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Negative energy dust acoustic 
waves evolution in a dense 
magnetized quantum 
Thomas–Fermi plasma
M. Abd‑Elzaher1 & A. Atteya2*

Propagation of nonlinear waves in the magnetized quantum Thomas–Fermi dense plasma is analyzed. 
The Zakharov–Kuznetsov–Burgers equation is derived by using the theory of reductive perturbation. 
The exact solution contains both solitary and shock terms. Also, it is shown that rarefactive waves 
propagate in most cases. Both the associated electric field and the wave energy have been derived. 
The effects of dust and electrons temperature, dust density, magnetic field magnitude, and direction 
besides the effect of the kinematic viscosity on the amplitude, width, and energy of the formed waves 
are discussed. It is shown that the negative energy wave is formed and its value is enhanced due to 
the increase of the kinematic viscosity and the ambient magnetic field which lead to an increase in the 
instability. The present results are helpful in controlling the stabilization of confined Thomas–Fermi 
dense magnetoplasma that are found in white dwarfs and in the high-intensity laser-solid matter 
interaction experiments.

The dusty plasma waves investigations occur when the dust-acoustic waves (DAWs) were theoretically predicted 
first by Rao et al. 19901 and were later confirmed experimentally2–6. Since then numerous studies have been 
presented on different types of waves in the dusty plasma5–7. The linear and nonlinear properties of plasma were 
investigated experimentally and have been confirmed to depend on the plasma particles’ velocity distribution 
functions. Moreover, the contamination due to charged micron or submicron-sized dust grains affects the prop-
erties of electron-ion plasma and new oscillation modes released and can be studied in plasmas, e.g., DAWs1, 
dust ion-acoustic (DIA) mode8.

The electron density in fluid hydrodynamic equations was considered as Boltzmann distribution in most of 
the works that were used to investigate DAWs. However, in white dwarfs as an example of astrophysical envi-
ronments, the electron and ion density numbers are about 1030 cm−3 and exhibit relatively weak interactions. In 
this case, we can use the Thomas–Fermi approximation to describe inertialess degenerate electrons9–11. The dust 
is taken as classical and dynamic, while electrons and ions are taken to be Thomas–Fermi density distribution. 
The Thomas–Fermi distribution for electrons is employed by Dubinov and Dubinova11. They investigated the 
subsonic periodic and supersonic solitary waves occurrence. The cylindrical and spherical KdV equation was 
derived for nonplanar solitary waves12. The unmagnetized Thomas–Fermi electron-positron-ion plasma was 
also considered to study the solitary waves13. Sabry et al.14 studied the obliquely explosive propagating solitary 
waves in dense magnetoplasma with Thomas–Fermi degenerate electrons. The solitary waves and double layer 
properties of dusty magnetoplasma have been also investigated15,16. Later, derivation of the Zakharov–Kuznet-
sov (ZK) and Zakharov–Kuznetsov–Burger (ZKB) equations found that the DA shock and solitary waves are 
affected by the variation of the concentration, viscosity, and temperature of the dust17. The propagations of 
solitary and rogue waves are investigated in a degenerate Thomas–Fermi thermal dusty plasma through the 
transverse effects of velocity perturbation18. Hafez et al. also investigated ion-acoustic waves in an unmagnet-
ized Thomas–Fermi plasma for both non-relativistic and ultra-relativistic degenerate electrons systems by the 
derivation of KdV equation and using the Riccati equation mapping method to solve it19. Obliquely propagat-
ing waves in a dense degenerate cold Thomas–Fermi magnetoplasma were investigated by Irfan et al.20. They 
employed the Sagdeev pseudopotential theory to derive an energy-balance equation. It was demonstrated that 
the wave characteristics depend upon the system parameters. The degenerate electrons in dense magnetoplasma 
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were taken into consideration in the study of overtaking collision of unidirectional DAWs in the Thomas–Fermi 
dense magnetoplasma21.

The negative energy wave emerges when a reduction of the total energy of the system accompanied the wave 
excitation. The reduction or removal of the energy from the wave can be achieved by dissipation or coupling to 
another wave of positive energy results in the instability of the system due to the wave growth22. The reduction 
in the wave energy occurs when the energy becomes negative and signifies an increase in both the wave ampli-
tude and, the energy absolute value. These negative energy waves are adequate to occur only in nonequilibrium 
systems and, in systems containing neutral fluid shear flows or charged-particle beams.

The negative energy waves were introduced by Cairns to describe the stability of fluid flows23. Two instability 
forms, reactive and dissipative were illustrated, which leads to the emergence of the negative energy wave24. Also, 
negative energy waves were taken in the resistive wall mode, which is magnetically confined plasma instability25. 
It is different from the resistive wall amplifier, but a subtle link between them in the presence of plasma flow26.

Ryutova shows that negative energy wave is important for the energy transfer to the higher solar atmosphere27. 
The boundary of discontinuous shear flow in an incompressible plasma system was investigated by Ruderman 
and Goossens28 . The Alfvén surface wave propagation and the solution for its negative energy were derived by 
considering constant flow on one side and viscosity on the other side. They obtained two copropagating modes 
of phase speed, with the fact that the negative energy was associated with the slower one. Also, they found that 
the increase in viscosity coefficient leads to an increase in the growth rate of the instability. Ruderman found that 
the standing surface wave growth rate equals the difference between the propagating backward negative energy 
wave and the propagating forward positive energy wave, this means that the negative energy wave exceeds the 
positive energy wave by the growth rate29. The appearance of negative energy surface waves in an incompressible 
cylindrical Plasma was investigated by Yu and Nakariakov30. They found that the instability depends strongly on 
the shear flow speed and on the plasma temperature.

However, to the best of the authors’ knowledge, no attempt has been made considering the negative energy 
waves propagation in the magnetized quantum Thomas–Fermi plasma. Therefore, in this work, we derive the 
ZKB equation to study the negative energy waves associated with the DAWs. This manuscript is organized as 
follows. The governing equations and the derivation of the magnetized ZKB equation is in Derivation of the ZKB 
equation section. The wave solution, the associated electric field, and the wave energy are in The ZKB equation 
solution section. The numerical investigations and discussions are provided in  Numerical investigations and 
discussion section. Finally,  Conclusions section is devoted to the conclusions.

Derivation of the ZKB equation
We consider magnetized quantum Thomas–Fermi dense plasma consisting of negatively charged dust particles 
with degenerate electrons and ions obeying the Fermi-Dirac distributions. The external magnetic field B0 has 
confined the plasma system and it is along the z-direction, i.e., B0 = ẑB0 where ẑ is the unit vector along the z-axis 
and B0 is the strength of the magnetic field. The quasineutrality condition is Ne0 = Ni0 − Nd0Zd0 at equilibrium, 
where Ns0 is the sth species equilibrium density(s = e , i, and d for electrons, ions, and negatively charged dust 
grains, respectively), Zd0 is the equilibrium state dust charge. The dynamics of the DA for the Thomas–Fermi 
magnetoplasma are governed by21

where Ns is the normalized number density, Ud dust fluid velocity that normalized by the DA speed 
Cd = (2Zd0kBTFi/md)

1/2, ψ is the wave potential that normalized by 2kBTFi/e . � = ωcd/ωpd is the normal-
ized dust gyro-frequency with ωcd = eZd0B/md and ωpd =

(

4πZ2
d0nd0e

2/md

)1/2 . Also, σd = Td/TFiZd0 , 
µi = ni0/Zdnd0 , and µe = ne0/Zdnd0, are the dust temperature-to-ion Fermi temperature ratio, the ion con-
centration, and electron concentration, divided by nd0Zd0 , respectively, with e is the electronic charge, kB is the 
Boltzmann constant. σi = TFi/TFe is the ion-to-electron Fermi temperature ratio. The charge-neutrality condi-
tion at equilibriumbecomes µi=µe+1 . The space variable is normalized by �0 =

(

2kBTFi/4πZdnd0e
2
)1/2

, and 
the time variable t is normalized by ω−1

pd .
To derive the ZKB equation, the stretching of the independent variables x, y, and t is defined as7

where ǫ is a formal small expansion parameter measuring the strength of the system nonlinearity, v0 is the phase 
velocity. The dependent variables can be expanded in power series of ǫ as follows:

Substituting Eqs. (2) and (3) into Eqs. (1) and the same powers of ǫ are collected, which gives for the lowest 
orders perturbed quantities;
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The propagation phase speed of the DA waves in the magnetized dusty plasma is given by

We investigate the influence of important plasma parameters on the phase speed because we are interested in 
analysing the characteristics of acoustic modes in the plasma system under consideration. The phase speed of 
the acoustic wave is dependent on many system parameters, as shown by Eq. (5). Accordingly, Fig. 1 illustrates 
the dependence of v0 on the ion-to-electron Fermi temperatures ratio, σi , the dust temperature-to-ion Fermi 
temperature ratio, σd . Combining the next higher-orders contributions lead to

Now, the next higher order of ǫ gives rise to the following equation

Substitute in the Poisson’s equation, we obtain a partial differential equation (PDE) in the form

This PDE is recognized as the ZKB equation. The nonlinearity coefficient A, the dispersive, B, and the transverse, 
C terms are given by the expressions

The effects of σi , and σd on these A, B, and, C coefficients are illustrated in Fig. 2. This figure depicts that the 
nonlinear coefficient is negative and its absolute value increases as σi , and σd increase. Both B and C decrease as 
σi increase while B(C) decreases (increases) as σd increases. Figure 2d show that the transverse term, C, decreases 
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Figure 1.   The variation of the phase speed v0 , represented by Eq. (5) against σd for different values of σi at 
µe = 18.
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as µe , and the magnetic field through � increases, which mathematically related to the inverse proportionality 
relation between C and � as mentioned in Eq. (9).

The ZKB equation solution
To transform the planar partial ZKB equations (8) into ordinary differential equations, we introduce the vari-
able χ = lX +mY + nZ − uoT where χ is the transformed coordinate relative to a frame that moves with the 
velocity uo . l, m, and n are direction cosines of the wave propagation vector k with respect to X;Y, and Z axes, 
respectively. uo is the velocity of the moving frame normalized by dust acoustic speed.

Considering this transformation, Eq. (8) takes the form of an ordinary differential equation given by

Now, the general exact solution of Eq. (10) comprising both the dispersion and dissipative terms can be obtained 
by employing the hyperbolic tangent (tanh) method31, which is a method for deriving the traveling wave solutions 
of distinct types of nonlinear evolution equations. Therefore, the solution can be derived to be32

This ZKB equation, Eq. (10), contains both dispersion and dissipative effects contribution from which affect 
the wave potential eventual shape. It is noticed that this solution has been obtained in the region of parameter 
values where the nonlinearity, dispersion, and dissipative coefficients in the ZKB equation (10) are affected by 
the parameters’ values. Therefore, the solution covers the range of plasma parameters. The associated electric 
field can be represented according to the relation ( E(1) = −∇ψ(1))33 and it takes the form

(10)−uo
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∂χ
+

[

Bn3 + Cn
(

l2 +m2
)]d3ψ(1)

dχ3
+ D

d2ψ(1)

dχ2
= 0.

(11)ψ(1)(χ) =
3

25

D2

An2
�

Bn2 + C
�

1− n2
��





2− 2 tanh

�

D
10n[Bn2+Cn(1−n2)]

χ

�

+sech2
�

D
10n[Bn2+C(1−n2)]

χ

�



.

D

Figure 2.   The variation of (a) the nonlinear term A, (b) the dispersive term B, (c) the transverse term C against 
σd for different values of σi , at µe = 18 , and (d) the transverse term C against µe for different values of � at 
σi = 0.5 , and σd = 0.3 that are represented by Eq. (9).
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In addition to the above, the energy is also an important feature, which can be calculated as reported by Ko and 
Kuehl34,35 as

Motivated by these theoretical works, according to the energy equation, Eq. (13), the role of viscosity, dust 
temperature, and magnetic field effects may significantly play on the energy carried by the formed DA waves.

Numerical investigations and discussion
In this section, we present numerical investigations of equations (5, 9, 11–13 to evaluate the phase velocity, 
amplitude, and width of the nonlinear dust acoustic structures in a magnetized quantum Thomas–Fermi dense 
plasma. For the numerical results, environments like white dwarfs parameters are used. Particularly, we analyze 
the effect of the unperturbed density ratio of ions-to-dust, µi , electron-to-dust, µe , the ion-to-electron Fermi 
temperatures ratio, σi , the dust temperature-to-ion Fermi temperature ratio, σd , the direction cosines of the 
wave vector along the z-axis, viscosity and magnetic field on the energy of the nonlinear DAWs and the associ-
ated electric field. It is realized from Fig. 1 that v0 increases as electron Fermi temperature and dust temperature 
increase, while v0 decreases as the ion Fermi temperature increases. This can be physically attributed to the fact 
that the restoring force is provided by the inertialess electrons. Accordingly, the increase of electrons energies 
and the dusts thermal pressure lead to an increase in the electron Fermi temperature TFe , and dust temperature, 
Td

36, respectively. This results in the increase of the phase velocity.
The nonlinearity coefficient A, the dispersive, B, and the transverse, C terms are dependent on σi , and σd as 

depicted in Fig. 2a–c. The transverse term C is the only factor that depends on the magnetic field as depicted 
in Fig. 2. In comparison with Fig. 1, only the transverse term, C takes the same behavior of the phase velocity 
against σi , and σd as it is directly proportional to v0 . The behavior of A and B is altered by comparing with the 
phase velocity against σi , and σd as shown in Fig. 2a,b as they depend on σi , and σd in the opposite way.

Figure 3 depicts the effect of various data values of σi , σd , η , n, and � on the profile of the DAWs of the ZKB 
equation, Eq. (11), against the coordinate χ . It is clear that the dissipative term is dominant and a rarefactive 
shock profile is obtained. The amplitude of the formed shock waves decreases as σi , σd , and n increase. While, 
the amplitude increases as η , and � increase. All these parameters appear in A, B, C, and D where they affect the 
wave amplitude as presented in the D2/An2

[

Bn2 + C
(

1− n2
)]

 term. It is concluded that the effect of increasing 
σi and σd on the nonlinear term is dominant in affecting the shock wave amplitude. Since A is inversely propor-
tional to the amplitude and it inceases drastically in comparison with the behavior of B and C against σi and σd . 
Accordingly, energetic electrons leads to larger phase velocity and larger amplitude shock waves, while inertial 
dusts with smaller temperature and smaller phase velocity results in larger amplitude shock waves. The width in 
our system, 10n

[

Bn2 + C
(

1− n2
)]

/D) , is affected by B , C , and D in different manners as they are multiplied by 
n . According to Fig. 2, the dominant effect is attributed to the change in D since it emerges larger values against 
η on comparing with those from B and C . The associated electric field is depicted in Fig. 4. The electric field 
shows the same behavior where it increases (decreases) as η and � ( σi , σd and n) increase. This means physically 
that, more energetic electrons (electrons with higher TFe or lower σi ) lead to an increase in the restoring force 
and in situ increase in the amplitude as shown in Figs. 3a and 4a. The dusts temperature Td increases as their 
thermal pressure increases, which leads the waves to be less negative that results in the decrease in the amplitude 
as depicted in Figs. 3a and 4a. The dissipation leads also to an increase in the amplitude as depicted also in these 
figures. Physically, this behavior is because the kinematic viscosity increase leads to an increase in dissipation 
and consequently causes strong shock waves and strong associated electric field structures. Also, one can predict 
that when the nonlinear DAWs approach the direction parallel to the magnetic field (n increases), the amplitude 
and the width of it shrink as shown in 3b and 4b, and from this point, we can predict physically that the DAWs 
are confined in the field direction. Also, the magnetic field increase leads to an increase in the force and in situ 
increase in the amplitude as depicted in the same figures. This results from the fact that the waves propagate 
across the magnetic field, where the compression of magnetic field lines provides the acoustic restoring force 
for the wave propagation37.

The variation of wave energy, En , versus σd for different values of σi is depicted in Fig. 5a. On the other hand, 
Fig. 5b shows the variation of En versus µe for different values of � . The variation of En against n for different 
values of η is depicted in Fig. 5c. We see in Figure 5 that the wave energy of obliquely propagating DAWs is higher 
for higher values of � and η . on the other side, the wave energy shrinks for higher values of n, µe , σd , and σi . This 
can be inferred as previously mentioned due to the magnitude and the direction of the magnetic field, and dust 
inertia on the formed DAWs. Kinematic viscosity plays a key role in dissipation for the propagation of DA shocks. 
This coincides with the postulation that the growth of the wave by increasing the dissipation results in negative 
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energy increase that is an indication of instability increase38. Also, the restoring force and inertia are affected by 
the electron and dust concentrations, respectively. Accordingly, µe affects significantly the energy of the DAWs.

Conclusions
Based on the hydrodynamic model of magnetized quantum Thomas–Fermi dense plasma and rigorous develop-
ment of nonlinear wave theory we have described DAWs evolution by the ZKB equation. The solution of this 
ZKB equation has been used to explore the development of the DAWs’ potential, electric field, and energy. The 
DAWs propagating in the background magnetic field direction are confined. While the field increase leads to 
larger energy. Our results coincide with those obtained by Infeld and Frycz39 that planar waves propagating 
parallel to the magnetic field become more unstable if the field is robust enough.

A

B

Figure 3.   The evolution of the potential φ(1) of the DA waves that represented by Eq. (11) with χ at µe = 18 , 
for different values of (a) σi , σd , and η  with n = 0.3 , and � = 0.4 , (b) n, and � =  with σi = 0.2 , σd = 0.1 , and 
η = 0.3.
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The dissipation involving plasma viscosity with wave dispersion and nonlinearity leads to nonlinear excita-
tions in the form of shocks in plasmas. Also, we demonstrated that finite viscosity causes the formation of dis-
sipative negative energy wave instability30. The increase of the electron density through µe leads to decelerating 
them32, as those obtained due to the increase of σi and σd . Consequently, a decrease in the restoring force results 
in the reduction of wave energy. The theory was examined and the valid ranges were also investigated rigorously 
in the numerical simulations .The idea of negative energy waves is an essential scheme for classifying instabili-
ties into dissipative and reactive40. Accordingly, This prooof of the existence of the negative energy waves helps 
control the stabilization of confined plasma41.

A

B

Figure 4.   The evolution of the associated electric field, E(1) of DA waves that represented by Eq. (12) with χ for 
the potentials those represented by Fig. 1, for different values of (a) σi , σd , and η with n = 0.3 , and � = 0.4 , (b) 
n, and � = with σi = 0.2 , σd = 0.1 , and η = 0.3.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15890  | https://doi.org/10.1038/s41598-022-20174-y

www.nature.com/scientificreports/

Our present results may be useful in understanding the nonlinear localized structures in the laboratory such 
as the high-intensity laser-solid matter interaction experiments and white dwarfs as an example of the space 
plasmas where Thomas–Fermi dense magnetoplasma occurs42,43.

Data availability
The data used to support the findings of this study are included within the article and available in ref.21
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