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Spatiotemporal evolution 
of seismicity during the cyclic 
operation of the Hutubi 
underground gas storage, Xinjiang, 
China
Bo Zhang1, Baoshan Wang 1,2,3*, Bin Wei4, Zhide Wu5, Ni‑Er Wu4, Renqi Lu6, Zhanbo Ji1,7, 
Jinxin Hou1 & Lu Li1

Underground gas storages (UGSs) are important large‑scale industrial facilities used to bridge the 
gap between natural gas consumption and supply. The cyclic operation of the UGS may alter the 
subsurface stresses and local seismicity. We examined seismicity around the Hutubi UGS from 2011 
to 2019 using the matched filter technique (MFT) and double‑difference location methods. More than 
1300 earthquakes were detected with seismicity around the UGS showing a remarkable increase 
since the start of its operation and showing a clear correlation to seasonal gas production. About 684 
detected earthquakes were located, most of them occurred within 6 km of the reservoir. The events 
can be grouped into two clusters. Both clusters initiated around the gas pressure boundary. The first 
cluster extinct after the first injection period. While the second cluster diffused upward along a pre‑
existing fault. We speculate that strain localization caused by non‑uniform gas injection contributes to 
the initiation of seismicity clusters around the UGS, and the trapped crude oil/gas played an important 
role in the migration of the second surge. The revealed seismicity pattern contributes to a better 
understanding of the mechanism of induced seismic events and emphasizes the importance of seismic 
monitoring in the UGS region.

In recent years, the incidence of earthquakes associated with anthropogenic activities has gained increasing atten-
tion from both the scientific community and the general  public1,2. It has been reported that earthquakes can be 
induced by large-scale industrial activities, such as the exploitation of oil or underground  water3, unconventional 
hydrocarbon  development4–6, and geothermal  exploitation7,8. In such cases, induced seismicity is often related 
to the injection and extraction of underground liquids. Moreover, industrial activities related to underground 
gas operations, such as  CO2  storage9,10, natural gas  extraction11,12, and underground gas storage (UGS)13–16 may 
also induce earthquakes.

Globally, the construction of UGSs is increasing to bridge the gap between natural gas consumption and 
 supply17. The natural gas consumption shows clear seasonality, but the production does not. To balance the 
consumption and production, the natural gas is injected into the UGS during periods of low demand, and 
extracted from the UGS to meet high demand. The construction and operation of UGSs may cause subsurface 
stress  perturbations18–20, which can alter regional seismicity  patterns13–16.

In contrast to hydraulic fracturing and natural gas extraction, UGS operation is accompanied by persistent 
cyclical loading and unloading. It is understood that this repeated injection and extraction process may change 
local seismic hazards, which have implications for the safe operation of  UGSs2. However, earthquakes related to 
the operation of gas storage facilities are less reported.
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In June 2013, the largest UGS in China was opened in Hutubi,  Xinjiang21. The Hutubi area is well equipped 
with different geophysical measuring instruments, which makes this region an ideal place for investigating the 
spatiotemporal evolution of seismicity related to UGS operation. Seismicity in the Hutubi area from 2013 to 2015 
shows some correlation with UGS  production16,22. However, no consensus has been reached as to the mechanism 
responsible for these  changes16,18,19,22. In addition, the impact of long-term cyclical UGS operation on seismicity 
requires further investigation.

In this study, we examine the effect of the Hutubi UGS on local seismicity between 2011 and 2019, includ-
ing six complete operation cycles. Seismicity is detected using the matched filter technique (MFT) and located 
using waveform-correlation-based double-difference methods. This study extends previous research conducted 
by Tang et al.16 and Zhou et al.22 by investigating seismic activity over a longer period, providing insight into the 
evolution of seismicity over multiple UGS cycles, and helping to facilitate safer UGS operation.

Geological settings and seismic observation
Geologic settings. As the first gas storage facility along the second pipeline of the West–East Gas Trans-
mission  Project21,23, the Hutubi UGS is located on the southern edge of the Junggar Basin, a large superimposed 
basin adjacent to the northern Tianshan Mountains in western  China24 (Fig. 1a). Created by the collision of the 
Indian Ocean and Eurasian plates in the Cenozoic era, the Tianshan Mountains have experienced strong com-
pression and uplift and formed an active intracontinental regenerative orogenic  belt25–28. To the northern edge of 
the Tianshan Mountains are located the southern Junggar Margin Fault and the Urumqi range-front depression 
(Fig. 1a). Within this depression are three groups of thrusting fault-anticline tectonic belts, which are separated 
by  synclines29,30.

The Hutubi UGS is situated on top of the east–west extending Hutubi anticline, which is the latest active 
anticline in the northeast corner of the Urumqi range-front depression (Fig. 1a). The Hutubi anticline has a 
40 km long axis, an 8 km short axis, and wing dipping of 6–15  degrees29. The reservoir formation of the Hutubi 
UGS is the Ziniquanzi formation, which is ~ 3585 m  deep21,23. The Ziniquanzi formation is more than 300 m 
 thick23 and is mainly composed of fine sandstone and inequigranular sandstone with a porosity of 5.3–22.4%32.

The Hutubi region is characterized by prevailing east–west striking and south-dipping reverse  faults30. Three 
parallel reverse faults (Hutubi Fault, Hutubi North Fault, and Hu001 Fault), extending along the axis of the Hutubi 
anticline, cut through the Ziniquanzi formation (Fig. 1b). The Hutubi Fault is the major fault in this area, which 
forms the southern boundary of the reservoir (Fig. 1b). It is a ~ 35-degree south-dipping reverse fault extending 
approximately 20 km east–west23,33. The maximum fault displacement of the Hutubi Fault is close to 200  m23,33, 
while the Hutubi North Fault and Hu001 Fault have shorter lengths and smaller  displacements33.

Construction of the Hutubi UGS. The Hutubi UGS was constructed at the depleted Hutubi gas field 
discovered in 1996. Between November 1998 and April 2012, the Hutubi gas field produced approximately 5.9 
billion  m3 of natural gas and 220 thousand tons of crude oil with a recovery rate of ~ 48%23. The pore pressure in 
the reservoir formation decreased from ~ 34 to ~ 17 MPa following the production of oil and gas.

To bridge the gap between natural gas consumption and supply, the Hutubi gas field was converted into a 
UGS once the production had started to  decline21. The total storage and throughput capacity of the Hutubi UGS 
are 10.7 billion  m3 and 4.51 billion  m3,  respectively21,23. The construction included the capping of 10 existing 
wells and the drilling of 37 new wells. The drilling of the new wells began in June 2011, and well capping was 
completed on May 16,  201321.

The Hutubi UGS became operational in June 2013. According to the production data (illustrated by the injec-
tion rate in Fig. 2a), the operation of the Hutubi UGS from June 2013 to October 2018 can be divided into five 
complete operation cycles (I–V in Fig. 2a) and one injection period  (VIi in Fig. 2a). Each complete operation 
cycle includes injection from April to October and extraction from November to the following March. Data on 
production for the period following October 2018 are hard to obtain. We estimated the sixth complete injection-
extraction cycle and the seventh injection period by extrapolating past operation patterns. The UGS experienced 
two stages: the capacity expansion stage (from June 2013 to October 2016, including cycles I–III and injection 
period  IVi) with net capacity (the blue curve in Fig. 2a) gradually increasing to ~ 5 billion  m3, and the stable 
operation stage (from November 2016) with net capacity maintained at ~ 5 billion  m3 (Fig. 2a).

Seismic observation. In June 2013, we deployed 10 portable seismic stations to better monitor seismic-
ity around the Hutubi UGS. By the end of 2019, 30 stations were in operation (Fig. 1a). Different seismometers 
were used according to instrument availability (Fig. S1). Unfortunately, the stations were poorly maintained in 
the early stages, and there were serious data gaps (Fig. S1). To fill these gaps, we also included four permanent 
broadband stations (illustrated by the black triangles in Fig. 1a) within 100 km from the UGS and one portable 
station (CKT in Fig. 1a) used for the airgun source signal  recording34. The CKT station, which has not been used 
in previous  studies16,22, remarkably improved the azimuthal coverage. All stations are 3-component with 100 
samples per second. And all stations have flat response frequency covering the whole frequency band (2–8 Hz) 
used in our study.

Earthquake detection and relocation
To investigate the seismicity around the Hutbubi UGS, we first detected the possible missing events using MFT, 
a waveform cross-correlation-based event detection  method35,36. And then we relocated the detected events with 
double different  relocation37,38.
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Earthquake detection. Although seismicity related to underground gas operation is seldom reported, 
seismicity induced by  CO2 capture has been intensively  studied9. Most studies suggest that  CO2  injection10 and 
UGS-induced13 earthquakes usually occur within 10 km of the injection points. Therefore, we focused on an 
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Figure 1.  (a) Map of the study region. Portable and permanent seismic stations are marked with blue and black 
triangles, respectively. The yellow area is the surface projection of the Hutubi underground gas storage (UGS) 
facility. The blue rectangle encompasses the study area. The pink and red cycles show the earthquakes reported 
by the China Earthquake Networks Center and the relocated template events, respectively. The blue lines show 
the major faults in the region. (b) Detailed representation of the area around the Hutubi UGS, corresponding 
to the dashed rectangle in (a). The blue and red triangles are portable seismic stations and injection wells, 
respectively. (c) The cumulative number of earthquakes versus magnitude is fit to the Gutenberg-Richter 
relation to estimate the MC and the b-value. (The elevation data is the 90 m topography from the Shuttle Radar 
Topography  Mission31, this figure was created with the Generic Mapping Tools (GMT) 5.4.4, URL: www. gener 
ic- mappi ng- tools. org).
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Figure 2.  (a) The injection volume of the UGS during the study period. The red dashed line indicates the start 
of the Hutubi UGS operation (June 2013). The operation was divided into five complete cycles and half of a 
sixth cycle (I–V and  VIi) spanning the capacity expansion and stable operation stages. Each cycle includes two 
periods: the injection period (with subscript i, gray area) and extraction period (with subscript e, white area). 
(b) An M–t diagram of detected (gray dots) and relocated catalog (black dots) events. The cumulative number 
of the detected and relocated catalogs are represented by the black and gray lines, respectively. The red stars 
indicate the template events. An M–t diagram (c) and monthly seismic rates (d) for two clusters. The cumulative 
number and the average wellhead pressure are represented by the red (c) and green (d) lines, respectively. The 
M–t diagram (e) and monthly seismic rate (f) for the seismic events excluding the two clusters. The cumulative 
number is represented by the red curve.
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area within 10 km of the Hutubi UGS (illustrated by the blue rectangle in Fig. 1a). We obtained the local catalog 
from the China Earthquake Networks Center (CENC) within a larger area (43.5–44.6°N and 86.0–88.0°E) to 
investigate the background seismicity. From January 1, 2011, to December 31, 2019, the catalog recorded more 
than 5000 earthquakes (Fig. 1a), and 205 of these events were located in our study area. To determine the mag-
nitude of completeness, we fitted the CENC catalog (for the whole area in Fig. 1a) with the Gutenberg–Richter 
relation using the ZMAP  package39,40. The resultant magnitudes of completeness (MC) and b-value of the CENC 
catalog were 0.7 and 0.73 (Fig. 1c), respectively. The b-value is consistent with the b-value of the whole North 
 Tianshan41; hereafter, we refer to this value as the background b-value.

The CENC catalog is obtained based on manual phase picking from the sparsely distributed permanent 
stations many kilometers away from the  UGS16. Therefore, the event locations are poorly constrained, and 
many events may be omitted. To refine the catalog, we first located all the catalog events using the Hypoinverse 
 program42 and further estimated the relative locations with the double-difference earthquake location technique 
 HypoDD37,38 using data from permanent and portable stations (S2). Absolute locating was conducted using 
manually picked P- and S-wave arrival times. For the relative locating, we applied the waveform cross-correlation 
technique to the differential travel times between the event  pairs38. In total, 330 events recorded were relocated, 
among which 34 events were located within our study area (Fig. 1a). We then re-evaluated the earthquake mag-
nitudes according to the updated locations (S3). All 34 events were clearly recorded with a high signal-to-noise 
ratio (SNR > 3) on more than nine channels at permanent stations.

In the MFT detection, we used continuous data from four permanent stations and the relocated 34 events as 
templates (Fig. 1). The continuous and template waveforms were first band-pass filtered from 2 to 8 Hz. Then, 
the sliding window cross-correlations (CCs) between the templates and continuous waveforms were calculated at 
each channel. The time windows for the CC calculation were set to 1 s before and 3 s after the P- and S-wave arriv-
als for the vertical and two horizontal channels, respectively. Next, the continuous CCs were shifted according 
to the phase travel times of the template event and then averaged. Waveforms with an average CC value greater 
than 0.3 and 11 times greater than the median absolute  deviation36 were regarded as a positive detection. To 
minimize the possibility of duplicate detections, we only kept the detection with the maximum CC in each 2-s 
time  window36. Detected waveforms were then manually checked (Fig. S5), and 64 candidates were confirmed as 
false detections and discarded. The magnitude of the detected events was determined based on the median value 
of the peak amplitude ratios between the detected event and the template event for all  channels36.

In total, we detected 1325 events from January 1, 2011 to December 31, 2019, more than six times the 205 
events recorded in the CENC catalog for the same area and time period. All the catalog events were successfully 
detected (Fig. S6). The corresponding MC and b-value of the detected catalog are 0.6 and 1.06 (Fig. S6), respec-
tively. The b-value of the study area is higher than the background value (0.73) (Fig. 1c).

Relocating detected earthquakes. We further relocated the detected events using  HypoDD37,38 with 
fine-tuned local P- and S-wave velocity  structures34. The initial location of each detected event was assigned to 
the location of the corresponding template. The differential travel times of all events pairs at each station (per-
manent or portable) were measured through waveform (2–8 Hz filtered) cross-correlation38 with 2-s (0.5 s before 
and 1.5 s after) and 3-s (1 s before and 2 s after) time windows for P- and S-waves, respectively. Differential travel 
times with CC > 0.4 were used for the relative location, and it imposes strong constraints on the relative event 
locations, which significantly improves the location accuracy.

In total, 790 of 1325 detected events were relocated, and 684 of them were located within the study area. 
This relocation process reduced the travel-time residual from 2.51 to 0.22 s. The average horizontal and vertical 
location precision were  estimated37 as 0.27 km and 0.30 km, respectively (Fig. S7).

Spatiotemporal evolution of seismicity around the Hutubi UGS
Temporal evolution. More than half of the detected events were relocated inside our study area and the 
relocated events show a similar temporal pattern to the entire detected catalog (Fig. 2b). In the beginning, the 
seismic rate was low (less than 10 events per month) but abruptly increased after the UGS operation began 
(Fig. 2).

During the capacity expansion stage (June 2013–November 2016), the seismicity was dominated by two 
distinct surges (A and B in Fig. 2b). The first seismic surge (A in Fig. 2b) occurred two months after the begin-
ning of the first gas injection (Fig. 2d), and the seismic sequence lasted for ~ 10 days. The second seismic surge 
(B in Fig. 2b) occurred about 20 days after the second gas injection and lasted for ~ 20 days. Both seismic surges 
were associated with sharp wellhead pressure increases (Fig. 2d). After the two surges, the seismicity gradually 
weakened (Fig. 2b), with only a few events occurring after the injection period of cycle III (Fig. 2).

When the net capacity reached its maximum at the end of the fourth injection period, the UGS moved into 
its stable stage, and the seismicity subsequently recovered (Fig. 2). The events in the stable stage exhibited low 
magnitudes (ML < 2.0) and were mainly associated with gas injection rate changes (Fig. 2).

Hypocenter distribution. The earthquakes in the study area are mainly distributed at a depth of 4–12 km, 
with two peaks at 7 km and 11 km (Fig. 3d). Horizontally, the shallow events (< 10 km deep) are widely distrib-
uted within 6 km of the UGS (the black rectangle in Fig. 3). These were rarely observed before the start of the 
UGS operation (Fig. 3d). Deep events (> 10 km deep) are mainly located west of the UGS and are consistently 
active throughout the study period with a low magnitude (ML < 1.0) (Fig. 2e) and low seismic rate (less than 10 
events per month) (Fig. 2f).

The events within 6 km of the UGS can be further divided into two clusters (α and β in Fig. 2). The afore-
mentioned surge A is a subset of cluster α, which hosted more than 60% of the events in this cluster (Fig. 2d). 
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Cluster α is concentrated along a ~ 5 km, ~ 30-degrees northeast-dipping plane, with the plane conjugate to the 
Hutubi Fault (Figs. 3 and 4c). Cluster β mainly occurred beneath the UGS reservoir along a southwest-dipping 
plane with a ~ 35-degree angle, with the plane parallel to the Hutubi North Fault (Figs. 7 , S8). Cluster β was 
active throughout the study period and hosted most events during the stable operation stage (Figs. 2c and S8). 
The events in surge B mainly occurred in cluster β (Fig. 2c). The P-wave cross-correlation coefficients between 
intra-cluster events were higher than between inter-cluster events (see S8), which indicated that the seismogenic 
structures of intra-cluster events were more similar than inter-cluster events.

Discussion
Overall seismicity evolution and Hutubi UGS operation. Although located in the Tianshan Moun-
tains seismic  zone25,27, the study area was seismically quiet before the start of the Hutubi UGS operation, with a 
monthly seismic rate of less than five (Fig. 2; Tang et al.16). However, seismicity significantly increased after the 
UGS operation began (Fig. 2). In particular, two seismic surges (A and B) during the capacity expansion stage 
experienced more than 50 events per month, and the seismicity during the UGS operation showed a strong cor-
relation with gas injection (Fig. 2).

To investigate the statistical features of seismicity, we modeled the relocated catalog with the Epidemic-Type 
Aftershock Sequence (ETAS)43,44. The ETAS model (see S9) shows a high total forcing rate (~ 79%), indicating 
that the majority of seismic events were externally  triggered6,45,46. This is similar to the high forcing rate observed 
for seismic events induced by fluid (wastewater)  injection6,45.

Both tectonic loading and injection stress account for these external forces. Tectonic loading is almost con-
stant, while injection is typically  intermittent6. To address this temporal variation, we further adopted the ETAS 
model with a time-varying forcing  rate6,46. The forcing rate obtained shows a good correlation with the gas 
injection process (Fig. S12). Increased seismicity and a strong coherence between the force rate and the injection 
period indicate the relationship between seismicity and UGS operation.

The two clusters (α and β, illustrated by the black rectangles in Fig. 3) mainly occurred at a shallow depth of 
< 10 km and in close proximity (< 6 km) to the boundary of the Hutubi UGS reservoir. Compared to the seismicity 
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in clusters α and β, the seismic rate further (> 6 km) from the UGS was stable and low, with a monthly rate of 
less than 10 for the whole study period (Fig. 2f).

These observations suggest that UGS operation modified seismicity within ~ 6 km of the UGS. This distance 
is similar to that reported for the Castor  UGS13 and for  CO2 storage  facilities10 but smaller than the range deter-
mined for fluid  injection1,47.

By including the airgun station (CKT, Fig. 1), we could obtain better azimuthal coverage and more reliable 
event locations (Fig. S14). Compared to previous  studies16,22, our locations result in lower travel-time residuals 
(Fig. S14). The two event clusters (Fig. 3) demonstrate different spatiotemporal patterns (Figs. 2d, 3) may be 
attributed to different seismogenic structures.

The initiation of two clusters. Cluster α initiated with the rapid wellhead pressure increase (Fig. 4b) in 
the HUK22 (the easternmost injection well during the first injection period, Fig. 4a), which represents the pres-
sure change of all wells (Fig. 4b). This cluster hosted the two largest events within the area and time period of 
the study, which attracted much  concern16. According to the focal mechanisms, Zhou et al.22 argued that these 
two events were sliding along an unmapped south-dipping reverse fault parallel to the Hutubi Fault. While our 
relocation indicates that the hypocenter in cluster α formed a narrow (~ 3 km wide) north-dipping seismic zone 
southeast of the UGS at depth of 2–7 km (Fig. 4). This seismic plane is conjugate to the Hutubi Fault (~ 30-degree 
dipping) and is consistent with the extension of two minor faults (I and II in Fig. 4c) mapped by the seismic 
survey. Therefore, we argue that the cluster α (box in Fig. 4c) occurred along the existing north-dipping reverse 
fault.

Cluster β hosted more than 90% of the events surrounding the UGS (Fig. 2d). Cluster β demonstrates a 
southwest-dipping plane beneath the UGS reservoir (Figs. S7 and S8) at depth of 4–8 km. The plane has a dipping 
angle of ~ 35 degrees and is consistent with a westerly extension of the Hu001 Fault (Figs. 7, S8). The seismicity 
of the cluster β is visible during the whole study period and was enhanced since the start of the UGS operation 
(Fig. 2d). The seismic rates in cluster β exhibit a strong correlation with average wellhead pressure, with more 
than 77% of events occurring during the injection period (Fig. 2d).

The seismicity of cluster β occurred close to HUK17 gas injection well during the first gas injection period 
(Fig. 4a), while the earthquake sequences in cluster β during the second injection period was initiated close to 
HUK5 (Fig. 5). The well HUK5 is about 1.6 km northwest to HUK17 (Fig. 5b) and was not operated prior to the 
second gas injection period (Fig. 4a). Both two seismicity bursts in cluster β were initiated approximately 3 km 
beneath the UGS reservoir (black circles in Figs. 4c and S8).
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Increasing seismicity has been attributed to pore pressure  changes16 or poroelastic stress  perturbations22. 
Our results show that cluster α is more than 2 km from the UGS reservoir (Fig. 4c), and the initiation point of 
the cluster β is about 3 km deeper than the reservoir (Fig. 6b). There is no clear evidence of a fluid connection 
between the reservoir and the two clusters. Therefore, pore pressure diffusion-induced fault weakening is unlikely 
the main mechanism behind the occurrence of the seismicity.

The injection process results in instant elastic stress changes and delayed poroelastic stress perturbations, 
they can alter the Coulomb failure stress (△CFS) on potential faults and bring the faults to  failure1. We evalu-
ated the injection induced accumulated Coulomb failure stress changes on the two clusters (Fig. 6) with a two-
dimensional hydrogeomechanical model developed by Jiang et al.18. The model indicated that the cluster α was 
initiated from the area with a weak positive △CFS (about 0.7 kPa) (Fig. 6a), the increase is much smaller than 
the widely accepted minimum failure stress increment (10 kPa). And cluster β initiated from a negative △CFS 
area (Fig. 6b). Negative △CFS suggests lower earthquake risk in  general18.

Though the two clusters are not initiated from areas with high positive △CFS, the two clusters showed 
temporal correlations with the wellhead pressure changes (Figs. 4b and 5) and they were initiated close the gas 
injection boundaries. Before and during the second injection period, the wellhead pressure of wells (e.g., HUK22, 
HUK17, and HUK5 that was in the first operation during the second injection period) in the eastern part were 
raising with the natural gas injection, while wells in the western part (i.e., HUK14 and HUK3) did not show any 
observable pressure change (Fig. 5). Cluster α was located ~ 3 km from the east boundary UGS region, where 
there is no operation or monitoring well (Fig. 4). Two earthquake sequences in cluster β during the first two 
injection periods were initiated from the westernmost injection well (Figs. 4a and 5a). Bounded gas injections 
are expected to generate strong pressure gradients and strain localization along the injection boundaries (Fig. 5b 
and Videos S1), which was not consider in the 2-D hydrogeomechanical model. Both boundaries extended SW, in 
accordance with the extensions of the two clusters’ initiations. Strain localizations are believed to relate to small 
 earthquakes48,49. Although we still lack enough information to carry out detailed 3-D modeling, we propose that 
the elastic and poroelastic stress changes together with injection induced strain localizations are responsible for 
the initiation of the two clusters during the capacity expansion stage.

The migration of cluster β during the second injection period. Since cluster α faded out soon, clus-
ter β dominates the seismicity in our study area. Events in cluster β gradually migrated to the northeast of the 
UGS during the second injection period (Fig. 5a and Videos S1), this migration was not mentioned in previous 
studies. Within ~ 10 days (Fig. 7a), the events migrated ~ 4 km to shallower parts along the western elongation 
of the Hu001 Fault (Fig. 7c). The △CFS in the shallow part is larger than in the deeper parts (Fig. 6b), which 
favorites the upward migration.

This type of seismic migration is generally attributed to fluid migration along  faults1. The pore pressure front 
diffusion in porous media can be simplified as:

where r, D, and t are migrating distance, diffusivity, and migrating time,  respectively50. We fit the migration 
front with Eq. (1) and estimated D = 2  m2/s (Fig. 7a), the diffusivity is located within the range of typical crustal 
diffusivity (0.01–10  m2/s)51. We then further estimated the corresponding permeability ~ 2 × 10 − 14  m2 (see S11). 
The estimated permeability is three to four orders higher than the permeability for the basal layers (I and II in 
Fig. 4) but is in good agreement with the permeability of the fault zone, which ranges from 10 − 12 to 10 − 15  m218,52. 
Therefore, it is reasonable to believe that the seismic sequence occurred along a preexisting fault.

Since the earthquake sequence initiated from the Jurassic strata (Fig. 8), which is the hydrocarbon source 
formation of the Hutubi gas field, the formation is likely to be porous and partially  saturated53,54. Disturbed by the 
injection, cracks in the formation may open and release fluids (Fig. 8). These fluids may leak into the preexisting 
fault and migrate from deeper to shallower parts driven by the confining pressure (Fig. 8). This will cause the 
redistribution of pore pressure and weaken the  fault55 (Fig. 8).

The seismicity of cluster β during the stable operation stage. Following the two seismic surges, 
seismicity around the UGS gradually weakened (Fig. 2d), and the seismic rate during the fourth injection period 
(< 10 events per month) was even lower than the seismic rate before the UGS operation (Fig. 2d).

When entering the stable operation stage, the net capacity reached ~ 5 billion  m3, and the wellhead pres-
sure peaked at ~ 30 MPa, which was close to the pore pressure observed prior to gas  extraction23. Cluster β 
was reactivated during the stable operation stage (Fig. 2c) with enhanced seismicity with abrupt injection rate 
increases (Fig. 2d). The repeated injection and extraction of gas in the UGS may cause stress redistribution near 
the  reservoir19, and lead to deformation and fracture  propagation56,57. The deformation and fracture propagation 
processes are uneven, leaving the revived seismic events relatively scattered (Figs. S8 and S15).

It should be noted that both the rate and magnitude of the revived seismicity are lower than the aforemen-
tioned two previous seismic surges (Fig. 2c), and the seismic rate of earthquakes where ML > 1.0 also decreased 
from seven per year to just one (Fig. 2c). Whether the stable net capacity will further weaken the operation-
related seismicity is to be answered with longer-term observation.

Conclusions
We detected and located the seismicity near the Hutubi gas storage from 2011 to 2019 using the portable and 
permanent seismic stations within 100 km. The seismicity remarkably increased after the UGS operation. And 
the effect of UGS operation is likely bounded within 6 km. The seismicity around the UGS can be grouped into 
two clusters and attributed to different seismogenic faults. Both clusters were initiated close to the boundaries of 

(1)r =
√
4πDt
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gas injection. The elastic and poroelastic stress changes together with the strain localization from non-uniform 
gas injection are likely responsible for the initiation of the seismicity. The seismicity during the second injection 
period showed clear migration to shallower parts, the migration is likely driven by the trapped crude oil/gas. 
After several cycles of operation, the seismicity tends to be stable and weak, occurring mainly along the major 
faults. Long-term monitoring is still needed to further investigate the UGS related seismicity, serving the safety 
in UGS production and local seismic hazard mitigation.
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