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Overexpression of the WAPO‑A1 
gene increases the number 
of spikelets per spike in bread 
wheat
Lukas M. Wittern1,6, Jose M. Barrero4,6, William D. Bovill4, Klara L. Verbyla4, Trijntje Hughes4, 
Steve M. Swain4, Gareth Steed1, Alex A. R. Webb1, Keith Gardner3, Andy Greenland3, 
John Jacobs2, Claus Frohberg2, Ralf‑Christian Schmidt2, Colin Cavanagh5, Antje Rohde2, 
Mark W. Davey2,7 & Matthew A. Hannah2,7*

Two homoeologous QTLs for number of spikelets per spike (SPS) were mapped on chromosomes 
7AL and 7BL using two wheat MAGIC populations. Sets of lines contrasting for the QTL on 7AL were 
developed which allowed for the validation and fine mapping of the 7AL QTL and for the identification 
of a previously described candidate gene, WHEAT ORTHOLOG OF APO1 (WAPO1). Using transgenic 
overexpression in both a low and a high SPS line, we provide a functional validation for the role of 
this gene in determining SPS also in hexaploid wheat. We show that the expression levels of this 
gene positively correlate with SPS in multiple MAGIC founder lines under field conditions as well 
as in transgenic lines grown in the greenhouse. This work highlights the potential use of WAPO1 in 
hexaploid wheat for further yield increases. The impact of WAPO1 and SPS on yield depends on other 
genetic and environmental factors, hence, will require a finely balanced expression level to avoid the 
development of detrimental pleiotropic phenotypes.

Grain yield is a highly complex trait which is the product of a network of inter-connected yield-component traits, 
such as tiller number, inflorescence architecture and the rate of grain filling, often with interdependencies and 
trade-offs  involved1. Studying individual yield-component traits, particularly those with higher heritability such 
as spikelet number per spike (SPS)2 can assist in reducing some of this complexity. As spikelets are specialized 
branches that produce grains, breeding for increased SPS could increase grain yield by increasing grain number 
and sink capacity.

SPS is affected by genes affecting flowering time through vernalization, photoperiod or earliness per se (eps) 
pathways: VRN1, FUL2, FUL3, PPD1, VRN3/FT1, FT2, ELF33–7. Spring or winter growth habit is determined 
primarily by variation in the VRN genes. PPD1 controls photoperiod-dependent floral induction, with the 
photoperiod insensitive allele PPD-D1a accelerating flowering, whilst ELF3 is a minor effect eps gene. However, 
identification and characterization of major effect genes that increase SPS independently of these pathways has 
been limited so far.

The genetic dissection of grain yield and yield-component traits in hexaploid wheat is complicated by the 
compensatory effects of homoeologous genes. Their analysis in diploid model plants, such as rice, usually reveal 
QTLs with much higher effect sizes, e.g. 20–40% in rice vs 2–9% in hexaploid  wheat8. Previous rice studies identi-
fied several genes involved in the regulation of panicle size and grain number and thus their orthologs provide a 
basis for studies in other  cereals9. The rice gene ABERRANT PANICLE ORGANIZATION 1 (OsAPO1) regulates 
panicle size, grain  number10,11 and  yield12,13 and higher expression of the OsAPO1 transcript leads to more pri-
mary  branches11. OsAPO1 is syntenic with a major wheat SPS Quantitative Trait Locus (QTL) on chromosome 
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7AL in several bi-parental mapping populations and diversity  panels2,14–21 as well as a minor homoeologous 
QTL on  7BL22,23.

More recently the WHEAT ORTHOLOGUE OF APO1 (WAPO1) has been proposed as the candidate gene 
for the SPS QTL on 7AL by multiple  authors24–26, and validated in tetraploid wheat using a combination of 
mutants and transgenic  lines27. This transgenic validation showed that WAPO-A1 from Triticum monococcum 
and Triticum turgidum increased SPS in the T. turgidum cultivar Kronos. It was also reported that overexpression 
of WAPO-D1 in the elite hexaploid variety KN199 had no effect on spike  phenotypes19. However, transgenic 
overexpression of WAPO-A1 in hexaploid wheat or in cultivars that contrast in their WAPO-A1 haplotype has 
not yet been reported, and could be useful to build a better understanding of gene function, effect size, and 
pleiotropic effects for wider and diverse wheat breeding programs.

Multi-parental Advanced Genetic Inter-Crossed (MAGIC) populations are well suited for QTL mapping due 
to their high levels of allelic diversity and  recombination28–30. Based on residual heterozygosity in the MAGIC 
populations, QTLs can be further validated and fine mapped through the development of Heterogeneous Inbred 
Families (HIFs). Selected HIFs will be isogenic at most loci in the genome, but still heterozygous for the region 
spanning the QTL of interest. The resulting segregating progeny will have properties similar to near-isogenic 
lines (hereafter named NILs) with and without the QTL of interest and are ideal genetic material to perform 
precise phenotyping and transcriptomic analysis, and to assess the allelic contributions to the trait of interest as 
well as for fine mapping and candidate causal gene  identification31.

In this study, we describe the functional validation of WAPO1 in determining SPS in hexaploid wheat. We 
used two MAGIC populations across 14 site × year environments to identify two homoeologous SPS QTLs for 
7AL and 7BL. Sets of contrasting NILs derived from HIFs segregating for the QTL on 7AL were used to validate 
and fine map the 7AL QTL, delivering a candidate gene WAPO-A1 and its homoeologue WAPO-B1. For WAPO-
A1 we observed that increased expression in the spike in the NIAB MAGIC founder parents was positively cor-
related with SPS in the field. Therefore, our functional validation of the WAPO-A1 gene in hexaploid wheat used 
a transgenic approach in both low- and high-SPS genetic backgrounds. This transgenic overexpression approach 
provided functional validation in hexaploid wheat for the role of WAPO-A1 expression level in determining the 
number of SPS. Furthermore, we demonstrate that the increase in SPS in the transgenic lines is not always trans-
lated into an increased number of seeds per spike and can lead to pleiotropic or compensation effects under our 
growing conditions. The latter highlights the need to finely balance expression levels to achieve positive effects 
on yield when applied in breeding.

Results
The CSIRO and NIAB MAGIC populations have a wide phenotypic spread in SPS. Twelve field 
trials using an 4-parent MAGIC  population32 from CSIRO were performed between 2011 and 2014 across three 
field sites in New South Wales, Australia (Yanco, Narrabri, Wallendbeen) and in a Greenhouse in Canberra 
(ACT, Australia). Two field trials using an 8-parent MAGIC  population28 from NIAB were performed in 2014 
and 2015 in Cambridge, UK. Heritability of SPS across all trials and both populations was high, varying from 
0.45 to 0.86 with a mean of 0.71 (Supplementary Table S1).

Both MAGIC populations showed transgressive segregation for SPS. In the 4-parent CSIRO population, 
recombinant inbred lines (RILs) had a mean SPS number ranging from 12.6 to 25.0 compared to 16.3 to 23.3 for 
the MAGIC parents. Yitpi and Chara were identified as having a reduced mean number of SPS when compared 
to Westonia and Baxter. On average the difference was at least one spikelet per spike between the CSIRO parents 
in the low and high SPS groups. The 8-parent NIAB population, RILs had mean SPS number ranging from 17.70 
to 29.80 compared to 20.32 to 26.40 for the MAGIC parents. The NIAB MAGIC parents could also be broadly 
divided into high and low phenotype groups, with Soissons, Robigus and Brompton having a reduced SPS number 
compared to the other five MAGIC parents (Alchemy, Claire, Hereward, Rialto, Xi-19).

QTL mapping identified ten major SPS QTLs. QTL mapping was conducted using  MPWGAIM33 with 
a separate univariate analysis for each trial. In total, 203 marker-trait associations (MTAs) for SPS were identi-
fied across 12 trials for the CSIRO MAGIC population and 18 MTAs for SPS were identified across 2 trials for 
the NIAB MAGIC population (QTL significance p < 0.05) (Supplementary Tables S2 and S3). The CSIRO MTAs 
cluster into ten major QTLs that are highly significant (max. -log10(p) > 5) and reproducible across at least two 
trials. For six of the identified QTL, we were able to assign candidate genes based on previously known allelic 
effects of flowering pathway genes, leaving four QTL that were initially not annotated. Of these, a SPS QTL on 
7AL was observed most consistently at a high significance and was chosen for further downstream analysis 
(Table 1).

Despite substantially different environmental conditions, the major QTL for SPS on 7AL was observed in all 
12 CSIRO trials and in two NIAB trials. This indicates that this QTL was environmentally and genetically very 
stable (Supplementary Table S4). In the 4-parent CSIRO population, the 7AL SPS QTL defined a 5.7 Mb interval 
between 669.7 Mb and 675.4 Mb on the IWGSCv1.1 assembly, with a global significance level of -log10(p) > 5 
across all 12 trials and mean genotypic variance explained of 13.6%. Baxter and Westonia carry the high SPS 
genotype, with an average increase of 1.1 spikelets per spike in the MAGIC RILs compared to the low SPS geno-
type (Yitpi, Chara), under these conditions. In the 8-parent NIAB population the 7AL SPS QTL defined a nar-
rower 2.3 Mb interval between 672.0 Mb and 674.3 Mb. In the 2014 trial, the QTL explains a remarkable 33.8% 
of genetic variation in SPS within the NIAB 8-way MAGIC population at a global significance level of -log10(p) 
66.17. Alchemy, Claire, Hereward, Rialto, Soissons, Xi-19 all carry the high SPS genotype, with an average 
increase of 2.1 spikelets per spike in the MAGIC RILs compared to the low SPS genotypes (Brompton, Robigus).
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In addition to the major 7AL QTL for SPS, a homoeologous SPS QTL on 7BL with a smaller effect size 
was also identified in both the 4-parent CSIRO and 8-parent NIAB populations (Table 1). In the 8-parent 
NIAB population, this second QTL is located on a 4.9 Mb interval (645.3–650.1 Mb) directly homoeologous 
to the 7AL QTL (-log10(p) = 2, Genetic Variance Explained (GVE) = 1.5%). Claire, Xi-19 and Soissons carry 
the high 7BL SPS parental genotype. Four of the 4-parent CSIRO trials also had a 7BL QTL mapping in the 
vicinity (642.5–655.0 Mb) with Yitpi and Baxter carrying a high SPS parental genotype (-log10(p) > 2.3, mean 
GVE = 1.5%).

Validation and fine mapping of the 7A SPS QTL using HIFs. To validate and fine-map the 7AL 
QTL, four Heterogenous Inbred Families (HIFs) were derived from selected  F7 RIL lines of the 4-parent CSIRO 
population containing heterozygosity in the QTL region. These RILs were utilized to develop sets of NILs with 
contrasting presence of the 7AL SPS QTL.

Four NIL pairs (F0035, F0748, F1229, and F1570) showed consistent differences in SPS between the contrast-
ing alleles across the 7AL locus, thus validating the QTL (Fig. 1A).

For two NIL pairs (F0748 and F1570) nearly all differences were statistically significant (p < 0.05). Because the 
selected NILs carried the 7AL QTL genotypes of all four founder parents, the allelic effects for each of the found-
ers of the 4-parent CSIRO population could be determined. In addition, the SPS region was further delimited 
from 5.7 Mb to an interval of 2.2 Mb by NIL pairs F0035 and F1570 (Fig. 1B).

Additional phenotyping revealed the high SPS lines in each NIL pair also showed an increase in Grain number 
per spike in most cases, albeit mostly insignificant, (Supplementary Figure S1) and no differences in heading 
date exceeding 0.5 days were observed (Supplementary Figure S2).

Identification of WAPO‑A1 and WAPO‑B1 as homoeologous candidate genes for SPS. The 
QTL region delineated using the HIFs on 7AL contained twenty genes. Both the 7AL and 7BL QTL identi-
fied in the NIAB and CSIRO MAGIC populations are syntenic to rice chromosome 6 (Fig. 2). Within these 
three homoeologous or syntenic QTL regions, four conserved orthologous protein groups were identified: 
TraesCS7A02G480100/TraesCS7B02G382300/OsHMA9, TraesCS7A02G481500/TraesCS7B02G383900/OsAAH, 
TraesCS7A02G481600/TraesCS7B02G384000/OsAPO1 and TraesCS7A02G482000/TraesCS7B02G384200/
Os06g0665100.

OsHMA9 is a metal-efflux protein and OsAAH an allantoate deiminase. Neither have previously been linked 
to SPS  phenotypes37,38.

OsAPO1 is an F-box protein that had previously been shown to improve rice yield, primary rachis branch-
ing and lodging resistance as the causal gene of qPBN639,40 and SCM2 QTL in  rice12. The wheat orthologues 
of OsAPO1 on 7AL and 7BL (WAPO-A1 and WAPO-B1) were thus identified as good candidate genes for the 

Table 1.  Overview of major SPS QTLs in the 4-parent CSIRO and the 8-parent NIAB MAGIC populations 
and the underlying candidate genes. QTLs for SPS from 12 trials with the 4-parent CSIRO MAGIC population 
and two trials with the 8-parent NIAB population. QTL analyses were conducted using whole genome average 
interval mapping using  MPWGAIM33. For the NIAB MAGIC population a genetic map adapted from Gardner 
et al.,  201634 was used. For the CSIRO MAGIC population a previously published map was  used33. Genetic 
variance (%) and significance (-log10(p)) as calculated by  MPWGAIM33. *The QTL likely associated with 
VRN-A1 was only observed in the CSIRO Greenhouse studies, where vernalization did not occur. $Inferred 
from reported VRN-B3 allele. Variety abbreviations: Baxter (B), Chara (C), S (Soissons), W (Westonia), Y 
(Yitpi).

Chr

Genetic region 
(cM)

Genetic 
Variance (%)

Significance 
(-log10(p))

Studies (n) Candidate gene EffectLeft Right Min Max Min Max

4-parent CSIRO MAGIC population

2BS 159.29 165.35 1.6 11.8 1.94 10.9 7/12 PPD-B135 Late allele in C increases SPS

2DS 0 9.61 15.9 30.2 22.21 38.71 5/12 PPD-D135 Late allele in Y/B increases SPS

2DL 95.26 99.45 1.1 5.9 2 12.03 10/12 Unknown

4AL 61.76 62.68 2.6 3.6 2.19 7.17 4/12 Unknown

5AL 88.39 89.07 9.5 33.2 19.55 126.39 3/12* VRN-A135 Late allele in B increases SPS

5BL 97.75 99.74 1 4.5 1.54 9.03 7/12 VRN-B135 Late allele in C increases SPS

5DL 131.11 152.57 1.5 8.8 2.17 17.76 8/12 VRN-D135 Late allele in Y/C/W increases SPS

7AL 58.7 60.3 6.6 24.8 5.33 44.05 12/12 WAPO-A1 See Table 2

7BL 71.72 74.59 1.4 3.9 2.31 6.73 4/12 WAPO-B1 See Table 2

7BS 166.24 170.19 3.2 14.5 1.4 35.67 3/12 VRN-B336 Early allele in B decreases  SPS$

8-parent NIAB MAGIC population

2DS 48.57 57.64 5 12.5 4.18 12.87 2/2 PPD-D135 Early allele in S decreases SPS

7AL 257.05 257.21 19.2 33.8 42.1 66.17 2/2 WAPO-A1 See Table 2

7BL 144.34 144.5 1.5 1.5 2.05 2.05 1/2 WAPO-B1 See Table 2
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Figure 1.  Validation and fine mapping of the 7A SPS QTL using HIF families derived from the CSIRO 4-way 
MAGIC population. (A) Summary of differences in mean SPS values across NIL pairs for the 7AL SPS QTL. 
Black fill indicates a significant increase (p < 0.05) between NIL pairs. (B) Finemapping using HIF families. 
Contrasting founder genotypes in the NIL pairs are shown. The common QTL region is delimited by markers 
Excalibur_c95707_285 and BS00026622_51. The NIL pairs were phenotyped at four locations in France, the 
USA and Australia during 2017 and 2018 (6 site x year combinations).
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7AL and 7BL SPS QTLs. We also confirmed that no SPS QTLs were detected in the WAPO-D1 genomic region. 
WAPO-A1 and WAPO-B1 genes and WAPO-A1 promoter sequences for Fielder, Chinese Spring, Robigus and 
Claire were obtained from public  resources41–43. WAPO-A1 and 5 kb of upstream promoter sequence in Yitpi, 
Baxter, Chara and Westonia were obtained by Sanger Sequencing (GenBank ON210994-ON210998).

Sequence alignments showed that the high SPS WAPO-A1 allele carries a 115 bp promoter deletion and two 
amino acid changes (C47F and D384N). Based on recent WAPO-A1  nomenclature24 we reclassified our alleles 
accordingly (Table 2). All the assigned WAPO-A1 alleles are consistent with the observed founder effects in both 
MAGIC populations for the 7AL SPS QTL.

We also classified WAPO-B1 alleles based on recent  nomenclature22 (Table 2). All assigned WAPO-B1 alleles 
are also consistent with the observed founder effects except for Soissons, which has a high SPS founder effect 
on 7BL, while carrying the low SPS WAPO-B1.hap1 allele. Westonia carries the WAPO-B1.hap3 allele, previ-
ously reported to carry a frameshift mutation/premature stop  codon22. Based on our alignments and the protein 
sequence of previous WAPO-B1 gene model TRIAE_CS42_7BL_TGACv1_578478_AA1895640.1 we believe that 
this gene model is annotated incorrectly (Supplementary Figure S3) and that as a result, this InDel is unlikely 
to cause a premature stop as it falls into the 5’ UTR of WAPO-B1. This observation would be consistent with the 
fact that WAPO-B1.hap3 only has an intermediate SPS phenotype across four trials.

WAPO‑A1 expression in the field is correlated with SPS. To investigate if the expression of WAPO-
A1 in wheat is correlated with SPS in the field we collected samples from tiller dissections of the eight NIAB 
MAGIC parents from a 2017 field nursery at growth stage  GS3244, because wheat-expression.com45 data sug-
gests that WAPO1 homoeologous are expressed in the spike at this developmental stage. Expression analysis 
using qRT-PCR confirmed that higher WAPO-A1 expression in wheat inflorescences is correlated  (R2 = 0.77) 
with increased SPS (Fig. 3). The low expression of WAPO-A1 in Soissons may be a result of the presence of the 
Ppd-D1a allele in this variety, which accelerates flowering time, so we possibly missed the expression peak of 
WAPO-A1.

Transgenic complementation of the WAPO‑A1a allele with WAPO‑A1b leads to increased SPS 
and spike length. To functionally validate the WAPO-A1 candidate, Yitpi, carrying the low SPS WAPO-
A1a allele, was complemented with the native high SPS WAPO-A1b allele and promoter from Westonia (~ 8 Kb 

Figure 2.  Syntenic relationships between the 7AL and 7BL SPS QTLs in the 4-parent CSIRO MAGIC 
population and the 8-parent NIAB MAGIC population and the rice SCM2/qPBN6  QTL12,39. Arrows indicate 
locations of IWGSCv1.1. gene models obtained from Ensembl Plants release 51. Dashed red lines indicate 
homoeologous and orthologous relationships as defined by Ensembl Plants 51. Gene descriptions from Ensembl 
Plants 51 have been added where available. Physical distances are not drawn to scale.
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genomic fragment, see methods) using Agrobacterium mediated transformation. Six sets of  T2 single-insertion 
homozygous lines next to their respective null-segregant control line were grown in the glasshouse and pheno-
typed (Fig. 4A,B and Supplementary Figure S4).

Four out of six transgenic lines showed an increase in SPS compared to their null segregant. Homozygous  T2 
lines #5 and #3 displayed the strongest phenotype reaching more than 27 and 25 SPS, respectively, as compared 
to 23 in their null segregants. Homozygous plants from lines #9 and #12 displayed a gain of about one SPS, while 
lines #4 and #7 did not show a significant difference in SPS compared to their null segregants. The number of 
SPS in a non-transformed Yitpi control was similar to the null-segregant lines (Fig. 4B).

Samples of developing spikes at GS32 were collected from these lines for gene expression analysis using qRT-
PCR (Fig. 4C), which revealed a strong correlation between the level of WAPO-A1 expression and the number 
of SPS and spike length (Fig. 4D,E). These results are consistent with a causal, positive correlation between 
WAPO-A1 expression and the number of SPS and spike length.

Table 2.  Founder effects and WAPO-A1 and WAPO-B1 alleles of NIAB and CSIRO MAGIC parents. Founder 
effects classified based on MPWGAIM predictions. WAPO-A1 and WAPO-B1 alleles classified according to 
Kuzay et al.,  201924 and Corsi et al.,  202122. *Founder phenotypic effects for Fielder and Chinese Spring (CS) 
are inferred based on genome sequence information since they are not MAGIC founder parents. Detailed 
variant calls presented in Supplementary Table S5.

Variety

7A SPS QTL 7B SPS QTL

Founder effect at 7AL WAPO-A1 allele Founder effect at 7BL WAPO-B1 allele

Yitpi Low SPS WAPO-A1a High SPS WAPO-B1.h2

Baxter High SPS WAPO-A1b High SPS WAPO-B1.h2

Chara Low SPS WAPO-A1a Low SPS WAPO-B1.h1

Westonia High SPS WAPO-A1b Intermediate SPS WAPO-B1.h3

Alchemy High SPS WAPO-A1b Low SPS WAPO-B1.h1

Brompton Low SPS WAPO-A1a Low SPS WAPO-B1.h1

Claire High SPS WAPO-A1b High SPS WAPO-B1.h2

Hereward High SPS WAPO-A1b Low SPS WAPO-B1.h1

Rialto High SPS WAPO-A1b Low SPS WAPO-B1.h1

Robigus Low SPS WAPO-A1a Low SPS WAPO-B1.h1

Soissons High SPS WAPO-A1b High SPS WAPO-B1.h1

Xi-19 High SPS WAPO-A1b High SPS WAPO-B1.h2

CS* High SPS WAPO-A1b High SPS WAPO-B1.h2

Fielder* High SPS WAPO-A1b Low SPS WAPO-B1.h1

Figure 3.  WAPO-A1 expression is correlated with spikelet number per spike. All samples were collected at 
GS32 apart from Soissons which at the collection date had advanced to GS34. (A) Expression of WAPO-A1 
transcript relative to the housekeeping genes TaRP1546 and Ta229147 and normalized to WAPO-A1 expression 
in Brompton. (B) Regression of expression of WAPO-A1 (n = 3) on mean SPS for the MAGIC Founder lines 
(n = 20) in the 2014 field trial. Error bars are SEM.
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Figure 4.  Spike phenotypes and WAPO-A1 expression in Yitpi transgenic and control lines. (A) Representative 
spikes from transgenic lines, their null-segregants and non-transformed Yitpi plants. We observed the 
appearance of infertile basal spikelets in all genotypes although they were more common in transgenic plants. 
The presence of paired-spikelets was similar across all type of plants. (B) Mean SPS number phenotyped at 
maturity in transgenic lines, their null-segregants and non-transformed Yitpi plants. (C) Gene expression was 
assayed in developing spikes dissected at GS32 and normalized to the Yitpi WT control. The means and SEM of 
three biological replicates are shown. (D) Regression of expression of WAPO-A1 on SPS for the six transgenic 
lines carrying the Westonia WAPO-A1 transgene. E) Regression of WAPO-A1 expression on Spike length. For 
SPS and Spike length, 50 spikes (5 spikes × 10 plants) of each genotype were analysed.
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SPS levels can be increased above those conferred by the native WAPO‑A1b allele. To deter-
mine if SPS and seeds per spikelet could be increased beyond the levels of the high SPS WAPO-A1b allele, we 
also transformed Fielder, which already contains a native high-SPS WAPO-A1b allele, with the native high-
SPS WAPO-A1b allele and promoter from Westonia. We generated five independent primary transgenics in the 
Fielder background and isolated three single-insertion lines, for which we identified homozygous  T2 and null-
segregants for phenotypic analysis of SPS, empty basal spikelets and seeds per spike.

All three transgenic lines showed an increased number of SPS in comparison to the nulls and the number 
of SPS was strongly correlated with the level of transgene expression (Fig. 5, Supplementary Figure S5). These 
results further validated the conclusion that SPS number is closely correlated with WAPO-A1 expression levels. 
It also demonstrates that it is possible to increase SPS number beyond the levels determined by the native high 
SPS allele alone.

The Fielder control lines have fewer SPS (SPS = 17.02) than the Yitpi control (SPS = 23.44), despite carrying 
the favourable WAPO-A1b allele. This difference in SPS between the two cultivars could be explained by differ-
ent photoperiod responses. Fielder carries the photoperiod insensitive PPD-D1a allele while Yitpi carries the 
photoperiod sensitive PPD-D1d allele, known to increase  SPS4.

Importantly, all the homozygous transgenic lines of Fielder, but not Yitpi containing the native high SPS 
WAPO-A1b transgene had spikes displaying a “compact head” phenotype (Supplementary Figure S6), which 
was also previously  described27. This phenotype was observed in all three Fielder families in the homozygote  T2 
lines but was not seen in the null-segregants.

Increases in WAPO‑A1 expression may cause pleiotropic effects. In hexaploid wheat an increase 
in infertile spikelets in WAPO-A1b lines compared to WAPO-A1a has previously been  described22,26. In Kronos, 
a tetraploid wheat, a reduction in spike fertility has also been  reported27, in lines containing additional WAPO-
A1 transgene copies. In our studies the transgenic lines with higher levels of WAPO-A1 expression show an 
increased number of empty basal spikelets (Supplementary Figure S7). This was especially pronounced in the 
highest expressing lines, both in Yitpi  (T2 line #5) and Fielder  (T2 line #1). Similar to phenotypes previously 
described in tetraploid wheat (Kronos) WAPO-A1 overexpression  lines27 we observed one or two malformed flo-
rets at the base of some spikes of the transgenic lines. The phenotypic alterations are indicative for developmental 
disorders like homeotic transformations or failed organ development (Supplementary Figure S8).

In rice, lines with increased OsAPO1 expression reveal a suppression of tiller  outgrowth11. Similarly, we 
observed a negative association between tiller number and WAPO-A1 expression across our transgenic Yitpi 
lines in the greenhouse pot experiment (Supplementary Figure S7). However, the null segregants also showed 
variability in this trait meaning the decrease was only significant in one line  (T2 line #5).

Increased SPS in transgenic lines does not translate into equivalent increases in seed 
yield. Under our greenhouse conditions we could not measure a clear benefit in yield (as seeds per spike or 
per plant) associated with transgene expression (Supplementary Figure S4), either due to the pleiotropic pheno-
types described above or potential source limitations under these growth conditions.

The transgenic Yitpi line with the highest transgene expression and number of SPS  (T2 line #5,  T2 line #3) 
showed a clear penalty in both seeds per spike and seeds per plant. We also observed an extreme branching 
phenotype and floral defects in a small proportion of the spikes developed by Yitpi  T2 line #5 (Supplementary 
Figure S8). In fact, the spikes were often so long that they did not fully emerge from the underlying leaf sheath, 
and the florets inside were often infertile (Fig. 4A). Taken together, our data indicate, that a too high expression 
of WAPO-A1 reveals a rather negative effect on seed production.

Figure 5.  WAPO-A1 expression analysis in Fielder transgenic and control lines. (A) Mean SPS of transgenic 
and null-segregants of plants phenotyped at maturity; (B) Gene expression was assayed in developing spikes 
dissected at GS32. Expression is normalized to the Fielder WT control. (C) Regression of expression of 
WAPO-A1 on SPS for the transgenic lines. Means and SEM of three biological replicates are shown.
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However, lines with a lower increase of the transgene and a resulting smaller increase in SPS such as Yitpi 
 T2 Line #12 (WAPO-A1 expression increase 37%; Seeds per spike increase 11%) and Fielder  T2 line #3 (WAPO-
A1 expression increase 50%; Seeds per spike increase 21%) indicated that increases in seeds per spike could be 
observed, suggesting that one can select an optimal range of WAPO-A1 expression levels to achieve the desired 
phenotypic and yield effects.

Discussion
MAGIC populations are well suited for QTL dissection. The use of two separate MAGIC populations 
across 14 site × year environments enabled us to capture a wide range of genetic and phenotypic variation and 
to identify homoeologous SPS QTL on 7AL and 7BL. The additional recombination present in MAGIC popula-
tions allowed for improved mapping resolution which aided the direct identification of candidate genes, as was 
the case with the NIAB MAGIC population, or via the generation of HIF  lines31. This pipeline for candidate 
gene discovery via HIF lines derived from MAGIC populations is repeatable using other yield-component traits.

MAGIC populations can also reveal the effects of stacking of favourable alleles through transgressive 
 segregation48 as well as epistatic  effects49. Within the 4-parent CSIRO population alleles at the Ppd-D1, PPD-B1, 
VRN-A1, VRN-B1 and VRN-D1 loci are segregating in addition to WAPO-A1 and WAPO-B132,35. In addition 
to WAPO-A1 and WAPO-B1, within the 8-parent NIAB population Ppd-D1, ELF3-B1 and ELF3-D1 are also 
segregating 4,7,28,50. All of these loci were identified as significant SPS QTL in the respective populations with 
the exception of ELF3-B1 and ELF3-D1, which may be due to their minor effect on SPS or due to more complex 
environmental interactions of ELF351.

Overexpression of WAPO‑A1 in hexaploid wheat increases SPS. The WAPO-A1 gene has been 
proposed as the candidate gene for a major QTL for SPS on 7AL mapped in several  populations22–26 and the 
WAPO-B1 gene as a candidate for a smaller QTL for SPS on  7BL22. Recently, Kuzay et al.,  202227 demonstrated, 
using CRISPR-generated mutants and transgenic plants, the role of WAPO-A1 and WAPO-B1 in determining 
SPS in tetraploid wheat.

Here, we provide functional evidence in hexaploid wheat for a similar role of the WAPO-A1 gene in determin-
ing SPS in a dose dependent manner. We have generated two sets of transgenic lines to test the effect on supple-
menting cultivars carrying either the low-SPS WAPO-A1a or the high-SPS WAPO-A1b alleles with a WAPO-A1b 
allele from a high-SPS cultivar (Westonia). In both sets of transgenic lines, we observed a positive correlation 
between WAPO-A1 expression and the number of SPS, which is consistent with variation in WAPO-A1 being 
responsible for the observed QTL. Kuzay et al.,  202227 provided strong evidence for a role of WAPO-B1 in deter-
mining SPS, by a reduced number of SPS present in wapo-b1 mutants. However, it was previously reported that 
overexpression of WAPO-D1 in the elite hexaploid variety KN199 had no effect on spike  phenotypes19. Different 
WAPO1 homoeologues may therefore have different effects on SPS.

At the molecular level, WAPO-A1 increases the expression of B-Class and C-Class MADS box genes, which 
affect lodicules, stamen and carpel  development52. This is a possible cause behind the floral abnormalities and 
reduced fertility observed in both the transgenic Yitpi and Fielder lines. In the Fielder transgenics we also 
observed a compact spike phenotype, which indicates that the overexpression of WAPO-A1 in these lines alters 
spike development in several ways. Similar phenotypes in the florets and spikes have been reported in transgenic 
lines overexpressing the WAPO-A1 gene in the tetraploid wheat cv  Kronos27.

In transgenic lines displaying a low level of expression of the WAPO-A1 transgene, and a small increase in 
SPS, we observed an increase in the number of seeds per spike (Yitpi line #12 and Fielder line #3). This is in 
line with the idea that a subtle rather than a strong increase of WAPO-A1 expression levels could be associated 
with increased grain number. This is similar to the situation in rice in which SCM2, a weaker allele of OsAPO1 
compared to Ur1, has been reported to increase spikelet numbers without reducing panicle  number12. For com-
mercial application of transgenic lines, further validation of the positive yield component phenotypes observed 
in transgenic lines with modest increases in WAPO-A1 expression in a replicated field trial environment will be 
required. The long timelines, high costs and current lack of commercial transgenic traits in wheat also represent 
significant challenges for product development.

WAPO‑A1 activity is finetuned via interconnected, developmental pathways. QTL mapping in 
the two MAGIC populations revealed large phenotypic effects of PPD-D1a and VRN-A1a (and likely VRN-B3 
as well) on the number of SPS. More minor but significant effects on SPS from PPD-B1a, VRN-B1a and VRN-
D1a were also observed. The MAGIC populations studied here thus form an excellent platform to identify the 
genetic backgrounds that optimise the SPS, and grain number potential associated with WAPO-A1b for specific 
environments.

PPD1, VRN1 and VRN3 all influence the timing of transition from vegetative to inflorescence meristem (IM) 
and from IM to terminal  spikelet3–5,53. Later transitions are associated with increased  SPS53, either linked to the 
duration or resources available for development. This would explain the low SPS observed for Soissons, carrying 
the early PPD-D1a allele, despite having the high-SPS WAPO-A1b allele. Similarly, in our greenhouse experiments 
Fielder (WAPO-A1b, PPD-D1a) also had fewer SPS than Yitpi (WAPO-A1a, PPD-D1d). WAPO-A1 native alleles 
on the other hand have not been reported to cause large changes in flowering time in field  trials25,53 and while 
transgenic expression delayed flowering, CRISPR and EMS mutants had no significant  effects27.

Our results show that the WAPO-A1b allele has a larger effect on the number of SPS in the winter wheat NIAB 
MAGIC population (+ 2.1 SPS) compared to the spring wheat CSIRO MAGIC population (+ 1.1 SPS; VRN-A1a 
and/or VRN-B1a and/or VRN-D1a present, see Table 1). An epistatic interaction between WAPO-A1, VRN-D3, 
PPD-B1 and Qsn.csu-6B has recently been  described53. These data together support the conclusion that the 
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phenotypic effect of WAPO-A1 alleles on SPS is finetuned by the timing of developmental transitions and the 
genetic constitution of PPD1, VRN1 and VRN3.

The interactions of WAPO-A1b with flowering pathways can also be discussed at the molecular level. PPD1, 
VRN1 and VRN3/FT form part of a signalling cascade that leads to the upregulation of SOC1-1 and LFY54. The 
orthologue of LFY is OsAPO255 in rice and HvLEAFY in  Barley56, which interact with the WAPO1 orthologues 
OsAPO1 or HvUFO, respectively. OsAPO1 and OsAPO2 form a regulatory module together with  LARGE232. 
OsAPO2 has also been previously shown to be transcriptionally regulated by SP357 in rice. Together the WAPO1 
pathway genes are expressed in the IM and lateral meristems and extend IM maturation and control spikelet 
meristem identity  acquisition58. This may also explain the extreme branching phenotype observed in some spikes 
of the transgenic Yitpi  T2 line #5.

To further elucidate the complexity of these regulatory networks, further work should focus on determining 
epistatic relationships between the identified QTLs at the phenotypic level as well as relating this to more com-
prehensive studies of expression changes and molecular interactions in different genetic backgrounds.

WAPO1 breeding applications. Increasing SPS is a potential path to increasing seeds per spike, grain 
number and ultimately yields. PPD1 and VRN1 have already been deployed to locally adapt cultivars to geo-
graphic adaptation zones and due to their importance for local adaptation it can be assumed that there would 
likely be extensive trade-offs in their use in improving SPS. WAPO-A1b on the other hand is potentially valuable 
for wheat breeders as it can increase SPS in locally adapted varieties without having strong impacts on flowering 
time.

However, the increased number of SPS found in most of the transgenic lines is not always translated in an 
increased number of seeds per spike. Perhaps, under our glasshouse growing conditions, the plants did not have 
sufficient resources to fill the extra spikelets, which might be especially relevant in pot experiments, where a large 
number of tillers and spikes per plant is formed as compared to the situation in dense canopies under field condi-
tions. Additionally, strong overexpression of WAPO-A1 produces some defects during floret or seed development.

These results align with those of other publications that report on the pleiotropic effects of WAPO-A1b, 
including reduced spike  fertility26 and increased seeds per square meter but reduced TGW 15. As previously 
 proposed24, our results imply that WAPO-A1b promotes an increase in sink capacity which may require introgres-
sion into high-biomass productive varieties and cultivation under conditions that support high yield potential. 
The observed trade-offs are not unique to WAPO1 and have been shown in other genes that increase sink capacity 
such as FT259 and FUL23. In rice it has also been reported that OsAPO1 increases  yield13, but that the effect on 
yield is source  dependent60 and dependent on gene expression levels as described above.

It might be possible to overcome these trade-offs by stacking OsAPO1/WAPO-A1 with genes that have com-
plementary phenotypic effects, and some promising examples have been reported in both rice and wheat. For 
example, stacking WAPO-A1 with GNI-A1 and qGSNP-A-5A to further increase SPS without reducing TGW 
was possible in a Japanese dihaploid wheat  population14.

An alternative approach may be to exploit genes known to interact at the molecular level. In rice it was recently 
shown that that OsAPO1 physically interacts with OsAPO2 and a HECT-domain E3 ubiquitin ligase LARGE2/
OsUPL2. LARGE2 modulates the protein stability of OsAPO1 and  OsAPO261. Extrapolating from these results 
in rice, further finetuning of WAPO1 activity and resulting SPS and seed number might be possible in wheat 
through posttranscriptional mechanisms and may help to overcome the constraints due to the limited number 
of WAPO-A1 alleles that have currently been identified.

Conclusion
This study has provided functional validation in hexaploid wheat for the role of WAPO-A1 in determining SPS. 
We demonstrated that the expression level of this gene in MAGIC lines under field conditions as well as in trans-
genic lines in the greenhouse is positively correlated with the number of spikelets per spike. We also identified 
potential pleiotropic effects of excessive WAPO-A1 expression. Future work can focus on identifying additional 
existing or novel WAPO1 alleles that have an optimized level of expression and protein activity or identifying 
pathways and genes that can be used to optimize the expression of WAPO1 or that have complementary phe-
notypic effects. The optimal activity of WAPO-A1 resulting into yield gains can be expected to be dependent on 
the yield potential of the environment and agronomic practice.

Methods
Plant materials. The founder parents for the NIAB and CSIRO wheat MAGIC populations were selected 
based on wide genotypic and phenotypic diversity.

The 4-parent CSIRO MAGIC population founders are spring wheat cultivars from Australia (Yitpi, Baxter, 
Chara and Westonia)32.

Six of the NIAB MAGIC population founder parents are winter wheat cultivars from the United Kingdom 
(UK) (Alchemy, Brompton, Claire, Hereward, Rialto, Robigus) and one from France (Soissons) and one is a 
facultative spring variety (Xi-19)28.

All plant material used in this study was derived from commercially released wheat varieties that were 
obtained and used in accordance with applicable institutional, national and/or international regulations.

SPS phenotyping. For the 4-parent CSIRO MAGIC population,  F6 derived RILs were grown in partially 
replicated  trials62 (partial replication rate of 1.2–1.5): 1080 lines were grown in a Greenhouse (Canberra, ACT, 
Australia, CSIRO Black Mountain Site; 2011(F9), 2012(F10), 2013(F10)), 1009, 960 and 1008 field plots were 
grown in Narrabri (New South Wales, Australia; 2012(F10), 2013(F10 &  F11), 2014(F12)), 1500, 1800 and 1009 
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field plots in Wallendbeen (New South Wales, Australia; 2011(F9), 2012(F10), 2013(F10)) and 1120, 1920 and 912 
in Yanco (New South Wales, Australia; 2012(F10), 2013(F10), 2014(F12)). Three representative wheat ears were 
collected from each plot and the spikelets per spike (the total number of rachis nodes plus the terminal spikelet) 
were hand counted starting at the bottom of each spike.

Additionally, a fully replicated trial of 784  F7 8-parent NIAB MAGIC RILs and the eight founders was grown 
at the NIAB experimental farm in Cambridge, UK during the 2013/2014 field season. Ten representative wheat 
ears were collected from 1000 of the 1600 plots in the field and dried at room temperature. Collection was done 
in a partially replicated design with 200 RILs and the MAGIC founders collected in duplicate. In 2014/2015 a 
nursery of 1091  F8 MAGIC lines and the founders was screened for SPS as described above by collection of six 
representative wheat ears.

Selected  F12,  F13 NIL sets were grown in 2017 and 2018 in Narrabri and Yanco, NSW, Australia and in 2018 
in Sabin, Minnesota, USA and Milly-la-Forêt, France. In 2017 each line was grown in four replicates and in 
2018 in six replicates. Six representative wheat ears were collected from each plot. Additional phenotyping for 
grains per spike was conducted in Yanco, Milly-la-Forêt and Sabin in 2018 and Heading date in Milly-la-Forêt 
and Sabin in 2018.

QTL mapping of SPS. The 4-parent CSIRO MAGIC population had previously been genotyped using 
both the Infinium 9 k and 90 k SNP chips as well multiple DArTs and microsatellites for key  genes32,33 and the 
8-parent NIAB MAGIC population using the Infinium 90 k SNP  chip28,34. QTL analyses were conducted using 
whole genome average interval mapping using  MPWGAIM33. For the NIAB MAGIC population a genetic map 
adapted from Gardner et al.,  201634 was used. For the CSIRO MAGIC population a previously published map 
was  used33. Skimmed genetic maps containing only unique mapping locations were used to calculate MAGIC 
RIL haplotypes and founder probabilities, and which were then used for QTL mapping using MPWGAIM. 
Assigned candidate genes are based on previously published allelic  information35.

Development of HIF lines and QTL fine mapping. Following the process described by Barrero et al., 
 201531, four founders of heterogeneous inbred families (HIFs) were identified from the  F7 MAGIC RILs through 
genotyping of the 7AL SPS QTL region using a selection of KASP markers designed based on SNPs from the 
Infinium iSelect 90 K  array63. After selfing of each (heterozygous) HIF founder, homozygous progeny with con-
trasting SPS QTL genotypes were selected and self-pollinated to generate sets of contrasting NILs. Plants from 
four families were then phenotyped across six field trials as described above.

Genotyping of the  F12 lines with the Infinium iSelect 90 K  array63 was used to capture any additional recombi-
nation in the SPS QTL region and to assign founder genotypes. All NILs were checked and found to contain < 1% 
residual heterozygosity.

7AL and 7BL SPS QTL Candidate gene identification. Candidate genes and their orthologues were 
initially identified in 2016 based on proprietary gene models. Subsequently the regions have been reannotated 
with the IWGSCv1.1 gene models as shown in Fig. 2. Wheat homoeologues and rice orthologues were identified 
using Ensembl version 51. Orthologue function was obtained through literature search and from  funRiceGenes64.

7AL and 7BL SPS QTL Candidate gene sequencing. Publicly available WAPO-A1 and WAPO-B1 
sequences were obtained from the reference wheat line Chinese  Spring41 as well as from Brompton, Robigus and 
Cadenza (parent of Xi-19)43. Additionally, full length sequences for WAPO-A1 including 5 kb upstream pro-
moter sequences in Yitpi, Baxter, Chara and Westonia were obtained via cloning and Sanger Sequencing. Exome 
sequences for WAPO1 homoeologues in Alchemy, Claire, Hereward, Rialto, Soissons and Xi-19 were obtained 
via Exome Capture sequencing.

Based on the Chinese Spring reference sequence primers were designed and WAPO-A1, B1 and D1 sequences 
were cloned from Chinese Spring, Chara, Baxter, Westonia and Yitpi using a Zero Blunt TOPO Cloning kit 
(Invitrogen). Subsequently the 5 kb promoter sequences for WAPO-A1 were cloned from overlapping PCRs 
using the same methodology. Clones were selected on LB + Kanamycin medium and sent for Sanger sequencing 
after two nights of incubation at 37 °C. Sanger Sequencing was performed by LGC (UK). Sequences are avail-
able under GenBank accession numbers ON210994 to ON210998. PCR conditions and primers are available in 
Supplementary Table S6.

Wheat Exome Capture sequencing was conducted using a set of internal exome probes based on the IWGSC 
RefSeqv1 annotations (pre-release) including CDS + UTR sequences. Probe design and balancing was carried 
out by Roche. Genomic DNA was extracted using a Qiagen DNeasy Mini Kit (Qiagen, US). Library prepara-
tion, sequence capture and sequencing were performed at Fasteris. Sequencing was performed on an Illumina 
HiSeq3000 to obtain an average of 8.2 Gb of raw sequence data (2 × 150 bp paired end reads) per sample. Reads 
for the eight NIAB founders were mapped to the repeat-masked Chinese Spring reference genome (IWGSCv1.0) 
including mitochondrial (EMBL accession: AP008982) and chloroplast (EMBL accession: AB042240) genomes 
with  BWA65 (Li, 2013). This includes an additional remapping step to fine-map InDels. Variant calling and fil-
tering were conducted using  GATK66. Data was stored and accessed through the BiofacetSNP sequence variant 
data management system.

Candidate gene expression analysis. Chinese Spring developmental time course gene expression data 
from Choulet et al.,  201467 for corresponding TGACv1 gene models was accessed on wheat-expression.com45 
in March, 2017. As WAPO-A1 was not annotated as part of the IWGSC_CSSv2.268 and TGACv1 gene  models69 
available B and D genome models were used as a query instead.
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Gene expression of WAPO‑A1 in the field. Three replicates of whole spike samples were collected from 
tiller dissections of the 2017 NIAB MAGIC Nursery at growth stage  GS3244 for the MAGIC founders Alchemy, 
Brompton, Claire, Hereward, Rialto, Robigus and Xi-19. At the collection date Soissons had advanced to GS34. 
Following dissection, spikes were immediately frozen in liquid nitrogen. For WAPO-A1, betaine solution was 
added at a final concentration of 1 M to overcome the amplicons high GC content. To confirm specificity of qRT-
PCR reactions the melt curves for each reaction were checked for the presence of only a single peak. Specificity 
of the assays was confirmed against genomic nullitetrasomic DNA obtained from Seedstor.ac.uk (WPGS1289-
PG-1, WPGS1296-PG-1, WPGS1301-PG-1). Expression levels of WAPO-A1 were calculated relative to the 
expression of the housekeeping genes TaRP1546and Ta229147. Primers sequences are in Supplementary Table S7.

WAPO‑A1 transformation experiments. A 7,973  bp gene cassette containing the entire Westonia 
WAPO-A1 sequence including 5.4 kb of the native promoter was synthetically design at GeneArt (Thermo Fis-
cher Scientific, US) and received in the standard cloning vector pUC57. This cassette was subcloned into the 
binary vector VecBarII (using the XbaI and HindIII sites), which has been extensively used at CSIRO for wheat 
 transformation70. CSIRO’s Transformation Unit performed the transformation of the Yitpi cultivar or Fielder, 
using  Agrobacterium71. Yitpi was chosen over Chara for the complementation experiment because of previous 
work done at CSIRO showing higher transformation rates in Yitpi (19–27% for Yitpi vs. 5–9% for Chara, data 
not shown).

Thirteen Yitpi and five Fielder primary transformants were generated and grown in pots in the glasshouse. 
To assess the copy number in each primary transgenic, 25  T1 seeds from each  T0 plant were germinated in petri 
dishes and a Basta-resistance ‘leaf assay’ was used to determine transgene  segregation72. After a week, the resist-
ance to Basta was scored to determine segregation ratios (data not shown). Based on the segregation ratios six 
 T0 Yitpi and three  T0 Fielder transformants were selected for further work. From each of them eight  T1 positive 
lines and two null-segregants were transplanted to soil and grown in glasshouse conditions. For each  T1 plant, 
about 25  T2 seeds were used in leaf-tipping assays to identify homozygote lines. A  T2 homozygous and a null-
segregant lines from each family were chosen for final analysis. Ten plants of each were transplanted to pots in 
the glasshouse and they were phenotyped at maturity. Samples were also collected for gene expression analysis 
in developing spikes.

Gene expression of WAPO-A1 in transgenic and control lines was analyzed by RT-qPCR in developing 
spikes at GS32. Expression levels were calculated relative to the housekeeping gene TaActin1 (CJ961169). Primer 
sequences are in Supplementary Table S7.

All transgenic work was conducted at CSIRO in Canberra (ACT, Australia) in certified Physical Containment 
Level 2 (PC2) facilities, including laboratories and glasshouses, following the standards set by the Australian 
Office of the Gene Technology Regulator (https:// www. ogtr. gov. au/).

Data availability
DNA sequences generated in this study are available in NCBI GenBank (accession numbers ON210994 to 
ON210998). Other datasets not compatible with Springer Nature mandated databases are available for academic 
partners for non-commercial purposes upon request sent to the corresponding author, provided that bilateral 
terms-of-use agreements can be concluded.
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