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COVID-19 has impacted millions of patients across the world. Molecular testing occurring now 
identifies the presence of the virus at the sampling site: nasopharynx, nares, or oral cavity. RNA 
sequencing has the potential to establish both the presence of the virus and define the host’s response 
in COVID-19. Single center, prospective study of patients with COVID-19 admitted to the intensive 
care unit where deep RNA sequencing (> 100 million reads) of peripheral blood with computational 
biology analysis was done. All patients had positive SARS-CoV-2 PCR. Clinical data was prospectively 
collected. We enrolled fifteen patients at a single hospital. Patients were critically ill with a mortality 
of 47% and 67% were on a ventilator. All the patients had the SARS-CoV-2 RNA identified in the 
blood in addition to RNA from other viruses, bacteria, and archaea. The expression of many immune 
modulating genes, including PD-L1 and PD-L2, were significantly different in patients who died from 
COVID-19. Some proteins were influenced by alternative transcription and splicing events, as seen in 
HLA-C, HLA-E, NRP1 and NRP2. Entropy calculated from alternative RNA splicing and transcription 
start/end predicted mortality in these patients. Current upper respiratory tract testing for COVID-19 
only determines if the virus is present. Deep RNA sequencing with appropriate computational biology 
may provide important prognostic information and point to therapeutic foci to be precisely targeted in 
future studies.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) 
has led to millions of cases worldwide1. Current testing is by polymerase chain reaction to detect viral RNA in 
the nares2, but provides no insight into the host response. Patients with COVID-19 that require intensive care 
unit (ICU) care are sick and difficult to manage, thus, there is a need for other diagnostic tests during the hospital 
stay to assist the clinicians.

Deep RNA sequencing refers to a process of sequencing where (at least) 100 million reads of sequence are 
generated per sample. Deep sequencing allows for the study of low abundance RNA and biologic processes 
beyond gene expression. Typically, RNA sequencing data is aligned to the genome of interest, such as aligning 
to human genes when the sample comes from a human. Reads that do not align to the genome of interest are 
usually discarded. When the RNA sequencing is performed with this large number of reads, it could be used to 
identify the presence of specific pathogens in the blood by aligning the reads that would have been discarded to 
other genomes of interest. In COVID-19, sequencing reads of SARS-CoV-2 may provide insight into the biology 
of the virus during active illness. In addition, secondary infections could be identified, potentially allowing for 
better, pathogen-directed antibiotic treatment.

The host response to the virus is responsible for some of the morbidity and mortality observed3. Acute 
respiratory distress syndrome (ARDS) is the most common complication encountered with COVID-193. Our 
laboratory has shown that there are significant changes in alternative RNA splicing and transcription start and 
end in ARDS as assessed by deep RNA sequencing4. These changes are thought to be due to the physiology of 
ARDS, e.g., hypoxia and acidosis, which are known to influence splicing. Whether this occurs in patients infected 
by COVID-19 is not known.
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While RNA sequencing can be used to measure immune modulating gene expression, an alternative approach 
is the evaluation of global entropy, or disorder in the processing of RNA5. In this study, we propose that this 
entropy metric combined with Principal Component Analysis (PCA) can be leveraged to distinguish COVID-19 
patients that develop life-threatening illness from those likely to recover.

Here we examine deep RNA sequencing data from patients in the ICU with COVID-19 to characterize both 
pathogens and host responses. We evaluate the sequences for the presence of the SARS-CoV-2 virus and other 
potential infectious agents. The host response to COVID-19 is also characterized. The long-term goal is to com-
bine these measurements to better assist clinical decision-making.

Methods
Study design, population and setting.  The study enrolled ICU participants at a single tertiary care 
hospital evidence of SARS-CoV-2 infection based on positive PCR from the nasopharynx documented during 
admission. All participants, or their appropriate surrogate, provided informed consent as approved by the Rhode 
Island Hospital Institutional Review Board (Approval #: 411616) and all methods were carried out in accordance 
with relevant guidelines and regulations. Blood samples were collected on day 0 of ICU admission. Clinical data 
including COVID specific therapies was collected prospectively from the electronic medical record and partici-
pants were followed until hospital discharge or death. Ordinal scale was collected as previously described6; along 
with sepsis and associated SOFA score7 and the diagnosis of ARDS8.

RNA extraction and sequencing.  Whole blood was collected in PAXgene tubes (Qiagen, Germantown, 
MD) and sent to Genewiz (South Plainfield, NJ) for RNA extraction, ribosomal RNA depletion and sequencing. 
Sequencing was done on Illumina HiSeq machines to provide 150 base pair, paired-end reads. Libraries were 
made by standard approaches by Genewiz using both the Globin Zero Gold (Illumina) and NEBNext Ultra RNA 
Library Prep Kit (New England Biolabs)9. Libraries were prepared to have three samples per lane. Each lane 
provided 350 million reads ensuring each sample had > 100 million reads. Raw data was returned on password 
protected external hard drives to ensure the security of the genomic data.

Computational biology and statistical analysis.  All computational analysis was done blinded to the 
clinical data. The data was assessed for quality control using FastQC10. RNA sequencing data was aligned to the 
human genome utilizing the STAR aligner11. Reads that aligned to the human genome were separated and are 
now referred to as ‘mapped’ reads. Reads that did not align to the human genome, which are typically discarded 
during standard RNA sequencing analysis, were kept and identified as ‘unmapped’ reads. The unmapped reads 
then aligned to the SARS-CoV-2 genome (NC_045512) and counted per sample using Magic-BLAST12. In addi-
tion, a coverage map of the SARS-CoV-2 genome was generated using all the subjects to identify the gene expres-
sion patterns of the virus in critically ill COVID-19 patients. The unmapped reads were further analyzed with 
Kraken213 using the PlusPFP index14 to identify other bacterial, fungal, archaeal and viral pathogens.

Reads that aligned to the human genome, the mapped reads, also underwent analysis for gene expression via 
edgeR and alternative RNA splicing/alternative transcription start/end via Whippet5. When comparisons were 
made between groups (died vs. survived) differential gene expression was set with thresholds of both p < 0.05 
and ± 1.5 log2 fold change. p values were measured by digital gene expression (DGE). DGE utilizes the negative 
binomial distribution as model to compare over dispersion across the dataset. Values are subsequently adjusted 
using a quantile maximum likelihood estimator to establish a Fischer’s exact test with improved performance, 
separating biological from technical variation. All statistical methods done are embedded in the Whippet soft-
ware. Alternative splicing was defined as core exon, alternative acceptor splice site, alternative donor splice site, 
retained intron, alternative first exon and alternative last exon. Alternative transcription start/end events were 
defined as tandem transcription start site and tandem alternative polyadenylation site. Alternative RNA splicing 
and alternative transcription start/end events were also compared between groups5. Significance was set at great 
than 2 log2 fold change as previously described4. Genes identified from the analysis of mapped reads were then 
evaluated by GO enrichment analysis (PANTHER Overrepresentation released 20200728)15.

Whippet was also used to generate an entropy value for every identified alternative splicing and transcription 
event of each gene. These entropy values are created without the need for groups used in the gene expression 
analysis. In order to visualize this data a principal component analysis (PCA) was conducted to reduce the dimen-
sionality of the dataset and to obtain an unsupervised overview of trends in entropy values among the samples. 
Raw entropy values from all samples were concatenated into one matrix and missing values were replaced with 
column means. Mortality was then overlaid onto the PCA plot to assess the ability of these raw entropy values 
to predict this outcome in this sample set. This analysis was done in R16.

Ethics approval.  Institutional Review Board Approval # 411616.

Results
Study population, participant characteristics, and RNA sequencing.  Fifteen participants were 
enrolled and had blood samples drawn on the first day of their ICU stay. Clinical and demographic data is 
reported in Table 1. The majority of participants were male (73%) and there were a diverse distribution in terms 
of race (60% not white) and ethnicity (60% Hispanic). The most common co-morbidity was hypertension and 
the median BMI was almost 30. Forty percent of participants had ARDS at the time the samples was drawn and 
the patients were distributed across the top of the ordinal scale6 with a score of 5 as the most common in 53% 
of the patients. Most participants required a ventilator (67%) and 20% progressed to extracorporeal membrane 
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oxygenation (ECMO); 27% required renal replacement. The median length of hospital stay was 22 days with a 
mortality rate of 47%.

All samples had sufficient RNA and RNA integrity numbers (RIN)17 were adequate. The median of sequenc-
ing was 125,687,784 reads (95% CI 122,164,763 to 135,800,242) and greater than 90% of those reads were more 
than thirty bases. After using FastQC10, all samples had mean quality scores over 30. The reads mapped to the 
human genome 62–66% of the time (Supplemental Table S1).

Identification of SARS‑CoV‑2 and other pathogens.  Among the fifteen participant samples all par-
ticipants had SARS-CoV-2 RNA detected. There were a total of 676 reads that align to the SARS-CoV-2 genome 
with each patient having between 18 and 98 reads. (Fig.  1a) The majority of the reads corresponded to the 
RNA dependent RNA polymerase and N protein genes (Fig. 1b). RNA from other pathogens including bacteria, 
viruses and archaea were identified in the blood of all patients (Table 2). Two participants had fungal RNA iden-

Table 1.   Demographics.

All patients (n = 15) Alive (n = 8) Died (n = 7)

Median age (IQR) 66.2 (41.6–72.1) 53.1 (34.5–72.8) 66.2 (50.0–73.3)

Sex

Female—no. (%) 4 (27) 2 (25) 2 (29)

Male—no. (%) 11 (73) 6 (75) 5 (71)

Race

White—no. (%) 6 (40) 2 (25) 4 (57)

Black or African American—no. (%) 2 (13) 1 (13) 1 (14)

Other race—no. (%) 7 (47) 5 (62) 2 (29)

Ethnicity

Hispanic—no. (%) 9 (60) 4 (50) 5 (71)

Not Hispanic—no. (%) 6 (40) 4 (50) 2 (29)

Chronic underlying conditions—no. (%)

Hypertension 9 (60) 4 (50) 5 (71)

Cardiovascular disease 2 (13) 0 (0) 2 (29)

Congestive heart failure 2 (13) 1 (13) 1 (14)

Diabetes 1 (7) 0 (0) 1 (14)

COPD 1 (7) 0 (0) 1 (14)

Renal failure 1 (7) 0 (0) 1 (14)

Malignancy 1 (7) 1 (13) 0 (0)

Liver disease 0 (0) 0 (0) 0 (0)

Median BMI (IQR) 29. 6 (27.3–31.9) 27.7 (24.8–31.9) 30.3 (29.5–35)

At the time of sample

ARDS—no. (%) 6 (40) 3 (38) 3 (43)

Vassopressor support—no. (%) 2 (13) 1 (13) 1 (14)

Median SOFA score (IQR) 6 (3–8) 7.5 (4–8) 3 (2–6)

Median APACHE II score (IQR) 18 (13.5–23) 20.5 (17.3–24.5) 12 (9–22)

Ordinal scale 4—no. (%) 3 (20) 3 (38) 0(0)

Ordinal scale 5—no. (%) 8 (53) 1 (13) 7 (100)

Ordinal scale 6—no. (%) 1 (7) 1 (13) 0 (0)

Ordinal scale 7—no. (%) 3 (20) 3 (38) 0 (0)

Hospital course

Median ventilator days (IQR) 6 (0–30) 7.5 (0–45.75) 2 (0–27)

Median ICU length of stay (IQR) 15 (6.5–35.5) 9 (3.5–36.25) 18 (8–44)

Median hospital length of stay (IQR) 22 (13–49.5) 25 (8.75–71.25) 22 (15–45)

ECMO—no. (%) 3 (20) 2 (25) 1 (14)

Acute renal replacement—no. (%) 4 (27) 2 (25) 2 (29)

Thrombotic event—no. (%) 6 (40) 3 (38) 3 (43)

Death—no. (%) 7 (47)

Discharge from hospital—no. (%) 8 (53)

Median D dimer (IQR) 2980 (974–4312) 2657 (885–4433) 3370 (923–7180)

TEG hypercoagulable—no. (%) 6 (40) 3 (38) 3 (43)

Remdesivir—no. (%) 8 (53) 4 (50) 4 (57)

Plasma—no. (%) 2 (13) 1 (13) 1 (14)
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tified (not described in Table 2). Despite alignment to a robust database of organisms, each participant still had 
hundreds of thousands of unclassified reads. (Table 2) The taxonomy classification of “other sequences” (28384) 
align to elements of cellular organisms (bacterial, archaea, plant), but do not have enough specificity to identify a 
single species are listed (Table 2). The top ten bacterial reads by count at the species level for each patient is listed 
in Supplemental Table 2. The top bacterial sequences from all patients were from either Acinetobacter bauman-
nii or Chryseobacterium gallinarum. In patients who had the most counts of C. gallinarum, A. baumannii had 
significantly reduced counts compared to the counts in other patients (148.1 vs. 50,905.3, p < 0.05). Although 
sequences corresponding to A. baumannii or C. gallinarum were found in all patients, none of the patients had 
positive blood cultures drawn around the time of these samples. No counts of bacteria, virus, archaea, (Table 2) 
or specific bacteria (Supplemental Table S2) correlated with mortality.

Genomic differences between participants who lived and those who died.  Among participants 
who died there were 86 genes that increased in expression and 207 that decreased in expression (top results in 
Table 3, full list in Supplemental Table S3, Supplemental Fig. S1). There were 88 significant alternative splicing 
events occurring in 84 unique genes (Top results Table 3, full list Supplemental Table S4) and 2093 alterna-
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Figure 1.   (A) Top panel is the number of reads aligning to the SARS-CoV-2 genome from each patient. Most 
reads aligned to loci encoding the N protein (red bar) or the RNA dependent RNA polymerase (black bar). (B) 
Bottom panel is the location where the cumulative reads from all the patients align to the SARS-CoV-2 genome. 
Genes encoding the RNA dependent RNA polymerase and the N protein are at positions ~ 15,000 and ~ 29,000, 
respectively.
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tive transcription events occurring in 1769 unique genes (Top results Table 3, full list Supplemental Table S5). 
ABCA13 was the only gene that had significant expression and alternative splicing events. Twenty-seven genes 
had significant expression and alternative transcription start/end differences (Table 3). Eighteen genes had sig-
nificantly different alternative splicing and alternative transcription start/end (Table 3).

The genes that were significant between groups then underwent GO term analysis to assess significant enrich-
ment for a biological process. The top GO terms for gene expression and alternative transcription are listed in 

Table 2.   Counts per patient from Kraken2.

Unclassified Bacteria Archaea Other sequences Virus

Patient 1 166,039 252,424 160 388,924 317

Patient 2 219,873 213,967 167 325,150 398

Patient 3 216,633 258,383 286 463,595 621

Patient 4 272,019 122,270 230 637,551 374

Patient 5 266,733 119,180 224 552,125 363

Patient 6 217,155 179,383 292 506,456 564

Patient 7 144,690 111,078 153 321,752 302

Patient 8 262,426 194,038 310 557,825 586

Patient 9 294,609 325,558 1055 475,941 768

Patient 10 273,603 272,536 211 373,893 403

Patient 11 222,280 175,230 169 333,625 368

Patient 12 284,819 113,546 223 615,463 271

Patient 13 308,700 103,060 238 469,993 298

Patient 14 235,961 109,451 183 485,807 449

Patient 15 179,668 130,323 188 419,667 353

Table 3.   Gene difference between patients that died versus lived.

Gene expression Alternative splicing Alternative transcription

Top 5 increase (gene (fold change)) in patients that died versus lived

NPC1L1 (8.1) ITGB2 (3.7) NCF2 (8.7)

VWA3B (5.7) DPYD (3.6) STX3 (8.4)

ABCB11 (5.5) SMCHD1 (3.4) YWHAB (8.2)

OR6C4 (5.1) NF2 (2.9) MAP2K6 (7.8)

UGT2A3 (4.7) LRRK2 (2.9) N4BP1 (7.3)

Gene expression Alternative splicing Alternative transcription

Top 5 decrease (gene (fold change)) in patients that died versus lived

ABCA4 (− 8.4) VPS13B (− 3.8) STEAP4 (− 10.6)

GJB6 (− 7.3) STRN4 (− 3.3) IQGAP1 (− 8.7)

CACNA2D (− 7.2) HLA-C (− 3.2) TAP2 (− 8.6)

RNF17 (− 6.2) FMR1 (− 3.2) PRRC2B (− 8.4)

CTCFL (− 6.1) HLA-E (− 3.1) SNX10 (− 8.4)

Gene expression + alternative splicing Gene expression + alternative transcription Alternative splicing + alternative transcription

Significant in both categories in patients that died versus lived

ABCA13
ABCB11, ADARB2, ADGRD1, ASIC1, ATP2C2, CCL2, 
CNR1, CNTNAP2, DLG2, EPS8, FAM107A, GBP1, GBP5, 
HESX1, KCNMA1, MPP2, MRO, MSR1, NRP1, NRP2, 
PRLR, SLC1A, SLC1A3, STAC, STEAP3, TGFBI, VWA3B

ANKMY1, CCDC32, CXCR2, DUSP18, FAM214B, 
FGF11, FMR1, IQGAP1, KDM5D, KLC4, LGALS3BP, 
MBNL1, NF2, SLC24A1, TAF1C, TCF3, ZDHHC24, 
ZSCAN18

Gene expression Alternative splicing Alternative transcription

Top 5 Gene Ontology (GO) term analysis (pathway (fold change)—contributing genes if less than 10)

Protein Homotrimerization (19.8)—SLC1A2, ASIC1, HLA-
G, SCARA5
Negative regulation of interleukin-10 Production (16.5)—
MMP8, CD274, PDCD1LG2, IL23R
Protein trimerization (16.5)—SLC1A2, ASIC1, HLA-G, 
SCARA5
Retinal ganglion cell axon guidance (16.5)—NRP1, 
NRCAM, EPHB2, POU4F3
Axonal fasciculation (12.9)—NRP1, NRCAM, EPHB2, 
CNR1

None

RNA Polymerase I Preinitiation Complex Assembly 
(7.9)—TAF1C, BAZ2A, PIH1D1, SMARCA4, UBTF, 
SMARCB1
Regulation of RNA splicing (2.5)—34 genes
Regulation of mRNA Splicing, via spliceosome (2.3)—23 
genes
Regulation of mRNA Processing (2.2)—29 genes
Purine containing compound biosynthetic process 
(2.1)—32 genes
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Table 3 (full list Supplemental Tables S6, S7). There were no significant GO terms for the genes impacted by 
alternative splicing.

RNA entropy as a diagnostic tool.  From the over 100 million RNA sequencing reads for each par-
ticipant, computational analysis via Whippet assigns an entropy value for over 380,000 RNA splicing events 
and alternative transcription start/end events. Principal component analysis was then applied to these > 380,000 
entropy scores for each of the 15 participants and the first two principal components were plotted against each 
other (Fig. 2). The sample points were then labeled based on their survival status. Survival status was not part 
of the principal component analysis itself. Participants whose PC2 value was above 0.00 had a mortality rate of 
75% (6/8), up from the total group mortality of 46% (7/15) and significantly more than the 14% for those who 
land below that line (1/7, p = 0.04).

Discussion
This project used deep RNA sequencing of whole blood from participants in the ICU with COVID-19 as a novel 
diagnostic tool. The protocol extracted RNA from the whole blood, as opposed to fractionating the whole blood 
specimen. Analysis of whole blood increased the breadth of RNA being sequenced, both cell associated and 
cell-free, and its simplicity for clinical practice. Alternatively, more complicated techniques, such as single cell 
sequencing may speak more to pathogenesis but adds to the complexity of the protocol and analysis. Despite 
its isolation from whole blood, the RNA was of high quality (Supplement Table S1). A novel finding using RNA 
from whole blood from critically ill participants is that only 62–67% of the reads mapped to the human genome. 
This is less than the 85–97% of reads that typically map to the reference genome18. One major drawback is the 
timing needed for RNA sequencing and analysis. Currently, sequencing machines take ~ 18 h to generate data. 
The analysis can take additional time and is not yet clinically standardized. As technology advances and speed 
improves, however, this data will be increasingly accessible in the care of ICU patients.

SARS-CoV-2 RNA was identified in the unmapped reads in all patients (Fig. 1a). This supports that detec-
tion of SARS-CoV-2 in the serum has been associated with clinical deterioration19,20 and RT-PCR identified the 
SARS-CoV-2 virus in the blood more often in the ICU patients than in the non-ICU patients21. The total number 
of reads in our dataset did not correlate with any outcomes, including mortality, ARDS, or coagulopathy. The 
low number of total reads, approximately 700 from nearly 2 billion from all the samples, explains the lack of 
success from other researchers identifying the virus in the blood. In early reports, RT-PCR directed at the N 
protein gene identified viral RNA in the plasma in 15% of patients22. Our data demonstrate the two most abun-
dant genes in blood were the RNA Dependent RNA Polymerase and the N protein (Fig. 1b). With this data we 
propose these locations (RNA dependent RNA polymerase or N protein) as potential therapeutic or diagnostic 
targets23. In addition, this data shows that deep RNA sequencing of blood versus nasal swab, BAL or single cell 
RNA sequencing of blood produces drastically different results24,25.

Other authors have called for robust testing for potential co-infections with SARS-CoV-226. With deep 
sequencing and computational analysis we have identified the RNA from multiple bacteria, viruses, and archaea 
in all of the specimens, as well as fungal RNA in two participants. This suggests deep RNA sequencing with 
computational analysis may be a novel tool for the identification of co-infections. More data is required with 
comparison to gold standards such as blood culture and pathogen-specific PCR. However, RNA sequencing has 
the benefit of being able to identify all pathogens with known genomes, including both RNA and DNA based 
organisms. Moreover, unclassified reads that do not align to any known organism (Table 2) or the other sequences 
that have cellular organism elements (Table 2) could provide evidence of novel pathogens before a genome is 
sequenced or the pathogen is cultured.

Critically ill COVID-19 patients provide a difficult clinical dilemma as it pertains to antibiotics. In severely 
ill patients, clinicians are more likely to prescribe antibiotics despite there not being an identified pathogen27. 
With identification of bacteria known to cause human disease from the RNA sequencing data, appropriate 
antibiotics could be prescribed to these patients. In this data set, we show that there were significantly more 
counts of Acinetobacter baumannii in a portion of patients (Supplemental Table S2) and this bacterium has been 
associated with COVID-1928. Using a precision medicine approach with these data, patients with significantly 
elevated levels may potentially be treated with directed antibiotics, in the absence of more time-consuming 
positive culture data. While there was no difference in survival in participants with versus without identified 
bacteria in this study, antibiotic use was not standardized or prescribed prospectively based upon our results. 
In addition, analysis of the unmapped reads aligning to Acinetobacter baumannii (averaging over 50,000 among 
the six with increased reads) could provide insights into genes that are expressed in critical illness and provide 
novel diagnostic and therapeutic targets.

The immune response to SARS-CoV-2 has been the focus of much research since the pandemic started29. 
The successful use of corticosteroids in the critically ill with COVID-19 emphasizes the importance of the 
immune system in this disease30,31. Because a significant proportion of COVID-19 patients do not respond to 
corticosteroids, there are still calls for a more precise approach32. PD-1 expression is increased in certain cell 
populations in patients with COVID-193,33 but the uses of immune checkpoint inhibitors in cancer patients has 
been associated with more severe COVID-1934. Other authors suggest that immune checkpoint inhibitors may 
be useful in COVID-1935. Our data shows that patients who died had increased expression of PD-L1 and PD-L2 
(Supplemental Fig. S1, CD274 and PDCD1Lg1, Table 3). This suggests that immune checkpoint inhibitors tar-
geted against the PD-1 system might be considered in those patients identified to have increased expression of 
PD-L1 and PD-L2 because of their higher risk of death after ICU admission. The counterintuitive nature of the 
PD-L1 and PD-L2 expression signifies the complexity of this system and further work is needed. However, a 
limitation of this study is we are not able to distinguish between harm or benefit from the increase in checkpoint 
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proteins. If this could be ascertained by future work, this technology could identify patients who would receive 
the most benefit. In addition, from the GO term analysis, both PD-1 receptors and other genes impact “Negative 
Regulation of Interleukin 10” (Table 3) and this could be a better target. Other intriguing results from the GO 
term analysis include two dealing with protein trimerization, something the spike protein is known to do, and 
RNA processing, a topic previously commented on in critical illness4.

Numerous other immune targets are identified from these genomic changes. ITGB2 has increased splicing of 
the last exon and is an immune cell integrin (Table 3, Table S4). Human leukocyte antigens have been associated 

Figure 2.   A graph created by the principal component analysis of the > 380,000 entropy values related to 
alternative RNA splicing and alternative transcription start/end. Patients labeled in red died from COVID-
19 and surviving patients are labeled with green dots. Mortality rate above PC2 = 0 is 75% and below is 14% 
(p = 0.04).
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with COVID-1936,37, however; no one has assessed splicing of these genes. HLA-C and HLA-E are both class 
1 heavy chains and have decreased alternative splicing (Table 3, Table S4). Genetic defects of NCF2 are associ-
ated with chronic granulomatous disease, an immune suppressed phenotype38. In patients who died, NCF2 had 
increased alternative transcription end (Table 3, Table S5). N4BP1 is a cellular factor that interacts with HIV39,40 
and has increased alternative transcription end in the patients who died (Table 3, Table S5). N4BP1 is induced 
by interferon and the interferon response has been implicated in COVID-1941,42. Our data supports the role for 
interferons in COVID-19 as patients who died had 2.5-fold increase in expression of interferon 1 alpha (Sup-
plemental Table S3, IFNA1). Clinical features of COVID-19 also correlate with some of the genes identified. 
OR6C4 is an olfactory gene which we identified has exhibiting a fivefold increased in expression in patients that 
died (Table 3, Supplemental Table S3). This finding suggests that loss of smell may signify milder disease among 
patients in the ICU. Thrombotic complications are common in COVID-19 patients (9.5%) and patients admitted 
to the ICU have a higher incidence of venous thromboembolism43. Patients who died have significant decrease 
in gene expression and multiple changes in alternative transcription end (Table 3, Supplemental Tables S3, S5) 
of both NRP1 and NRP2. Both these genes are associated with coagulation44 and the COVID-19 spike protein 
binds both these receptors45. Previous work has shown that there is increased expression in both genes in the 
lungs of patients with COVID-19 when compared to controls46. In our study, the decrease NRP1 and NRP2 were 
seen in ICU patients who died compared to ICU patients who survived.

Many studies have attempted to utilize clinical data to predict mortality in COVID-1947,48 and some focus on 
cytokines49. For simplicity all these attempt to identify a few variables to predict mortality. Here we utilize over 
380,000 variables with PCA to create a figure that improves mortality prediction based upon where the patient 
is on the graph (Fig. 2, 75% versus 14%). A limitation to this form of analysis is that the PCA cannot identify a 
specific gene or event most responsible for outcomes; it uses all 380,000 data points. An additional limitation is 
the small sample size of this study. This work was done on just fifteen patients, however we plan to add future data 
from clinically relevant patients to this model to ensure its validity. More advanced analysis of the PCA plots to 
identify the most important features has been suggested, however the small sample size limits the utility. Other 
COVID-19 data sets could be used but they are limited by the depth of sequencing. In addition, Table 3 shows 
splicing events that were significantly different between groups. Although this method does not provide target 
for intervention, accurate assessment of prognosis using sequencing technology might be valuable to inform 
end of life care discussions in the ICU. Future work that will be done with this PCA plot based upon RNA splic-
ing entropy will allow for the understanding of which factors influence the outcome the most. However, one 
advantage in the PCA plot is that it includes all the RNA splicing entropy values in one analysis. It essentially 
correlates how well the patient is splicing towards the clinical outcome of mortality.

Despite the limitations of this single-center study with a small patient number, we were still able to document 
that deep RNA sequencing and appropriate computational analysis yields valuable insight into the pathogenesis 
and host response of COVID-19 in critically ill patients. Novel drug targets were identified from SARS-CoV-2 
RNA and the host response, including RNA dependent RNA polymerase, the N protein, and the PD-1 immune 
checkpoint pathway. The presence of pathogen RNA in the blood suggests co-infection should be reconsidered. 
Most importantly, PCA of the entropy of > 380,000 events allowed use to group patients into those likely to die 
versus those likely to live, and this may be helpful in family discussions with critically ill patients. Translating 
these results to clinical practice will improve the diagnosis, assessment of prognosis, and therapy of COVID-19.

Data availability
See Online Supplement for publication of extensive data.

Code availability
All code used is cited in the text.

Received: 12 August 2021; Accepted: 9 September 2022

References
	 1.	 Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533 

(2020).
	 2.	 Sethuraman, N., Jeremiah, S. S. & Ryo, A. Interpreting diagnostic tests for SARS-CoV-2. JAMA 323, 2249 (2020).
	 3.	 Bouadma, L. et al. Immune alterations in a patient with SARS-CoV-2-related acute respiratory distress syndrome. J. Clin. Immunol. 

40, 1–11 (2020).
	 4.	 Fredericks, A. M., Wang, L. J., Fairbrother, W. G., Ayala, A. & Monaghan, S. F. Alternative RNA splicing and alternative transcrip-

tion start/end in acute respiratory distress syndrome. Intens. Care Med. 46, 813 (2020).
	 5.	 Sterne-Weiler, T., Weatheritt, R. J., Best, A. J., Ha, K. C. H. & Blencowe, B. J. Efficient and accurate quantitative profiling of alterna-

tive splicing patterns of any complexity on a laptop. Mol. Cell 72, 187–200 (2018).
	 6.	 Beigel, J. H. et al. Remdesivir for the treatment of covid-19—Preliminary report. N. Engl. J. Med. 383, 1813 (2020).
	 7.	 Singer, M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315, 801–810 (2016).
	 8.	 Ferguson, N. D. et al. The Berlin definition of ARDS: An expanded rationale, justification, and supplementary material. Intens. 

Care Med. 38, 1573–1582 (2012).
	 9.	 Aho, E. R. et al. Displacement of WDR5 from chromatin by a WIN site inhibitor with picomolar affinity. Cell Rep. 26, 2916–2928 

(2019).
	10.	 Andrews, S. A quality control tool for high throughput sequence data. FastQC. In A Quality Control Tool for High Throughput 

Sequence Data (FastQC, 2014).
	11.	 Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics (Oxford) 29, 15–21 (2013).
	12.	 Boratyn, G. M., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B. & Madden, T. L. Magic-BLAST, an accurate RNA-seq aligner for long 

and short reads. BMC Bioinform. 20, 405 (2019).



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15755  | https://doi.org/10.1038/s41598-022-20139-1

www.nature.com/scientificreports/

	13.	 Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).
	14.	 Editor (eds) Book, City.
	15.	 Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene function analysis with the PANTHER classification 

system. Nat. Protoc. 8, 1551–1566 (2013).
	16.	 Team RC (2018) R: A language and environment for statistical computing. In Book R: A Language and Environment for Statistical 

Computing (2018).
	17.	 Fleige, S. & Pfaffl, M. W. RNA integrity and the effect on the real-time qRT-PCR performance. Mol. Aspects Med. 27, 126–139 

(2006).
	18.	 SEQC/MAQC-III Consortium. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by 

the Sequencing Quality Control Consortium. Nat. Biotechnol. 32, 903–914 (2014).
	19.	 The COVID-19 Investigation Team. Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 

(COVID-19) in the United States. Nat. Med. 26, 861 (2020).
	20.	 Chen, W. et al. Detectable 2019-nCoV viral RNA in blood is a strong indicator for the further clinical severity. Emerg. Microbes 

Infect. 9, 469–473 (2020).
	21.	 Fang, Z. et al. Comparisons of viral shedding time of SARS-CoV-2 of different samples in ICU and non-ICU patients. J. Infect. 81, 

147 (2020).
	22.	 Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London) 395, 497–506 

(2020).
	23.	 Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459 (2020).
	24.	 Bost, P. et al. Deciphering the state of immune silence in fatal COVID-19 patients. Nat. Commun. 12, 1428 (2021).
	25.	 Finkel, Y. et al. The coding capacity of SARS-CoV-2. Nature 589, 125–130 (2021).
	26.	 Lai, C. C., Wang, C. Y. & Hsueh, P. R. Co-infections among patients with COVID-19: The need for combination therapy with 

non-anti-SARS-CoV-2 agents?. J. Microbiol. Immunol. Infect. 53, 505–512 (2020).
	27.	 Feng, Y. et al. COVID-19 with different severity: A multi-center study of clinical features. Am. J. Respir. Crit. Care Med. 201, 1380 

(2020).
	28.	 Sharifipour, E. et al. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC 

Infect. Dis. 20, 646 (2020).
	29.	 Poland, G. A., Ovsyannikova, I. G. & Kennedy, R. B. SARS-CoV-2 immunity: Review and applications to phase 3 vaccine candidates. 

Lancet (London) 396, 1595 (2020).
	30.	 TRC Group. Dexamethasone in hospitalized patients with Covid-19—preliminary report. N. Engl. J. Med. 384, 693 (2020).
	31.	 Prescott, H. C. & Rice, T. W. Corticosteroids in COVID-19 ARDS: Evidence and hope during the pandemic. JAMA 324, 1292–1295 

(2020).
	32.	 Waterer, G. W. & Rello, J. Steroids and COVID-19: We need a precision approach, not one size fits all. Infect. Dis. Therapy 9, 701 

(2020).
	33.	 Bellesi, S. et al. Increased CD95 (Fas) and PD-1 expression in peripheral blood T lymphocytes in COVID-19 patients. Br. J. Hae-

matol. 191, 207 (2020).
	34.	 Robilotti, E. V. et al. Determinants of COVID-19 disease severity in patients with cancer. Nat. Med. 26, 1218–1223 (2020).
	35.	 Vivarelli, S. et al. Cancer management during COVID-19 pandemic: Is immune checkpoint inhibitors-based immunotherapy 

harmful or beneficial?. Cancers 12, 2237 (2020).
	36.	 Lorente, L. et al. HLA genetic polymorphisms and prognosis of patients with COVID-19. Med. Intens. 45, 96 (2020).
	37.	 Wang, W., Zhang, W., Zhang, J., He, J. & Zhu, F. Distribution of HLA allele frequencies in 82 Chinese individuals with coronavirus 

disease-2019 (COVID-19). Hla 96, 194–196 (2020).
	38.	 Roos, D. Chronic granulomatous disease. Methods Mol. Biol. (Clifton) 1982, 531–542 (2019).
	39.	 Nchioua, R., Bosso, M., Kmiec, D. & Kirchhoff, F. Cellular factors targeting HIV-1 transcription and viral RNA transcripts. Viruses 

12, 495 (2020).
	40.	 Yamasoba, D. et al. N4BP1 restricts HIV-1 and its inactivation by MALT1 promotes viral reactivation. Nat. Microbiol. 4, 1532–1544 

(2019).
	41.	 Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science (New York) 

369, 718–724 (2020).
	42.	 Lei, X. et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat. Commun. 11, 3810 (2020).
	43.	 Al-Samkari, H. et al. COVID and coagulation: bleeding and thrombotic manifestations of SARS-CoV2 infection. Blood 136, 489 

(2020).
	44.	 Rossignol, M., Gagnon, M. L. & Klagsbrun, M. Genomic organization of human neuropilin-1 and neuropilin-2 genes: Identifica-

tion and distribution of splice variants and soluble isoforms. Genomics 70, 211–222 (2000).
	45.	 Daly, J. L. et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science (New York) 370, 861 (2020).
	46.	 Ackermann, M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 383, 120–128 

(2020).
	47.	 Tian, W. et al. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. J. Med. Virol. 

92, 1875 (2020).
	48.	 Zhang, L. et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J. Thromb. Haemost. 18, 

1324–1329 (2020).
	49.	 McElvaney, O. J. et al. A linear prognostic score based on the ratio of interleukin-6 to interleukin-10 predicts outcomes in COVID-

19. EBioMedicine 61, 103026 (2020).

Author contributions
Drs. S.F.M. and A.M.F. had full access to all of the data in the study and take responsibility for the integrity of 
the data and the accuracy of the data analysis. Concept and design: S.F.M., A.M.F., M.S.J., S.J.G., G.J.N., M.M.L., 
A.A. Acquisition, analysis, or interpretation of data: S.F.M., A.M.F., M.S.J., M.C., S.J.G., G.J.N., A.A. Drafting of 
the manuscript: S.F.M., A.M.F. Critical revision of the manuscript for important intellectual content: W.G.C., 
W.G.F., E.O.H., G.J.N., J.S.R., C.E.V., M.M.L., A.A. Statistical analysis: S.F.M., A.M.F., M.S.J., S.J.G. Obtained 
funding: S.F.M., A.M.F., W.G.F., E.O.H., G.J.N., J.S.R., C.E.V., A.A. Administrative, technical, or material sup-
port: W.G.C., G.J.N., J.S.R., C.E.V., M.M.L., A.A. Supervision: S.F.M., W.G.C., M.M.L., A.A. All authors reviewed 
the manuscript.

Funding
This study was supported by funding from the US National Institutes of Health: P20 GM103652 (SFM, WGF, 
EOH, AA), T32 HL134625 (AMF, EOH), R01 GM 127472 (WGF), P20 GM121344 (GJN), R01 HL147525 (JSR), 
R01 HL141268 (CEV), R35 GM118097 (AA).



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15755  | https://doi.org/10.1038/s41598-022-20139-1

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​20139-1.

Correspondence and requests for materials should be addressed to S.F.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-20139-1
https://doi.org/10.1038/s41598-022-20139-1
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep RNA sequencing of intensive care unit patients with COVID-19
	Methods
	Study design, population and setting. 
	RNA extraction and sequencing. 
	Computational biology and statistical analysis. 
	Ethics approval. 

	Results
	Study population, participant characteristics, and RNA sequencing. 
	Identification of SARS-CoV-2 and other pathogens. 
	Genomic differences between participants who lived and those who died. 
	RNA entropy as a diagnostic tool. 

	Discussion
	References


