and identically 
distributed, and their common distribution, Fθ

µ,σ , is parametrized by the unknown truth, θ , the systematic 
bias, µ , and the dispersion, σ . The location parameter ( µ ) indicates the center of the distribution that biases the 
estimates with respect to the truth, and the shape parameter ( σ ) determines the variation and tail shape. The 
skewness of the distribution can emerge due to several possibly interdependent factors: disproportionate expo-
sure to a skewed sample of the task instance23,24, the tendency to over-attend to information that supports one’s 
hypotheses25, or the level of demonstrability of the task at hand26. In general, the initial estimates can be viewed 
as intrinsic properties of the estimation context: a population of agents performing a particular estimation task 
instance. Different populations of agents, such as experts vs. novices, might have different biases and dispersions 
for the same task instance. Conversely, the same population can vary in terms of their bias and dispersion across 
different task instances. For brevity and to abstract the agents and the estimation task, we refer to the distribution 
of the initial estimates as the estimation context. Figure 1A shows four estimation contexts with varying levels 
of bias and dispersion.

Agents frequently have access to the opinions or estimates of other agents. We define the collective estimate 
of the n agents as the average of their revised (post-influence) estimates and denote it by an . In many com-
mon models of social influence11,18,27, as well as in other aggregation mechanisms7,28,29, the collective estimate 
of the group of agents can be expressed as a convex combination (weighted average) of the initial estimates: 
a
n(w̄) =

∑n
i=1 wiai,0 , where w1, . . . ,wn are positive real weights summing to one. These weights represent the 

influence of individual agents on shaping the collective estimate. Without loss of generality, we assume that the 
agents are ordered in decreasing order of their influence so that w1 ≥ w2 ≥ · · · ≥ wn . This definition of collective 
estimation contains the simple average of the initial estimates—the typical “wisdom of crowds”—as a special case.

We introduce an influence-centralization parameter, ω , to interpolate between a collective estimate 
produced by a fully decentralized influence setup where every agent has an equal voice (i.e., ω = 0 and 
w1 = w2 = · · · = wn = 1/n ) and a dictatorial setup with a single influential agent (i.e., w1 = ω = 1 and 
w2 = · · · = wn = 0 ). To investigate the role of network centralization, 0 ≤ ω ≤ 1 , we consider a class of influ-
ence structures indexed by ω such that (see SI Sect. 1.1 for more details),

Figure 1.   This schematic illustrates our framework for analyzing the role of estimation context in determining 
how social influence shapes the wisdom of crowds. Panel (A) illustrates four distributions of the initial estimates. 
Panel (B) provides examples of different influence network structures arranged in the order of increasing 
centralization—from a fully decentralized structure, where everyone has an equal voice, to a highly centralized 
structure, where there is one highly influential individual.
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Our definition of ω coincides with Freeman’s centralization30 for a class of network typologies that encompass 
cases of practical and empirical interest, such as fully connected networks, star networks, empty graphs (isolated 
individuals), and circular lattices, among others. Figure 1B shows four influence network structures in this class 
(see SI Sect. S1.1 for calculation of ω in different networks). It is important to note that these networks are influ-
ence networks (in which a tie between two people is represented as a weighted value between zero and one) and 
not communication networks (i.e., binary networks that define who communicates with whom).

We measure the collective performance of the agents in terms of the proximity of the collective estimate ( an ) 
to the truth ( θ ). Given the estimation context (the distribution of the initial estimates), our outcome of interest 
is whether the collective estimate produced by a centralized influence structure outperforms a decentralized 
baseline. We compute the probability of this outcome for a given estimation context and denote it by �n . Nota-
bly, �n captures a critical feature of the estimation context, namely, its suitability to benefit from centralization. 
When �n < 1/2 , the initial estimates are better suited for decentralized influence structures; conversely, when 
�n > 1/2 , they are better suited for centralized influence structures.

Results
Analytical results.  Our theoretical analysis of �n verifies that for heavy-tailed or right-skewed distribu-
tions, the performance of the collective estimate in a centralized structure where a single agent has a non-
vanishing influence (their contribution to the collective estimate does not go to zero as n → ∞ ) is superior 
to that of the decentralized baseline. In particular, for heavy-tailed distributions (e.g., Pareto, log-normal, and 
log-Laplace), we identify phase-transition behaviors, whereby the lower bound’s limiting value transitions from 
0 to 1 or 1/2 as the shape parameter, σ , crosses a critical value (see SI Sect. S2.1). Intuitively, this is because in 
decentralized networks the sample mean of a heavy-tailed distribution is dominated by its excess tail risk (the 
egregious errors of a few individuals). On the other hand, with weighted averages as in centralized structures, we 
can guarantee that some random individuals exert enough influence to prevent the group aggregate from being 
swayed too far by the flagrant errors of the few. Recall that in our model individuals are equally likely to occupy 
the central position and, in particular, the people whose opinions are extremely different from the majority are 
very few and thus correspondingly unlikely to occupy the center. Notably, in this model, centralized structures 
violate the vanishing influence condition for the wisdom of crowds; see11 and SI Sect. S2.15. This underscores the 
importance of the distributional assumptions, which are context dependent, when studying the effect of social 
influence on the wisdom of crowds.

In Fig. 2, we illustrate the behavior of �n for a log-normal distribution of initial estimates, as reported in 
several empirical studies9,10,20. In this case, �n predicts that centralized influence structures improve collective 
estimates over decentralized ones if the distribution of the initial estimates is characterized by overestimation bias 
or large dispersion (see SI Sect. S2.2.1 and Fig. S2 for the effect of the systematic bias). However, this relationship 
is reversed when the initial-estimate distribution is characterized by low dispersion and underestimation bias 
(see SI Sect.  S2.2 and Fig. S1 for simulation details and other distributional classes).

a
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Figure 2.   The link between the distribution of the initial estimates and the probability that collective estimation 
on a centralized structure outperforms a decentralized structure ( �n ) Our outcome of interest, �n , is the 
likelihood that a weighted average falls closer to the truth than an unweighted average. Hence, when �n < 1/2 , 
the estimation context is better suited for decentralized (unweighted) influence structures; conversely, when 
�n > 1/2 , it is better suited for centralized (weighted) influence structures. In this figure, the initial estimates 
are sampled from a log-normal distribution while varying location and shape parameters ( µ and σ ). The 
number of agents and the influence-centralization level are fixed at n = 50 and ω = 1/3 , respectively. See SI 
Figs. S1 and S3 for other distributions and parameter choices.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16546  | https://doi.org/10.1038/s41598-022-20551-7

www.nature.com/scientificreports/

Reanalysis of four experimental datasets.  To empirically test the predictions of the aforementioned 
model, we use the data pertaining to positive numerical estimation tasks (i.e., tasks with negative estimates omit-
ted) from four published human-subject laboratory experiments9,10,14,16. In these experiments, a total of 2885 
human participants, organized into 99 independent groups, completed a total of 54 estimation tasks, generating 
a total of 15,562 individual estimations and 687 collective estimations (see Fig. 3A).

All four experiments followed a similar procedure that involved three steps: (1) the participants simultane-
ously and independently completed numeric estimation tasks on a range of topics such as visual estimation, 
trivia questions, political facts, and economic forecasts; (2) within groups of various sizes, the participants in 
the social interaction condition communicated information about their estimates with each other; and (3) the 
participants had one or more opportunities to revise their estimates. One trial consisted of a single group of 
participants answering a single task.

Figure 3.   Reanalysis of previously published experiments indicates that our proposed feature, R, has significant 
predictive power for determining when the group performance improves as a result of social interactions. 
Panel (A) shows the number of participants, groups, tasks, and trials in the reanalyzed experiments. Panel (B) 
displays the distribution of R across these studies. Panel (C) shows that the probability of groups improving their 
performance after social interaction, � , is substantially explained by R. Panel (D) shows the marginal effect of 
the interaction term between influence centralization and R: as R increases, the group performance improves in 
the centralized influence conditions, and degrades in the decentralized influence conditions. The bands are the 
95% confidence intervals.
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Each task induces a different distribution on the initial estimates that are observed empirically. For each task, 
we use the relative log likelihood of a fitted log-normal distribution versus a normal distribution (hereinafter 
denoted by R) as a measure of the heavy-tailedness of the initial-estimate distribution. In other words, this 
measure captures whether the initial estimates for a given task are better described by a thin-tailed distribu-
tion (i.e., normal distribution) or a heavy-tailed one (i.e., log-normal distribution). R = 0 indicates with 100% 
certainty that the initial estimates are better fit by a normal distribution than a log-normal one, R = 1 indicates 
with 100% certainty that the initial estimates are better fit by a log-normal distribution than a normal one, and 
R = 0.5 indicates that the initial estimates could equally be described as normally or log-normally distributed. 
Figure 3B shows the distribution of the empirically derived R in these studies, which confirms that the majority 
of the empirical distributions of the initial estimates are better described by a heavy-tailed distribution than a 
thin-tailed one.

We refer to the average estimate of the individuals in each group, before and after their interactions, as their 
collective initial and revised estimates, respectively. For each trial, we compare the absolute errors of the collective 
initial and revised estimates using the following two outcome metrics: (1) whether the collective revised estimate 
is more accurate than the collective initial estimate in groups with social interaction, and (2) the standardized 
(z-score) absolute error of the revised collective estimate for all groups (with or without social interaction). We 
use a logistic regression for the former and a linear regression for the latter.

This empirical analysis relies on the following premise: the collective initial estimate corresponds to the most 
decentralized influence structure ( ω = 0 ), and social interactions can only increase the influence centraliza-
tion ( ω > 0 ). For example, even in social interactions where everybody is equally connected in terms of the 
communication structure, some group members may become more influential than others, by virtue of being 
more talkative31, more persuasive, or more resistant to social influence10,17. The key insight is the fact that the 
collective initial estimate (pre-social interaction) eliminates the possibility of any variation in influence and is 
therefore equivalent to the most decentralized network. In contrast, the collective revised estimate (post-social 
interaction) can be influenced disproportionately by domineering individuals, and therefore can be modeled 
as a centralized influence network. The same insight can be extended to modeling unstructured discussion as 
centralized influence and the Delphi method (and other mediated communication techniques) as relatively 
decentralized networks. (The interested reader can find a more careful discussion in a follow-up to this paper by 
Becker et al.32 showing the application of this modeling insight and our results here to explain why unstructured 
discussion will sometimes outperform numeric communication and why the outcome is sometimes reversed.)

Here, we begin by using a mixed-effect model (see SI Sect. S3.1 for specification details) to test the main 
hypothesis predicted by our theory, namely that the effect of social influence centralization on the performance 
of groups is moderated by our measure of the heavy-tailedness of the initial-estimate distribution, R. As shown 
in Fig. 3C, we find that the probability that a group improves after centralized social interaction — denoted by � 
as the outcome variable of interest — is substantially explained by R (z-statistic = 4.16 ; p < 0.001).

In Fig. 3D, we apply another mixed-effect model (see SI Sect. S3.1 for specification details) and find that the 
interaction between influence centralization and R significantly affects the absolute error of the revised collec-
tive estimate (b = −4.89 ; t-statistic = −3.91 ; p < 0.001 ). Critically, the results of this empirical analysis show 
that variation in R can completely reverse the effects of social influence centralization: when R < 0.5 , the error 
of the revised collective estimate is lower in decentralized influence structures; whereas when R > 0.5 , the error 
of the revised collective estimate is lower in centralized structures (Fig. 3D).

Discussion
The primary contribution of this paper is to reconcile previous research about a question that is fundamental to 
understanding the performance of groups: how does social influence impact the accuracy of collective estimates? 
The critical implication of our results is that the attributes of the distribution of the initial estimates (i.e., the esti-
mation context) moderates the effect of influence centralization. Therefore, we find no support to the hypothesis 
that decentralized influence structures are preferred to centralized ones independently of the estimation context.

Thus, the effect of network structure on the collective estimation performance should be reconceptualized 
under a context-dependent framework, one that considers the population of individuals performing the particu-
lar task. There is no single influence structure that is better than others in all contexts. Such a context-dependent 
framework can unify previously conflicting findings on crowd wisdom under a single theoretical framework 
and explain the effects of the influence network structure on the quality of the collective estimates. Admittedly, 
the estimation context is only one of several potential sources of inconsistency in previous studies. For instance, 
vagueness or ambiguity of some theoretical constructs, such as influence, can result in different studies of seem-
ingly the same phenomenon measuring different things.

Although the calculation of our proposed feature of the estimation context, R, does not require knowledge 
of the truth (estimand), it does require access to a group’s set of initial estimates. However, we note that research 
on simple estimation tasks demonstrated that similar classes of estimation tasks tend to yield similar and reli-
ably predictable distributions of initial estimates20. Thus, prescriptively, for a group that may regularly need to 
complete the same class of estimation tasks, it may be possible to calibrate group structure based on historical 
data and long-term feedback.

Furthermore, the performance of the influence structures can vary significantly as a function of the selected 
loss function. In this paper, our loss function is defined as the probability that the collective estimate generated 
by a centralized influence structure is closer to the truth than that of a decentralized structure. However, the 
choice of the loss function is typically application dependent. See Fig. S4 for examples of other loss functions.

Finally, we note that we only studied one class of tasks: numerical estimation with a non-negative, objective 
truth. Relevant research on other classes of tasks has similarly demonstrated that variation in context features, 
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such as complexity33–38, fundamentally alter collective problem-solving outcomes. Also worth noting is our focus 
on tasks involving social influence when, in reality, we should not rule out the possibility that simply aggregating 
individuals’ pre-influence estimates might be an appropriate, costless solution for some situations. However, such 
situations fall beyond the scope of the present work and we refer the interested reader to the extensive existing 
literature on aggregation rules (e.g.,39–41).

To conclude, our theoretical and empirical analysis has demonstrated that conclusions about the role of the 
social influence can be inconsistent unless the estimation context is explicitly accounted for. Many research 
extensions are warranted from this framework. For example, unlike what is assumed in most available work, 
including ours, the social networks we live in are not random, nor are they imposed by external forces. Rather, 
these social networks emerge under the influence of endogenous social processes and gradually evolve within 
a potentially non-stationary context. An important avenue for future work is to investigate the consequences of 
correlated placement of individuals, whereby more accurate individuals are more or less likely to occupy more 
influential positions. We expect that as the degree of this correlation increases, the benefits or harms of centrali-
zation will become prominent and persist more consistently over a wider range of tasks and context features. A 
truly context-dependent view on crowd wisdom should open connections with diverse research fields and help 
advance an interdisciplinary understanding of the design of social systems and their information outcomes.

Materials and methods
Theoretical analysis of �.  We measure the probability that the collective estimate produced by a central-
ized influence structure, an(ω) , ω > 0 , outperforms the decentralized baseline, an(0) . We denote this probability 
by �n(ω,F

θ
µ,σ ) := P

θ
µ,σ [|a

n(ω)− θ | < |an(0)− θ |] . To compute �n in Fig. 2, we have fixed n = 50 , θ = 2 , and 
ω = 1/3 . Therefore, � is entirely determined by the distribution of the initial estimates ( µ and σ ). Figure S3 rep-
licates our simulation for a range of n and ω values. For distributions Fθ

µ,σ , supported over positive reals, with 
cumulative function Fθµ,σ , we propose the following lower bound (proved in SI Sect. S2.1):

In SI Sect. S2.1, we show how to limit the rate of tail decay for different classes of distributions to produce a 
non-trivial (non-zero) lower bound as n → ∞ . For heavy-tailed distributions, such as Pareto, log-Laplace, and 
log-normal (see SI Sects. S2.1.1–S2.1.3), we identify phase-transition behaviors, whereby the proposed lower 
bound’s limiting value transitions from 0 to 1 or 1/2 as σ crosses a critical value.

Statistical tests.  All statistics were two-tailed and based on mixed-effects models that included random 
effects by group and by study (i.e., the four human-subject laboratory experiments that we reanalyzed9,10,14,16) to 
account for the nested structure of the data. In particular, the logistic regression for Fig. 3C is:

where yij is a binary indicator for whether or not the i-th group in the j-th estimation context improved the 
accuracy of its collective estimate after social interaction; b0 is the fixed intercept for the regression model; b1 is 
the fixed coefficient for the estimation-context feature, R; vi is the random coefficient for the i-th group; ui is the 
random coefficient for the study that the i-th group belongs to; and ǫij is a Gaussian error term. The analysis was 
conducted on 678 observations (groups with social influence).

The regression equation for Fig. 3D is:

where yij is the standardized (z-score) absolute error of the revised collective estimate for the i-th group in the 
j-th estimation context, Rj ; b0 is the fixed intercept for the regression model; b1 is the fixed coefficient for the 
estimation-context feature, R; Ii ∈ {0, 1} is an indicator variable of whether or not social interaction has occurred; 
b2 is the fixed coefficient for the social influence centralization; b3 is the fixed coefficient for the interaction term 
between the estimation-context feature, R, and influence centralization (shown in Fig. 3D); vi is the random 
coefficient for the i-th group; ui is the random coefficient for the study that the i-th group belongs to; and ǫij is 
a Gaussian error term. The absolute error of the revised collective estimate has been standardized (z-scored) to 
compare errors across different tasks (the correct answer for different tasks can differ by orders of magnitude). 
The analysis was conducted on 687 observations; 582 groups with social influence (centralized) and 105 groups 
without social influence (decentralized). Further details of the regression analysis are provided in SI Sect. S3.1 
and Table S1. Robustness checks for the regression results are presented in Tables S2 and S3.

Data availability
At https://​github.​com/​amaat​ouq/​task-​depen​dence.

Received: 19 April 2022; Accepted: 14 September 2022

References
	 1.	 Galton, F. Vox populi. Nature 75, 450–451 (1907).
	 2.	 Surowiecki, J. The Wisdom of Crowds (Knopf Doubleday Publishing Group, 2005).

�n(ω,F
θ
µ,σ ) ≥ sup

β>θ/(1−ω)

{

Fθµ,σ (β)(1− Fθµ,σ (nβ)
n−1)

}

.

yij =
1

1+ exp(b0 + b1Rj + vi + ui + ǫij)
,

yij = b0 + b1Rj + b2Ii + b3IiRj + vi + ui + ǫij ,

https://github.com/amaatouq/task-dependence


7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16546  | https://doi.org/10.1038/s41598-022-20551-7

www.nature.com/scientificreports/

	 3.	 Wolfers, J. & Zitzewitz, E. Prediction markets. J. Econ. Perspect. 18, 107–126 (2004).
	 4.	 Barneron, M., Allalouf, A. & Yaniv, I. Rate it again: Using the wisdom of many to improve performance evaluations. J. Behav. Decis. 

Mak. 32, 485–492 (2019).
	 5.	 Müller-Trede, J., Choshen-Hillel, S., Barneron, M. & Yaniv, I. The wisdom of crowds in matters of taste. Manage. Sci. 64, 1779–1803 

(2018).
	 6.	 Morgan, M. G. Use (and abuse) of expert elicitation in support of decision making for public policy. Proc. Natl. Acad. Sci. 111, 

7176–7184 (2014).
	 7.	 Davis-Stober, C. P., Budescu, D. V., Dana, J. & Broomell, S. B. When is a crowd wise?. Decision 1, 79–101 (2014).
	 8.	 Muchnik, L., Aral, S. & Taylor, S. J. Social influence bias: A randomized experiment. Science 341, 647–651 (2013).
	 9.	 Lorenz, J., Rauhut, H., Schweitzer, F. & Helbing, D. How social influence can undermine the wisdom of crowd effect. Proc. Natl. 

Acad. Sci. 108, 9020–9025 (2011).
	10.	 Becker, J., Brackbill, D. & Centola, D. Network dynamics of social influence in the wisdom of crowds. Proc. Natl. Acad. Sci. 114, 

E5070–E5076 (2017).
	11.	 Golub, B. & Jackson, M. O. Naive learning in social networks and the wisdom of crowds. Am. Econ. J. Microecon. 2, 112–149 (2010).
	12.	 Yaniv, I. The benefit of additional opinions. Curr. Dir. Psychol. Sci. 13, 75–78 (2004).
	13.	 Bahrami, B. et al. Optimally interacting minds. Science 329, 1081–1085 (2010).
	14.	 Gürçay, B., Mellers, B. A. & Baron, J. The power of social influence on estimation accuracy. J. Behav. Decis. Mak. 28, 250–261 (2015).
	15.	 Yaniv, I. & Choshen-Hillel, S. Exploiting the wisdom of others to make better decisions: Suspending judgment reduces egocentrism 

and increases accuracy. J. Behav. Decis. Mak. 25, 427–434 (2012).
	16.	 Becker, J., Porter, E. & Centola, D. The wisdom of partisan crowds. Proc. Natl. Acad. Sci. 116, 10717–10722 (2019).
	17.	 Almaatouq, A. et al. Adaptive social networks promote the wisdom of crowds. Proc. Natl. Acad. Sci. 117, 11379–11386 (2020).
	18.	 DeMarzo, P. M., Vayanos, D. & Zwiebel, J. Persuasion bias, social influence, and unidimensional opinions. Q. J. Econ. 118, 909–968 

(2003).
	19.	 Jayles, B. et al. How social information can improve estimation accuracy in human groups. Proc. Natl. Acad. Sci. 114, 12620–12625 

(2017).
	20.	 Kao, A. B. et al. Counteracting estimation bias and social influence to improve the wisdom of crowds. J. R. Soc. Interface 15, 

20180130 (2018).
	21.	 Indow, T. & Ida, M. Scaling of dot numerosity. Percep. Psychophys. 22, 265–276 (1977).
	22.	 Simmons, J. P., Nelson, L. D., Galak, J. & Frederick, S. Intuitive biases in choice versus estimation: Implications for the wisdom of 

crowds. J. Consumer Res. 38, 1–15 (2011).
	23.	 Dehaene, S., Izard, V., Spelke, E. & Pica, P. Log or linear? Distinct intuitions of the number scale in Western and Amazonian 

indigene cultures. Science 320, 1217–1220 (2008).
	24.	 Resnick, I., Newcombe, N. S. & Shipley, T. F. Dealing with big numbers: Representation and understanding of magnitudes outside 

of human experience. Cogn. Sci. 41, 1020–1041 (2017).
	25.	 Oswald, M. E., & Grosjean, S. Confirmation bias. In Cognitive illusions: A handbook on fallacies and biases in thinking, judgement 

and memory (ed. R. F. Pohl), 79–96 (Psychology Press, 2004).
	26.	 Jayles, B. et al. The impact of incorrect social information on collective wisdom in human groups. J. R. Soc. Interface 17, 20200496 

(2020).
	27.	 DeGroot, M. H. Reaching a consensus. J. Am. Stat. Assoc. 69, 118–121 (1974).
	28.	 Anderson, N. H. A functional theory of cognition (Psychology Press, London, 2014).
	29.	 Prelec, D., Seung, H. S. & McCoy, J. A solution to the single-question crowd wisdom problem. Nature 541, 532–535 (2017).
	30.	 Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1978).
	31.	 Dalkey, N. An experimental study of group opinion: The Delphi method. Futures 1, 408–426 (1969).
	32.	 Becker, J., Almaatouq, A., & Horvát, E.-A. Network structures of collective intelligence: The contingent benefits of group discus-

sion. arXiv preprint arXiv:​2009.​07202 (2020).
	33.	 Barkoczi, D. & Galesic, M. Social learning strategies modify the effect of network structure on group performance. Nat. Commun. 

7, 13109 (2016).
	34.	 Shore, J., Bernstein, E. & Lazer, D. Facts and figuring: An experimental investigation of network structure and performance in 

information and solution spaces. Organ. Sci. 26, 1432–1446 (2015).
	35.	 Mason, W. & Watts, D. J. Collaborative learning in networks. Proc. Natl. Acad. Sci. 109, 764–769 (2012).
	36.	 Lazer, D. & Friedman, A. The network structure of exploration and exploitation. Adm. Sci. Q. 52, 667–694 (2007).
	37.	 Straub, V. J., Tsvetkova, M., & Yasseri, T. The cost of coordination can exceed the benefit of collaboration in performing complex 

tasks. arXiv preprint arXiv:​2009.​11038 (2020).
	38.	 Almaatouq, A., Alsobay, M., Yin, M. & Watts, D. J. Task complexity moderates group synergy. Proc. Natl. Acad. Sci. 118, 

e2101062118 (2021).
	39.	 Budescu, D. V. & Chen, E. Identifying expertise to extract the wisdom of crowds. Manage. Sci. 61, 267–280 (2015).
	40.	 Jose, V. R. R. & Winkler, R. L. Simple robust averages of forecasts: Some empirical results. Int. J. Forecast. 24, 163–169 (2008).
	41.	 Mannes, A. E., Soll, J. B. & Larrick, R. P. The wisdom of select crowds. J. Pers. Soc. Psychol. 107, 276 (2014).

Author contributions
A.A. and M.A.R. designed research; A.A., M.A.R., J.W.B, and A. Alhajri performed research; A.A., M.A.R., J.W.B, 
and A. Alhajri contributed new reagents/analytic tools; A.A., M.A.R., J.W.B, and A. Alhajri analyzed data; and 
A.A., M.A.R., J.W.B, and A. Alhajri wrote the paper.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​20551-7.

Correspondence and requests for materials should be addressed to A.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/abs/2009.07202
http://arxiv.org/abs/2009.11038
https://doi.org/10.1038/s41598-022-20551-7
https://doi.org/10.1038/s41598-022-20551-7
www.nature.com/reprints


8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16546  | https://doi.org/10.1038/s41598-022-20551-7

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	The distribution of initial estimates moderates the effect of social influence on the wisdom of the crowd
	Theoretical model
	Results
	Analytical results. 
	Reanalysis of four experimental datasets. 

	Discussion
	Materials and methods
	Theoretical analysis of . 
	Statistical tests. 

	References


