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Traces of calcium oxalate 
biomineralization in fossil leaves 
from late Oligocene maar deposits 
from Germany
Mahdieh Malekhosseini1*, Hans‑Jürgen Ensikat2, Victoria E. McCoy3, Torsten Wappler4, 
Maximilian Weigend2, Lutz Kunzmann5 & Jes Rust1

Calcium oxalate (CaOx) is one of the most common bio-mineral in extant plants and is believed 
to serve a variety of functions such as calcium storage and herbivore defense. However, traces of 
CaOx crystals have rarely been identified in fossil plants, and they are primarily known from fossil 
gymnosperms, where empty cavities of former CaOx crystals or ghost crystals have been reported 
from leaf cuticles of some Late Cretaceous and Cenozoic conifers. Here we investigate fossil 
angiosperm leaves from the late Oligocene Rott Fossil Lagerstätte and report ghost crystals of various 
shapes, sizes and topology (distribution patterns), and cavities. These micromorphological structures 
of fossil leaves are compared to CaOx deposits in leaves of extant plants: globular structures in fossil 
leaves resemble CaOx druses (crystal aggregates) in fresh leaves in size and distribution; and angular 
or brick-shaped structures in the vascular system of fossil leaves closely resemble prismatic CaOx 
crystals in the vascular system of extant leaves in both size and topology. Chemically, CaOx druses 
have survived fossilization as cavities only, and were replaced by organic matter and ghost minerals 
containing Ca, Si, Al, S, and Fe. The identification of former CaOx remains in leaf fossils provides 
novel insights on the fate of plant bio-minerals during fossilization. More importantly, it provides an 
additional aspect of the ecophysiology of fossil plants thus improving the accuracy of palaeoecological 
reconstructions and can provide a broader perspective on the evolution of CaOx and their rule in plant 
ecology across geological timescales. Alternative interpretations of the fossil microstructures are 
discussed but ruled out.

Fossil leaves are an important source of palaeontological information and provide both evolutionary and pal-
aeoecological insights1–3. Interpretation of fossil leaves can be relatively straightforward based on broad mor-
phological features such as size, shape, leaf margin, and details of leaf veins and cuticle micromorphology, but 
often, fossil leaf assignments are tentative and may change over time. Additional diagnostic characters would 
therefore be highly welcome to support or refute fossil identifications. One neglected feature common in plant 
fossils are granular structures observed on leaf fossils, which have not yet received a satisfactory explanation. 
In the well-preserved leaf fossils from the Rott Fossil Lagerstätte (North Rhine-Westfalia, Germany) and some 
related fossil sites from the Oligocene of that region, numerous granular structures are found, which have been 
variously explained by previous authors as algal colonies, pollen grains, trichome bases, or papillose structures 
of the leaf epidermis4,5. Winterscheid and Kvaček6,7 and Moers4 interpreted granular structures on fossil leaves as 
traces of various algae such as Botryococcus, Tetraedron, and Chrysophyceae, analogous to similar observations 
in leaf fossils from the Messel fossil site. Krassilov et al.8 in their study of ‘Late Cretaceous Flora of Southern 
Negev’ present numerous detailed images of fossil leaves which show patterns of granular structures, but these 
are not discussed in the publication. Generally, no convincing explanation for these rather common granular 
structures on leaf fossils has been proposed in the literature until now.
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Many extant plants contain biominerals in various forms, such as mineralized cell walls or mineral particles 
embedded in tissues9,10. The most common forms of plant biominerals are silica bodies (phytoliths)11, calcium 
carbonate (cystoliths)12 and various forms of calcium oxalate: individual crystals, druses (crystal aggregates), or 
raphide bundles13,14. Silica biominerals—phytoliths—have been widely studied15 and often survive fossilization 
independent of the surrounding plant tissue, making up microfossil assemblages in their own right16. Phytolith 
analysis therefore has important applications in evolutionary and—especially—archaeological and palaeoecologi-
cal studies16–22. However, the phytolith fossil record is strongly biased towards grasses16,19. Calcium carbonate 
and CaOx are extremely widespread in the plant kingdom and CaOx especially may be found in almost any plant 
organ or tissue, often specifically in plant groups where silica biomineralization plays a minor role23–25. Figure 1 
shows a few examples of the variability of the distribution patterns of CaOx druses and crystals in leaves of extant 
plants, such as Quercus robur and Juglans regia.

The rich fossil record of silica phytoliths contrasts starkly with the very poor fossil record of calcium biomin-
erals. Despite their ubiquity and importance in extant plants calcium biominerals have rarely been reported 
from the fossil record26–29. This is likely due to the limited chemical stability of both calcium-based biominerals. 
Calcium carbonate (e.g., cystoliths) is soluble even in the weakest acids, including CO2-saturated water, and 
is therefore unlikely to survive fossilization30,31. CaOx itself is less soluble32,33, but may be gradually oxidized 
to calcium carbonate during fossilization, which is subsequently lost from the fossil record. Even if calcium 

Figure 1.   CaOx crystals and druses in leaves of extant plants. (a,d,f) LM images of the ash of carefully 
incinerated leaves show their distribution in a planar view. (b,c,h,i) SEM images of freeze-fractured leaves show 
crystal and druse morphology in detail. (e,g) Micro-CT images of CP-dried leaves. (a–c) Quercus robur; high 
density of druses (15–25 µm) in the areoles and prismatic crystals along the veins. (d) Hedera helix; leaf densely 
filled with druses of varying size. (e) Juglans regia; large druses (50–70 µm) in areoles, and small druses along 
veins. (f) Prunus laurocerasus; high density of prismatic crystals (20–30 µm) everywhere. (g–i) Parrotia persica; 
numerous small crystals along veins and larger crystals in areoles. Scale bars: (a,d,e,g) = 200 µm; (b) = 20 µm; 
(c,h,i) = 50 µm; (f) = 100 µm; inset in (c) = 5 µm.
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biominerals survive fossilization itself, they are likely to be dissolved during fossilization, which is designed for 
the extraction of the much more robust silica phytoliths29.

Calcium biominerals themselves are thus usually not preserved in the fossil record, but casts (“crystal cavi-
ties”) have long been known from the cuticles of fossil conifer leaves34. These casts are interpreted as impressions 
of CaOx crystals in the leaf epidermis as known from extant conifers35. These crystal cavities are also used as 
a minor diagnostic character for conifer taxa such as Doliostrobus and Quasisequoia36,37. Such crystal cavities 
have been reported from fossils from the Late Cretaceous (e.g., Quasiseqoia florinii)36, Oligocene (Glyptostrobus 
europaeus)6, Paleogene (e.g., Doliostrobus taxiformis)37,38 and Neogene (e.g., Cupressospermum saxonicum)39. 
The occurrence, distribution (adaxial and abaxial leaf surfaces as well as in the mesophyll) and abundance of 
crystal cavities varies within fossil-species. It has been proposed that this variability in fossils of Doliostrobus 
taxiformis from the Eocene and Oligocene in Europe can be attributed to palaeoecological factors such as habitat 
and climate36,37, but no conclusive evidence has been presented for this assumption. Despite the wealth of angio-
sperm fossils and the prevalence of bio-minerals in their extant representatives, we are not aware of any reports 
of “crystal cavities” in angiosperm fossils. We thus observe an odd contrast between calcium biominerals as a 
common feature of extant angiosperms and the lack of any evidence for these biominerals in the fossil record. On 
the other hand, there are reports of leaf fossils in which obscure granular structures abound. The present study 
addresses the question of whether these granular structures correspond to calcium-based biominerals (CaOx 
crystals and druses, and calcium carbonate grains) or most likely to ghost crystals following the calcium-based 
biominerals in extant taxa. According to40 [page 761] the term crystal ghosts is original defined as a globular 
assembly of numerous needle-shaped mineral crystals that are organic. In the case presented in the current 
article, we have CaOx crystals or druses, which left a crystal cavity after they disappeared (e.g. by dissolution) 
and then were refilled by sediments or organic or mineral crystals (the ghosts).

We therefore re-examine fossil angiosperm leaves from Rott for a better characterization and convincing 
interpretation of the granular structures. The Rott fossil site is located near Bonn, south of Hennef (Sieg) in the 
Rhein-Sieg Kreis, North-Rhine-Westfalia, Germany. It is a limnic sedimentary deposit from a freshwater maar 
lake, famous for its diverse and exceptionally well-preserved plant and animal fossils in the leafy coal beds, 
diatomite and silica slates of the Rott Formation5,41,42. Therefore, it is acknowledged as a fossil lagerstätte42. 
The Rott Formation is dated to Mammal Paleogene zone MP30, which is assigned to the Chattian, uppermost 
Oligocene (appr. 23 to 24 ma)4.

In order to elucidate the identity of the granular structures on fossil leaves, we investigate the fine-scale pat-
terns on fossil leaves and compare them to patterns of CaOx biomineralization of extant plant taxa. Scanning 
electron microscopy (SEM) and energy dispersive X-ray (EDX) element analyses are used to investigate details 
of fossil and extant plant materials. Our study specifically aims at answering the following questions:

(1) Do these granules in fossil leaves correspond in shape and location to CaOx druses in modern leaves? (2) 
Can alternative explanations for the granular structures, e.g., imprints and/or casts of pollen, peltate trichomes, 
trichome bases, or stomata, be ruled out? (3) Which chemical and biochemical processes affected the leaves 
containing CaOx during the fossilization? (4) What micromorphological changes happened during fossilization?

Materials and methods
In the current study, 1120 fossil leaf specimens of the Rott fossil site were examined with a stereomicroscope. 
All samples are from the collection of the late Heinrich Winterscheid, which is kept in the Goldfuß Museum 
in the Institute of Geosciences, University of Bonn, Germany. The taxonomic assignments of the fossils derive 
from the works of H. Weyland between 1934 and 19484. Obvious granular structures were visible on the surface 
of 64 specimens, which were subject of further detailed examinations. In addition to the partially damaged and 
contaminated specimen surfaces, we examined freshly split charcoal samples, which could be separated from 
the fossil block with adhesive tape.

Fresh leaf samples from extant species were collected from the Bonn University Botanic Gardens, Germany. 
The following species appear in this study: Carya ovata (accession 14964, Herbarium T. Jossberger 2406); Ginkgo 
biloba (accession 1894, T. Jossberger 183); Hedera helix (accession 8757); Juglans regia ssp. regia (accession 9662, 
T. Jossberger 2418); Nelumbo nucifera ssp. nucifera (accession 1074, T. Jossberger 2155); Nymphaea lotus (acces-
sion 41078); Parrotia persica (accession 12241, T. Jossberger 534); Prunus laurocerasus (accession 34457); Quercus 
robur (accession 1887); Quercus variabilis (accession 35458); Salix miyabeana (accession 35019, T. Jossberger 
2474); Sideroxylon reclinatum (accession 34392). Fully developed late-season leaves from adult trees, shrubs 
and a few aquatic plants were collected in summer and autumn, when CaOx deposits are fully formed (S1). The 
selection included species or genera closely related to those identified in fossils with granular structures, and 
additionally some randomly selected deciduous woody species. In total, leaves of more than 50 living species 
were examined (see Supplementary Table  online).

Microscopy.  A stereomicroscope Leica MZ125 (Leica Microsystems, Wetzlar, Germany) was used for selec-
tion of samples and examination at low magnification. Detailed light microscopy (LM) was performed with a 
standard light microscope (Müller optronic, Erfurt, Germany) with large sample stage. Long distance objec-
tives enabled flexible surface illumination with a LED light source. Both microscopes were used with a Swift 
SC1803 microscope camera (Swift Optical Instruments, Schertz, Texas, US) with 18-megapixel resolution. A 
Lumix DMC-G70 photo-camera (Panasonic Corporation, Osaka, Japan) with Lumix macro-objective was used 
for close-up images.

Scanning electron microscopy (SEM) was performed with a LEO 1450 SEM (Cambridge Instruments, Cam-
bridge, UK), equipped with secondary electron (SE) and backscattered electron (BSE) detectors and an EDX ele-
ment analysis system with Link ISIS software (www.​oxford-​instr​uments.​com). X-ray images and micro-computer 
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tomography (µ-CT) scans of dry leaves were obtained with a SkyScan 1272 Micro-CT system (Bruker microCT, 
Kontich, Belgium) in the Institute of Evolutionary Biology and Ecology at the University of Bonn. The images 
were recorded with a detector of 4032 × 3280 pixels with a pixel size of 1 µm. Visualisation of the µ-CT data was 
performed with ImageJ-Fiji software (https://​imagej.​net/​softw​are/​fiji/).

Specimen preparation.  Fossil samples were cleaned to remove dust, if necessary, with an air-blower or 
through careful rinsing with distilled water. For SEM examination, small representative pieces were selected, 
mounted on a sample holder, and sputter-coated with a thin layer (10–15 nm) of palladium. Palladium, in con-
trast to gold, does not disturb the EDX analyses of relevant elements such as silicon and sulphur, and this thin 
layer is sufficiently transparent for high-energetic electrons necessary for compositional-contrast BSE imaging.

Fresh leaves were examined to investigate the total amount and distribution of CaOx druses and crystals 
in a variety of species. Most leaves are not transparent enough to visualize the crystals directly and need to be 
subjected to a clearing procedure. We found a very simple procedure particularly useful: pieces of the leaves 
were simply burnt until the organic matter was largely oxidized, reducing the leaf to a brittle piece of ash. For 
this purpose, fresh or dry leaves were incinerated in a temperature-controlled oven (Brennofen Uhlig U15, Efco 
GmbH, Rohrbach, Germany) at 600–650 °C. The samples turned white after 5–10 min. In many cases, simple 
burning over a gas burner was also successful and much faster. Usually, the CaOx structures could be easily visu-
alized directly in the ashes using the stereomicroscope or standard LM. If the ash remnants from the epidermal 
layers were too thick and not transparent enough, we separated the upper and lower halves of the burnt leaf with 
transparent adhesive tape such as Tesafilm (Tesa SE, Norderstedt, Germany) and attached each half to a glass 
slide. Observing the inner side of each half showed the majority of the druses and crystals.

Standard preparation of fresh leaves for SEM and µ-CT: Pieces of fresh leaves were fixed in 70% v/v etha-
nol + 4% v/v formaldehyde in water for at least 20 h and dehydrated with ethanol. For freeze-fracturing, ethanol-
infiltrated samples were immersed in liquid nitrogen and broken randomly. After unfreezing, all samples were 
critical-point dried (CPD 020, Balzers Union, Liechtenstein) and mounted on sample holders for SEM or µ-CT.

Plant collection statements.  All plant samples collected in this study were taken from species culti-
vated in the Botanical Garden, University of Bonn. This sample collection complies with relevant institutional, 
national, and international guidelines and legislation.

Results
Fossil leaves.  A first examination with a stereomicroscope showed at least 64 samples with obvious granular 
structures in a total of 1,120 fossil leaf specimens. (Figs. 2a,c, 3a–f). The structures appeared as globular or lobed 
particles with maximum diameters of 25–70 µm. Most striking were globules, spherical structures of yellow or 
brown colour with a smooth surface. Several samples contained black structures of irregular or angular shape. 
Many more samples may have had such granular structures, but they were not sufficiently well preserved for fur-
ther investigation, or the granules were too small for reliable identification. Some examples of poorly preserved 
fossils, where recognition of the granules is difficult, are presented in Supplementary Figure S1 online.

Our fossil samples were mostly from diatomite (German term ‚Polierschiefer‘), a bright material rich in silica 
skeletons of algae, or laminated bituminous shale (leafy coal bed)42, a dark brown organic material. Many leaf 
remnants were very thin as most of the organic material has been lost during fossilization; others consisted of 
thicker dark-brown layers being coalified remains called compressions42. While the old surfaces of the fossils 
were severely contaminated and damaged, freshly cleaved planes of some leaf coal samples showed their struc-
tures in detail. Some specimens showed a distinct pattern of empty cavities with diameters up to 50 µm, which 
resembled the distribution of CaOx druses in fresh leaves (Table 1). Even small cavities of less than 10 µm were 
clearly visible.

CaOx in fresh leaves.  We examined numerous fresh leaves from extant species searching for a correlation 
of the granular structures in the fossils with structures in living plants. Most of the extant leaves of trees and 
perennial shrubs contained CaOx druses (crystal aggregates) and individual crystals of varying sizes and distri-
bution densities; Fig. 1 illustrates some of the patterns. Druses have a spherical shape (not elongated) and may 
be compact with a serrated surface, or with emerging sharp crystal tips. Small individual crystals are often found 
along veins; solitary crystals in the mesophyll can reach sizes up to 100 µm.

Appropriate methods for determining the density of druses are required for a detailed correlation. Light 
microscopic (LM) examination of the ash of burnt leaf pieces is particularly useful and allows even small crystals 
clearly imaged. X-ray imaging and µ-CT are effective techniques for assessing the druses and crystals without 
any preparation artefacts (Fig. 1e,h).

The size and distribution of the larger druses of various species match the sizes and distribution patterns 
observed for the fossil granules (see Supplementary Table S1 online). Typically, e.g., in Quercus leaves, globular 
CaOx druses (crystal aggregates) occur preferentially in the areoles whereas CaOx crystals (single or twinned 
prismatic crystals) are associated with the leaf veins (Fig. 1a–c). Other species contain in areoles and veins only 
druses (e.g., Hedera helix, Fig. 1d; Juglans regia, Fig. 1e) or only crystals (Parrotia persica, Fig. 1g–i), thus details 
of the crystal type, size, and morphology are quite variable (Table 2; Supplementary Table S1 online). Quite large 
druses with diameters of 40–80 µm were found in some Quercus species and in Juglandaceae (Juglans regia, Carya 
ovata)—genera which have been reported from the Rott fossil flora—and in Ginkgo biloba (Table 2).

Morphology of the granular structures in fossil leaves in leafy coal beds and diatomites.  Under 
a binocular microscope, globular particles and venation patterns were clearly visible on many of the selected fos-

https://imagej.net/software/fiji/


5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15959  | https://doi.org/10.1038/s41598-022-20144-4

www.nature.com/scientificreports/

sil leaf samples. The sizes of the particles, typically 20–40 µm, match well the sizes of CaOx druses in leaves of 
extant species, as demonstrated in Fig. 2 with the fossil samples Ro-90_1 (assigned to Quercus neriifolia) and 
Ro-100_5 (Salix longa) (Fig. 2a,c) in comparison with leaves from extant Quercus and Salix species (Fig. 2b,d). 
However, sizes of up to 100 µm were found for globules in other fossil samples, as well as for CaOx druses of 
certain extant species (Table 2).

Figure 3 shows various distinctive patterns of granular structures in Rott fossils that are apparent in LM and 
SEM images. Yellow-to-brown globules in areoles between brown leaf veins (Fig. 3a) are clearly visible contrasting 
in colour against white background of diatomitic sediment in fossil no. ‘Ro-2.2’ (‘Sideroxylon salicites’). Com-
positional contrast (BSE) SEM image (Fig. 3b) shows fragmented granules embedded in sediment, indicating 
they differ in chemical compositions. Dark appearance of granules in the SEM image indicates they are organic 
material, whereas background sediment is a mix of organic and mineral (bright) components.

In several leafy coal bed-based samples like ‘Ro-110.6’ (‘Magnoliopsida’), brown globules, which were on 
brown organic background between dark brown veins, were more difficult to recognise and distinguish from 
background by LM due to low colour contrast. Lateral illumination made them more easily visible because most 
of the globules projected above the level of surrounding leaf area. Globules and a corresponding number of cavi-
ties were present in cleaved samples. In ‘Ro-110.6’ (Fig. 3c) globules were evenly dispersed across leaf surface, 
as often observed in fresh leaves. Brick-like structures in veins appear similar to CaOx crystal patterns along the 
veins of fresh leaves (Fig. 3d). Sizes of the globular structures may be either variable, as in ‘Ro-2.2’ (Fig. 3a), or 
nearly uniform. Both variable and uniform sizes were also found as common patterns in CaOx druses in fresh 
plant leaves; e.g., in Hedera helix.

Black serrated particles on a mineral background occur on the whole surface of a large leaf on specimen 
‘Ro-13.3’ (‘Nymphaea nymphaeoides’) (Fig. 3e,f) and also on some other specimens [Ro-106.1 (‘Nyssa rottensis’, 
Ro-58.5 (‘Zizyphus zizyphoides’)]. The size and shape of the serrated granules resemble CaOx druses which are 
found in many fresh leaves. Smaller yellow globules between the black granules are difficult to recognise under 
the LM due to low contrast and also by SEM due to the heterogeneous structure of the surrounding area.

Freshly cleaved areas of the leafy coal bed sample ‘Ro-59.9’ (Fig. 3g,h) showed numerous empty cavities which 
resembled CaOx druses of fresh leaves in size and distribution. The polygonal shape corresponds to the angular 

Figure 2.   Globular structures in fossil leaves in comparison with CaOx druses of fresh leaves. LM images; 
surface illumination, 10 × objective. (a) Fossil sample Ro-90_1 (Quercus neriifolia) with large brown globules; 
the inserted SEM image shows globules in detail. (b) druses of various size and small crystals in a burnt leaf of 
Quercus variabilis. (c) Fossil sample Ro-100_5 (Salix longa) with yellow transparent globules and many empty 
cavities, which remained when globules were pulled out during splitting the fossil. (d) Druses and crystals in a 
burnt leaf of Salix miyabeana. Scale bars: (a–d) = 200 µm; insets (a,c) = 40 µm.
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Figure 3.   Granular structures in various leaf fossil samples. (a,c,e) LM images; surface illumination, 
10 × objective; (b,d,f,g,h) SEM images. (a,b) Sample ‘Ro-2.2’ (‘Sideroxylon salicites’); the LM image (a) shows 
leaf veins and yellow to brown globules of varying sizes embedded in a bright mineral sediment matrix; in the 
compositional contrast (BSE) SEM image (b), the fragmented globules appear dark, indicating organic material; 
minerals appear bright. (c,d) Sample ‘Ro-110.6’ (‘Magnoliopsida’); globules (not fragmented) and holes indicate 
weak adhesion to the surrounding sediment. Brick-like structures in leaf veins resemble crystals in fresh leaves. 
(e,f) Sample ‘Ro-13.3’ (‘Nymphaea nymphaeoides’); LM image shows black serrated particles and (difficult to 
see) smaller yellow globules. The SEM images shows empty space around granules, perhaps a result of shrinkage. 
(g,h) Freshly cleaved area of the leaf coal sample Ro-59.9; numerous empty cavities of various size, up to 30 µm, 
are distributed evenly. The detail image (h) illustrates the angular shape of the cavities which resemble casts of 
CaOx druses. Scale bars: (a,c,e) = 200 µm; (b,f,g) = 50 µm; (d) = 100 µm; (h) = 20 µm.
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surface of druses, whereas the smooth surface of the organic globules (Fig. 3c,d) seems to be caused by their 
shrinkage. The variation in size, up to 30 µm, is remarkable and corresponds to extant druses. On such clean 
specimens, cavities of less than 10 µm diameter can be clearly recognised.

Compositional analyses of granules in leaf fossils.  EDX element analyses of selected fossil samples 
were conducted with an SEM (Figs. 4, 5). In the mineral-based sample ‘Ro-2.2’ (‘Sideroxylon salicites’) (Fig. 4a–c) 
the globules appear dark in the BSE image (Spot 1), whereas mineral ghost inclusions in the leaf and the mineral 
background appear bright. EDX spectra show that the globules are organic and contain mainly carbon (C) with 
a little oxygen (O) and sulphur (S). The mineral background consists of silica (SiO2). Calcium was not found.

The globules in the brown-coal based sample ‘Ro-110.6’ (‘Magnoliopsida’) (Fig. 4d–f) consisted of organic 
material, composed mainly of C with a little O and S, but they were accompanied by calcium sulphate (Ca, S, 
O), which surrounded many of the organic globules like a shell with a serrated surface. Small amounts of silicon 
(Si) and iron (Fe) occurred in the background brown-coal material.

The mineral sample ‘Ro-13.3’ (‘Nymphaea nymphaeoides’) (Figs. 3e–f, 5) had serrated black granules, margin-
ally smaller than the corresponding cavities in the sediment, and smaller yellow-to-brown spherical globules. The 
red colour in Fig. 5a indicates a high Si content in the surrounding sediment; the BSE image (Fig. 5b) illustrates 
the opal-like structure consisting of fine spherical silica particles. EDX spectra (Fig. 5c) revealed that the small 
globules (Spot 2) were organic material (mainly composed of C), the black granules (Spot 1) contained mainly 
C, O, Fe, and S, and the mineral background was silica (Si, O). The small spherical organic globules are difficult 
to recognize between other organic structures, but they are also visible in LM as distinct structures (see Fig. 3e).

Other samples: Globules with a size of 30–70 µm were the most obvious type and relatively abundant. Some 
samples had much smaller globules with less characteristic shape (e.g., Ro-110.27), but their size and density 

Table 1.   List of selected fossil samples with granular structures (traces of CaOx druses).

Fossil sample

Selected fossil samples with traces of CaOx druses

Assignment Type of traces Size (µm) Composition References

Ro-90.1 Quercus neriifolia Globules, brown 40–50 Organic Figure 2

Ro-100.5 Salix longa Globules, yellow 30–35 Organic Figure 2

Ro-2.2 Sideroxylon salicites Globules, brown 30–40 Organic Figures 3, 4

Ro-110.6 Magnoliopsida Globules, yellow ca. 30 Organic Figures 3, 4

Ro-13.3 Nymphaea nymphaeoides Globules, yellow 20–25 Organic Figures 3, 5

Granules, black 45–55 Mineral + org

Ro-59.9 n.n Empty cavities 15–25 Figures 3, 6

Ro-58.5 Zizyphus zizyphoides Granules, black 40–50 Mineral Figure 7

Globules, yellow 90–100 Organic

Ro-4.4 Acer integrilobum Globules (pollen?) ca. 60 Figure 7

Ro-2.2 (2nd leaf fragment) Angular particles, black 12–20 Mineral Figure 7

Ro-101.6 Zizyphus paradisiaca Granules, black 75–80 Mineral Suppl. Fig. S1

Table 2.   Distribution pattern, size and abundance of calcium oxalate (CaOx) crystals and druses in leaves of 
extant species presented in this study. Abundance of the CaOx bodies is indicated with numbers. 1 = occasional 
or not clearly apparent; 2 = few; 3 = regular but not many; 4 = many; 5 = densely.

Species

Characterization of CaOx in fresh leaves

CaOx in areoles CaOx along veins

Type Size (µm) Abundance Type Size (µm) Abundance

Carya ovata Druses 35–50 4 Druses 10–20 5

Ginkgo biloba Large druses 60–100 2 Druses 60–100 4

Hedera helix Druses 25 5 Druses 10 3

Juglans regia Druses 20–55 4 Druses 10 4

Nelumbo nucifera Druses 25–30 3 n. d.

Nymphaea lotus Small crystals 2–3 2 None

Parrotia persica Crystals 40–75 2 Crystals 10 3

Prunus laurocerasus Crystals 25–30 5 Crystals 15–20 2

Quercus robur Druses 15–20 5 Crystals 10–15 4

Quercus variabilis Druses (large/small) 45; 20 4 Crystals 15–20 4

Salix miyabeana druses 15–20 3 Crystals 7–10 4

Sideroxylon reclinatum crystals 20–25 3 Crystals 20 2
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Figure 4.   Analyses of samples with globules. (a–c) ‘Ro-2.2’ (‘Sideroxylon salicites’). (a) Overview photo of the 
brown leaf embedded in white mineral. (b) Compositional contrast (BSE) SEM image showing organic leaf 
material dark, background mineral (left part) bright, and ghost mineral inclusions in the leaf area (bright). The 
fractured globules (e.g., Spot 3) appear dark, indicating organic material. (c) EDX spectra show the composition 
of background sediment (Spot 1; mainly Si and O), the leaf area ‘Spot 2’ (Si, C, O, and traces of S and Al), and 
globules (Spot 3; mainly C with little O and S). (d–f) ‘Ro-110.6’ (‘Magnoliopsida’). (d,e) Overview photos 
showing the leaf embedded in coal. (f) Combined SEM topographic contrast and element-mapping image 
showing Ca in green and Si in red; organic structures are in grey scales. The EDX spectrum in the box shows 
the co-localization of Ca, S, and O as calcium sulphate (CaSO4). Globules are organic (C and little O). Many 
cavities contain a shell of CaSO4 which had surrounded the globules which have been torn out of the coal 
matrix. Calcium sulphate occurred also on other parts of the sample in form of gypsum deposits (e). Scale bars: 
(a,e) = 5 mm; (b,f) = 100 µm; (d) = 20 mm.
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Figure 5.   Element distribution in the fossil sample ‘Ro-13.3’ (‘Nymphaea nymphaeoides’). (a) Combined SEM 
topographic contrast and element-mapping image showing Si in red and C in green colours. Small globules of 
organic material (e.g., Spot 2) are difficult to recognise between other organic particles. (b) Detailed BSE image 
of a section of (a) illustrating the grainy opal-like structure of the background sediment. (c) EDX spectra show 
the composition of black granules (Spot 1: C, O, Fe, S), small globules (Spot 2: mainly C), and background 
sediment (Spot 3: Si, O). Scale bars: (a,b) = 40 µm.
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are in accordance with similar patterns of CaOx druses in certain fresh leaves such as Prunus laurocerasus, 
Sideroxylon reclinatum (Table 2).

The analyses demonstrate that the granular structures in the leaf fossils do not currently consist of calcium 
oxalate. This is the result of the decomposition of the original biomineral, leaving behind cavities which subse-
quently filled with organic or inorganic material. These ghost minerals roughly replicating the shape of original 
biomineral. Spherical globules were found to be purely organic, whereas serrated globules contained minerals; 
Fe and S were usually found in black particles.

Discussion
The present study illustrates the distribution, micromorphology and elemental composition of granular structures 
in fossil leaves and compares them to those of CaOx druses and crystals in extant leaves. We provide a brief 
review of a possible fossilization scenario of the leaves that could lead to the formation of the brownish granular 
structures in fossil leaves (Fig. 6). Leaves of terrestrial plants and freshwater plants sank into the anoxic depths 
of a maar lake and were preserved in different sediments. During fossilization, parts of the organic material 
decomposed; any remnants are compressed. Vasculature with its lignified cellular walls, cutinized peripheral 
walls and mineral inclusions is more likely to be preserved. During fossilization, CaOx will eventually decompose 
or dissolve. If the sediments are already consolidated and sufficiently hardened, then the disappearance of the 
druses and crystals will leave cavities which—depending on local conditions—will be filled either with organic 
or inorganic ghost minerals. Deposition of very fine material such as amorphous silica may form replicas which 
resemble the former CaOx crystals (ghost crystals, see Fig. 5). In an inorganic mineralogical system these replicas 
would be called pseudomorphs.

The mostly spherical shape of the globules requires an explanation, since CaOx crystals even in druses are 
usually polygonal and very angular structures. We propose that the spherical shape of the organic globules 
results from shrinkage of the casts. Organic material, which has filled the voids, is unlikely to be perfectly stable. 
It may lose material and shrink, and, as it is a highly viscous resin-like material, its surface tension in the wet 
environment may force it into the spherical shape. The shrinkage also explains why the organic globules easily 
become detached from the surrounding sediment, leaving spherical cavities at their positions in the separated 
fossil samples. Further shrinkage and dissolution of the organic inclusions leaves voids which may be finally 
filled by inorganic ghost minerals from the environment, resulting in the black ferruginous particles or in the 
calcium sulphate shell observed around some of the organic globules.

Granular structures like the ones here studied have been previously reported from fossil plants and have 
been variously interpreted as pollen(clumps), algal colonies, trichomes and trichome bases5, or ‘subcrustations, 
preserving epidermal structures’8. The study of Krassilov et al.8 on the ‘Late Cretaceous Flora of Southern Negev’ 
includes a wealth of excellent images of fossils; many of them show patterns of granules which resemble the 
granules here studied, but the authors do not provide an explanation for the structures.

The globular structures in our samples were mostly found within the boundaries of the leaf fossils, but occa-
sionally also in the surrounding sediment (Fig. 7a,b). The latter might indicate an extraneous origin—e.g., the 
presence of pollen—rather than an integral component of the leaf such as CaOx crystals. However, we propose 
that CaOx druses in decomposing plant remains can be partly dislocated, e.g., by water movement. Druses in 
leaves occur in different conditions; some are enclosed by massive cell walls whereas others are almost free 
and only weakly connected to cellular structures (Fig. 7g). The weakly connected druses may easily become 
dislocated from tissue during decomposition43. Thus, their traces might be found outside the leaves in the sedi-
ment. Pollen and algae may be found in fossil samples, and the fossilized plants from Rott have been described 
as ‘rich in pollen’4,44,45. A detailed study of the distribution of the granular structures shows that in many of our 
samples, such as Ro-2.2 (‘Sideroxylon’) (Fig. 7c–e), the distribution of granules is highly regular. This indicates 
that the structures were an integral part of the leaf, since pollen would be expected to be randomly distributed 
on and around the leaf. Two large leaves of one type in Fig. 7c,d show a similar distribution of globules to each 
other, whereas a different type of leaf on the same specimen (Fig. 7c,e) has both a different type of fossil particles 
(smaller, black) and a different distribution. No globules were found in the mineral sediment surrounding the 
leaves of this specimen, clearly indicating that the granular structures are part of the fossils proper and also that 
both size and distribution may be characteristic for the two different types of leaf here preserved. Various leaf 
structures, such as peltate trichomes, trichome bases, or calcium carbonate cystoliths, may also cause visible 
traces in fossilized leaves. However, extant relative plants of most of the assumed fossil-species from Rott bear 
very few peltate trichomes on their leaves and no cystoliths. The distribution pattern of trichomes—if present—on 
leaves differs clearly from the distribution of the granules in fossils: most trichomes are located on the abaxial 
leaf side on the veins; trichomes on the adaxial side usually occur singly in the areoles between veins, but not 
in such a high density.

Of course, a careful and critical examination of the fossils is generally necessary to avoid misinterpretations. 
Some indications are helpful to identify granular structures as traces of former druses: their spherical shape, their 
occurrence in the remnants of the parenchym, and the regular distribution within the leaf, which resembles that 
of druses in fresh leaves. In case of the Rott Fossil Lagerstätte it seems to be very unlikely that the cavities filled 
with granules are originated by soft-tissue remains such as paltate trichomes or pollen clumps. If such structures 
are preserved as impressions in fine-grained sediments like leafy coal beds any additional micromorphological 
structures should be visible, e.g., pollen clumps: individual grains of pollen clumps, wall structure and aperture of 
pollen grains; cell structure, bases and glands of peltate trichomes. None of these features have been recognized 
by our observations.

Fossilization conditions in the former ‘Rott Lake’ were major factors for the decomposition of the organic 
plant material and the formation of fine-grained or amorphous inorganic deposits in the sediments including 
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the elements Si, Al, Fe, S, and sulphate ions4. Anaerobic conditions, indicated by the presence of pyrite, may have 
inhibited the oxidation of calcium oxalate to carbonate, thereby facilitating preservation.

The presence of calcium oxalate druses or crystals and their distribution patterns as well as their fossil traces 
may be utilized as additional useful micromorphological features for the identification of fossil plant taxa in the 
future, if more records are available and if these records can be unambiguously related to extant taxa. Pattern, 
shapes and sizes of CaOx traces could be particularly helpful if leaf cuticles are not preserved. Angiosperms show 
a great variability of biomineralization patterns including CaOx, particularly dicotyledons contain almost all 
forms of CaOx druses and crystals. Some families of monocotyledons (e.g., Araceae, Arecaceae) contain CaOx 
raphide bundles, others such as Poaceae (grasses) are usually mineralized with silica but not with CaOx. In 
Gymnosperms, CaOx occurs in different forms: Conifers usually contain small crystals (< 10 µm) on the surfaces 

Figure 6.   Model of the fossilization processes that lead to the formation of globular and serrate replications 
of CaOx crystals and druses. (A) Distribution of CaOx and other structures in a fresh leaf. (B–G) Fossilization 
steps. (B) Covering with sediment; compression, loss of water; (C) Decomposition of soft organic tissue 
material; (D) Dissolution of CaOx forms voids; (E) Voids are filled with organic matter, perhaps cutin 
components; (F,G) partial shrinkage of organic material forms globules due to surface tension; new voids 
formed by shrinkage are filled with ghost mineral components. (H) SEM image of a freshly cleaved plane of leaf 
coal sample Ro-59.9 (see Fig. 3g–h). Larger cavities contain shrunken remnants of organic material, whereas 
smaller cavities are empty. Scale bar = 20 µm.
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Figure 7.   Topics for Discussion: (a–e) Differentiation between traces of druses and pollen. LM image of Sample 
Ro-58.5 (‘Zizyphus zizyphoides’) with pollen-like structures randomly distributed. Their shape resemble conifer 
pollen. (b) Sample Ro-4.4 (‘Acer integrilobum’); the globules of ca. 100 µm diameter, distributed on (left side) 
and beside (right side) leaf area may be pollen. (c–e) Sample Ro-2.2 (‘Sideroxylon’) with different leaves. The 
larger ones contain globules of different size (d), the other one small black particles (e), no globules were found 
in the mineral sediment. Such patterns cannot originate from pollen. (f–j) Uncertainty in the identification of 
leaf fossils. (f) LM image of sample Ro-13.3, which has been assigned to ‘Nymphaea nymphaeoides’, shows black 
granules. (g–h) SEM images of a fresh leaf of Nelumbo nucifera (Lotus) show CaOx druses in similar distribution 
and size as sample Ro-13.3; inset (h) shows a single druse in detail. (i,j) SEM images of mesophyll cells in a fresh 
leaf of Nymphaea lotus, carrying only small CaOx crystals (< 5 µm) (i) on the surface of sclereid cells (j). Scale 
bars: (a) = 100 µm; (b) = 500 µm; (c) = 5 mm; (d,e,f,g) = 200 µm; (h,i) = 10 µm; (j) = 100 µm.
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of mesophyll cells, whereas Ginkgo and Cycadeae usually contain druses of 30–80 µm diameter46. Sporophytes 
rarely contain CaOx; small crystals have been found in few fern species47.

Unfortunately, there is still a striking scarcity of literature on calcium oxalate crystals in the leaves of extant 
plant taxa also reported from the fossil record. The absence of detailed data on biomineral occurrence, sizes and 
topology renders an interpretation of fossil patterns a challenging exercise.

Particularly for the fossil leaves from Rott, the future utilization of CaOx traces in fossil leaves may provide 
a valuable set of additional characters for the species- or genus-level identification of appropriately preserved 
leaf material. Identification of fossil leaves is particularly difficult or impossible if only leaf fragments or leaves 
without cuticles are preserved. Many early taxonomic assignments of leaf fossils from Rott such as the works of 
H. Weyland between 1934 and 1948 have been shown to be partially unreliable due to poor preservation5 and 
several revisions of have been made in the recent years6,7,48.

Our comparisons of fossil samples with extant plants showed inconsistences in several cases. The shapes and 
distribution patterns of granules in fossil leaves assigned to Sideroxylon salicites were different from those of CaOx 
druses in extant Sideroxylon leaves, casting serious doubt on the fossil identification. However, the fossil flora 
of Rott is currently under taxonomic revision and justification or adjustment of the determination is expected. 
Similarly, fossil leaf fragments designated as Nymphaea nymphaeoides (Nr. Ro-13.3) (Fig. 7f) contained numer-
ous globular inclusions whereas recent Nymphaea leaves (Fig. 7i,j) contain only minute CaOx crystals and lack 
druses. Extant Lotus (Nelumbo nucifera, Fig. 7g,h) however, which has similar leaves and ecology, contains druses 
in similar distribution and size as the globules in the fossil sample named Nymphaea. Fossils of both genera 
of water plant—Nymphaea and Nelumbo—have been reported from the Rott fossil site49,50, but the data in the 
present study indicate that at least some Nymphaea-fossils might be better placed in Nelumbo.

The venation patterns of fossil leaves are an important characteristic for identification of species. If our 
observations that the brick-like structures in the venation largely result from the traces of former CaOx crystals 
are validated in future studies, it will be an important step to a more precise interpretation of the fossil record 
of plants. Based on ongoing research, we will be able to add data from other fossil sites of different stratigraphic 
positions which will demonstrate similar granular structures in fossils of some gymnosperms (e.g., Ginkgo, leaves 
without trichomes) and other dicotyledonous taxa.

In conclusion, the identification of cavities and imprints in fossil leaves as former CaOx crystals and druses 
has considerable consequences:

•	 It improves our understanding of micromorphological structures of fossil leaves and the processes taking 
place during fossilization.

•	 It may provide a basis for a study of the evolution of plant biomineralization across a range of different lineages.
•	 It could provide an additional set of characters for improving taxonomic assignments of fossil leaves if 

appropriately preserved.
•	 It may become a useful additional aspect of leave trait analyses.

Currently, our interpretation of biominerals in fossil plants is severely limited by our rudimentary knowledge 
of biomineralization in living plants. A comprehensive database of current biomineralization patterns would 
be highly desirable to get progress in this topic. It promises to be a valuable tool in palaeobotany and greatly 
improve our understanding of both plant evolution and palaeoecology.

Data availability
The data that support the findings of this study are based on microscopic images which are archived in the 
Microscopy/SEM facilities of the Institute of Geosciences and the Nees Institute, Bonn. Images are available on 
request from the corresponding author M. Malekhosseini and from co-author Prof. Dr. M. Weigend.
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