Comprehensive characterization of flavonoid derivatives in young leaves of core-collected soybean (Glycine max L.) cultivars based on high-resolution mass spectrometry

Abstract

Suji Lee ${ }^{1,3,4}$, Heon-Woong Kim ${ }^{1,4}$, So-Jeong Lee ${ }^{1}$, Ryeong Ha Kwon ${ }^{1}$, Hyemin Na¹, Ju Hyung Kim ${ }^{1}$, Yu-Mi Choi ${ }^{2}$, Hyemyeong Yoon ${ }^{2}$, Yong-Suk Kim ${ }^{3}$, Chi-Do Wee ${ }^{1}$, Seon MiYoo ${ }^{1}$ \& Sang Hoon Lee ${ }^{1 \boxtimes}$

Most previous studies have been focused on isoflavone profile with biological activities from soybean seed and its related products. However, in the present study, eighty-three flavonoid derivatives (55 flavonols, 9 flavones and 19 isoflavones) were comprehensively identified and quantified from young leaves of 21 core-collected soybean cultivars based on ultra-performance liquid chromatographydiode array detector with quadrupole time of flight/mass spectrometry (UPLC-DAD-QToF/MS). Among total flavonoids from soybean leaves (SLs), the abundant flavonols (83.6\%) were primarily composed of di- and tri- glycosides combined to the aglycones (K, kaempferol; Q , quercetin; I, isorhamnetin). Particularly, K-rich SLs (yellow coated seed), Nongrim 51 (breeding line) and YJ208-1 (landrace) contained mainly kaempferol 3-O-(2"-O-glucosyl-6"-O-rhamnosyl) galactoside and 3-O-(2", $6^{\prime \prime}$-di-Orhamnosyl)galactoside, and were expected to be superior cultivars by their higher flavonoids. Besides, the new tri-l-glycosides (soyanins I-V) were presented as predominant components in Junyeorikong (landrace, black). Thus, this study suggest that the SLs can be considered as valuable edible resources due to their rich flavonoids. Also, these detailed profiles will support breeding of superior varieties with excellent biological activities as well as relationship with seed anthocyanins production, and contribute to perform metabolomics approach to investigate the changes of SLs flavonols during the leaf growth and fermentation in further research.

Flavonoids are widely distributed as glycosidic form by their group (isoflavone, flavonol, flavone, flavanone, anthocyanin, etc.) in most edible plants (vegetables, fruits and seed crops) and have been reported to help in prevention of human diseases such as inflammation, cancer, diabetes, obesity and neurodegeneration ${ }^{1,2}$.

Soybeans (Glycine max L.) are isoflavone rich source, and one of the most important crops due to their essential nutrients and biological effects through dietary soy foods (e.g. soup, tofu, soy sauce, soymilk) ${ }^{3,4}$. Most previous studies have been focused on the isoflavone profile and its health benefits of soybean seeds ${ }^{4}$. On the other hand, soybean leaves (SLs) are considered as potential by-products by their abundant flavonols ${ }^{5,6}$, and consumed as the traditional fermented foods (Jangajji and Kimchi) using young leaf in Korea ${ }^{7}$.

The SLs flavonoid studies have been performed from their extracts based on mass (MS) and nuclear magnetic resonance (NMR) spectroscopies in relation to the potential effect on diabetes ${ }^{8,9}$, lowering cholestetol ${ }^{10,11}$, atherosclerosis ${ }^{12}$ and vascular disease ${ }^{13}$. It was reported that the SLs from black and yellow-coated seed collected

[^0]from Korea were characterized by primarily containing quercetin / isorhamnetin and kaempferol glycosides (QGs / IGs and KGs) depending on their seed coat color, respectively, and both extracts indicated the excellent effects on suppression of hepatic steatosis and promotion of insulin secretion, which are associated with high-fat-diet (HFD) induced obesity and diabetes ${ }^{14-16}$. Besides, from a KGs-rich fraction of Japanese unripe cultivar, 'Jindai' (SLs), kaempferol 3-O-(2"-O-glucosyl-6"-O-rhamnosyl)galactoside and kaempferol 3-O-(2"-O-glucosyl-6"-O-rhamnosyl)glucoside were found to be the predominant tri-glycosides to play an important role in reducing blood glucose of diabetic mice ${ }^{9,17}$. Another kaempferol 3-O-(2,6-di-O-rhamnosyl)galactoside purified from the Jindai cultivar was also determined to have potent antioxidant and hepatoprotective activities ${ }^{18}$.

A total of thirteen flavonol glycosides composed of QGs (3 tri- and 2 di-), KGs (4 tri- and 2 di-), and IGs (2 di-) were confirmed from the SLs of eight Japanese cultivars by MS and NMR elucidation, and among them, quercetin 3-O-($4^{\prime \prime}, 6^{\prime \prime}$-di-O-rhamnosyl)galactoside ranked the highest proportion as a new tri-glycoside in cultivar, 'Clark'19,20. The flavonoid derivatives ($12 \mathbf{Q G s}, 7 \mathrm{KGs}$ and 5 isoflavones) whose glycosylated type and position are still unclear, were distributed differently in their contents ($\mathrm{mg} / 100 \mathrm{~g}$, dry weight) by Italian cultivars (Emiliana, Kure and Elvir) and plant parts (seeds, leaves, stems, pods and roots), particularly, the flavonols (487.3-1586.8) were much higher than isoflavones (91.3-124.3) in young leaves ${ }^{6}$. Moreover, from Chinese cultivar, its flavonols (KGs) were present only in the SLs, and contained about six times higher than seed isoflavones ${ }^{5}$.

Although twenty-eight flavonols (14 KGs, 10 QGs and 4 IGs), nine flavones and sixteen isoflavones were identified through previous SLs studies, in the IGs group ${ }^{14,16,19}$, only four di-glycosides (3-O-rutinoside, 3-O-robinobioside, 3-O-(2"-O-glucosyl)galactoside and 3-O-($2^{\prime \prime}$-O-rhamnosyl)galactoside, based on isorhamnetin) were detected at low level from the SLs of black coated cultivars. Recently, two tri-IGs were characterized as isorhamnetin 3-O-rhamnosylrhamnosylglucoside and 3-O-rhamnosylrhamnosylgalactoside from the leaves of wild Taiwanese G. max subsp. formosana, but their glycosylated positions have not been determined ${ }^{21}$. Until now, in only few cultivars, most SLs flavonoids have been identified mainly using NMR-based techniques, and their detailed quantifications are also limited. Therefore, after the selection of representative soybean cultivars in which the genetic diversity is sufficiently considered, it is required to perform comprehensive structural interpretation based on MS fragmentations of SLs flavonoids from these samples.

In this study, based on MS and NMR analytical data reported, a LC-MS library was precisely constructed to carry out comprehensive flavonoids profiling from young leaves of 21 core-collected soybean cultivars. Through the integrated application of LC-MS library and UPLC-DAD-QToF/MS analysis, it was purposed to rapidly identify and quantify numerous flavonoid derivatives including novel tri-IGs found from the SLs. Ultimately, these detailed profiles will support breeding superior varieties which is expected to have excellent biological activities, and this study suggest that the SLs can be considered as a valuable edible resource due to their abundant flavonoids.

Results and discussion

Identification of 83 flavonoid derivatives in soybean leaves. A total of eighty-three flavonoid derivatives consisting of flavonol (55), flavone (9) and isoflavone (19) derivatives according to basic structures presented in Fig. 1A,B were tentatively identified from young leaves of soybean cultivars by comparing retention time, UV spectra, MS fragmentation using previously constructed NMR and LC-MS library (Table S1) and UPLC-DAD-QToF/MS analysis. These numerous flavonoid derivatives (flavonol-flavone and isoflavone, wavelengths at 350 and 254 nm , respectively) are presented with excellent separation in UPLC-DAD chromatograms of Fig. S1, and detailed with their compound name and MS characteristics by corresponding peak number in Table 1. The positive ionized fragmentation used in this study makes it easy to check the parent ion through adductive sodium $\left(\mathrm{Na}^{+}, 23 \mathrm{Da}\right)$, potassium $\left(\mathrm{K}^{+}, 39 \mathrm{Da}\right)$ and hydrogen $\left(\mathrm{H}^{+}, 1 \mathrm{Da}\right)$ ions as well as the specified glycosidic (e.g. glucosyl, glucose- $\mathrm{H}_{2} \mathrm{O}$) loss from flavonoid structure, when compared with previous negative ionized studies ${ }^{22,23}$.

Flavonol derivatives (55). A total of fifty-five flavonol glycosides were mainly composed of di-groups [rham ${ }^{1}$ - gal ${ }^{2}$, rham 1 - glu 2 (neohesperidose, neo), rham 1 - gal 6 (robinobiose, rob), rham 1 - glu 6 (rutinose, rut): $308 \mathrm{Da}]\left[\mathbf{g l u}^{1}{ }^{1}\right.$ gal 2, $\mathbf{g l u}^{1}$ - $\mathbf{g l u}^{2}$ (sophorose, sop), glu $^{1}{ }^{- \text {gal }^{6}}{ }^{6}$, glu ${ }^{1}{ }^{1}$ glu 6 (gentiobiose, gen): 324 Da] and tri-groups $\left[\mathbf{g l u}^{1}\left(\right.\right.$ glu $\left.^{(1)}\right)-$ gal $^{2(6)}$, glu $^{1}\left(\mathbf{g l u}^{(1)}\right)-$ glu $\left.^{2(6)}: 486 \mathrm{Da}\right]\left[\mathbf{r h a m}^{1}\left(\right.\right.$ glu $\left.^{(1)}\right)-$ gal $^{2(6)}$, rham $^{1}\left(\right.$ glu $\left.^{(1)}\right)-$ glu $^{2(6)}$, glu ${ }^{1}\left(\right.$ rham $\left.^{(1)}\right)$ gal $^{2(6)}$, glu $^{1}\left(\right.$ rham $\left.^{(1)}\right)-$ glu $\left.^{2(6)}: 470 \mathrm{Da}\right]\left[\operatorname{rham}^{1}\left(\right.\right.$ rham $\left.^{(1)}\right)$ gal $^{2(6)}$, rham $^{1}\left(\right.$ rham $\left.^{(1)}\right)-$ gal $^{4(6)}$, rham $^{1}\left(\right.$ rham $\left.^{(1)}\right)-$ glu $^{2(6)}:$ 454 Da] combined to the 3-OH of kaempferol ($\mathbf{K}, m / z 287$), quercetin ($\mathbf{Q}, m / z 303$) and isorhamnetin ($\mathbf{I}, m / z$ 317) (Fig. 1A and Table 1).

The structural profile of twenty-three flavonol tri-glycosides (peaks 1-7, 10, 12-17, 21-23, 27, 29, 33, 34, 41 and 42) include the pattern of 26 di-glycosides (peaks 8, 11, 18, 20, 24-26, 28, 30-32, 35, 37-39, 43, 44, 47, 51-55, 58, 60 and 62). Six di-glycosides ($[\mathrm{M}+\mathrm{H}]^{+}, m / z 627,611,641$, based on \mathbf{Q}, \mathbf{K} and \mathbf{I}, respectively) of $\mathbf{g l u}^{1}{ }^{1}$ gal 2 (peaks 8, 26 and 31) and $\mathbf{g l u}^{1}{ }^{1}$ glu 2 (sop, peaks 11, 28 and 32), which were predominant components from some cultivars (SLs 7, 10-12, 15 and 21) (Supplementary Fig. S1 and Table 1), presented the fragmentation of $[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}$and $[\mathrm{M}+\mathrm{H} \text {-glu-gal }]^{+} /[\mathrm{M}+\mathrm{H}-2 \mathrm{glu}]^{+}$. In particular, 'Q 3-O-(2"-O-glu)gal' (peak 8) and 'Q 3-O-(2"-O-glu)glu' (Q 3-O-sop, peak 11) were consistent with previous reports ${ }^{14,16}$ following the elution order of $\mathbf{g a l}(\mathrm{Rt}=11.16 \mathrm{~min})>\mathbf{g l u}(\mathrm{Rt}=11.39 \mathrm{~min})$ confirmed after NMR elucidation (Supplementary Fig. S1 and Table S1), and closely related to corresponding tri-glycosides (peaks 1, 2,6 and 7). Peaks 26, 28 and 31 also determined through interpretation of previous LC-MS and NMR results ${ }^{14-17,24}$, and furthermore, peak 32 was tentatively identified as 'I 3-O-(2"-O-glu)glu' (I 3-O-sop) on the basis of above mentioned identical information and reported for the first time from the SLs. Peaks 1 and $2\left(\mathrm{~m} / \mathrm{z} 789[\mathrm{M}+\mathrm{H}]^{+}, 811[\mathrm{M}+\mathrm{Na}]^{+}, 827[\mathrm{M}+\mathrm{K}]^{+}\right.$, based on \mathbf{Q}) corresponding to $\mathbf{g l u}^{1}\left(\mathbf{g l u}^{(\mathbf{1})}\right)-$ gal $^{\mathbf{2 (6)}}$ and $\mathbf{g l u} \mathbf{u}^{1}\left(\mathbf{g l u}^{(\mathbf{1})}\right)$-glu ${ }^{\mathbf{2 (6)}}$, respectively, were tentatively identified as 'Q 3-O-($\left.2^{\prime \prime}, 6^{\prime \prime}-\mathrm{di}-\mathrm{O}-\mathrm{glu}\right) \mathrm{gal}$ ' and 'Q 3-O-($2^{\prime \prime}, 6^{\prime \prime}$-di- O -glu $)$ glu' with fragment ions of $m / z 627[\mathrm{M}+\mathrm{H}-\mathrm{glu}]^{+}$,

Peak No.	Compounds	R_{1}	R_{2}	R_{3}
Flavonols (A structure, 55 compounds)				
Quercetin				
1	quercetin 3-O-(2",6"-di- O-glucosyl)galactoside	OH	OH	$\mathrm{glu}^{1}\left(\mathrm{glu}^{(1)}\right)$ - $\mathrm{gal}^{2(6)}$
2	quercetin 3-O-($2^{\prime \prime}, 6^{\prime \prime}$-di- O-glucosyl)glucoside	OH	OH	$\mathrm{glu}^{1}\left(\mathrm{glu}^{(1)}\right)$ - $\mathrm{glu}^{2(6)}$
3	quercetin 3-O-(2"-O-rhamnosyl-6"-O-glucosyl)galactoside	OH	OH	$\operatorname{rham}^{1}\left(\mathrm{glu}^{(1)}\right)$-gal ${ }^{2(6)}$
5	quercetin 3-O-(2"-O-rhamnosyl-6"-O-glucosyl)glucoside	OH	OH	$\operatorname{rham}^{1}\left(\mathrm{glu}^{(1)}\right)-\mathrm{glu}^{2(6)}$
6	quercetin 3-O-(2"-O-glucosyl-6"-O-rhamnosyl)galactoside	OH	OH	$\operatorname{glu}^{1}\left(\right.$ rham $\left.^{(1)}\right)-\mathrm{gal}^{2(6)}$
7	quercetin 3-O-(2"-O-glucosyl-6"-O-rhamnosyl)glucoside	OH	OH	glu $^{1}\left(\right.$ rham $\left.^{(1)}\right)-$ glu $^{2(6)}$
8	quercetin 3-O-(2"-O-glucosyl)galactoside	OH	OH	glu^{1}-gal ${ }^{2}$
11	quercetin 3-O-(2"-O-glucosyl)glucoside (quercetin 3-O-sophoroside)	OH	OH	glu ${ }^{1}$-glu ${ }^{2}$ (sop)
13	quercetin 3-O-($2^{\prime \prime}, 6^{\prime \prime}$-di-O-rhamnosyl)galactoside	OH	OH	$\operatorname{rham}^{1}\left(\right.$ rham $\left.^{(1)}\right)-\mathrm{gal}^{2(6)}$
14	quercetin 3-O-(4",6"-di-O-rhamnosyl)galactoside	OH	OH	$\operatorname{rham}^{1}\left(\right.$ rham $\left.^{(1)}\right)-\mathrm{gal}^{4(6)}$
18	quercetin 3-O-(6"-O-glucosyl)galactoside	OH	OH	glu ${ }^{1}$-gal ${ }^{6}$
20	quercetin 3-O-(6"-O-glucosyl)glucoside (quercetin 3-O-gentiobioside)	OH	OH	glu^{1}-glu ${ }^{6}$ (gen)
24	quercetin 3-O-(2"-O-rhamnosyl)galactoside	OH	OH	rham ${ }^{1}$-gal ${ }^{2}$
25	quercetin 3-O-(2"-O-rhamnosyl)glucoside (quercetin 3-O-neohesperidoside)	OH	OH	rham ${ }^{1}-$ glu 2 (neo)
35	quercetin 3-O-(6"-O-rhamnosyl)galactoside (quercetin 3-O-robinobioside)	OH	OH	rham 1-gal 6 (rob)
38	quercetin 3-O-(6"-O-rhamnosyl)glucoside (quercetin 3-O-rutinoside, rutin)	OH	OH	rham 1-glu ${ }^{6}$ (rut)
40	quercetin 3-O-galactoside (hyperoside)	OH	OH	Ogal
46	quercetin 3-O-glucoside (isoquercitrin)	OH	OH	Oglu
Kaempferol				
4	kaempferol 3-O-($2^{\prime \prime}$,6"-di- O -glucosyl)glucoside	H	OH	$\mathrm{glu}^{1}\left(\mathrm{glu}^{(1)}\right)$ - $\mathrm{glu}^{2(6)}$
10	kaempferol 3-O-(2"-O-rhamnosyl-6"-O-glucosyl)galactoside	H	OH	$\operatorname{rham}^{1}\left(\mathrm{glu}^{(1)}\right)-\mathrm{gal}^{2(6)}$
16	kaempferol 3-O-(2"-O-glucosyl-6"-O-rhamnosyl)galactoside	H	OH	$\mathrm{glu}^{1}\left(\right.$ rham $\left.^{(1)}\right)$-gal ${ }^{2(6)}$
17	kaempferol 3-O-(2"-O-rhamnosyl-6"-O-glucosyl)glucoside	H	OH	$\operatorname{rham}^{1}\left(\mathrm{glu}^{(1)}\right)-\mathrm{glu}^{2(6)}$
21	kaempferol 3-O-(2"-O-glucosyl-6"-O-rhamnosyl)glucoside	H	OH	$\mathrm{glu}^{1}\left(\mathrm{rham}^{(1)}\right)-\mathrm{glu}^{2(6)}$
26	kaempferol 3-O-(2"-O-glucosyl)galactoside	H	OH	glu^{1}-gal ${ }^{2}$
27	kaempferol 3-O-(2",6"-di-O-rhamnosyl)galactoside	H	OH	$\operatorname{rham}^{1}\left(\operatorname{rham}^{(1)}\right)-\mathrm{gal}^{2(6)}$
28	kaempferol 3-O-(2"-O-glucosyl)glucoside (kaempferol 3-O-sophoroside)	H	OH	glu ${ }^{1}$-glu ${ }^{2}$ (sop)
29	kaempferol 3-O-(4",6"-di-O-rhamnosyl)galactoside	H	OH	$\operatorname{rham}^{1}\left(\right.$ rham $\left.^{(1)}\right)$-gal ${ }^{4(6)}$
30	kaempferol 3-O-(6"-O-glucosyl)galactoside	H	OH	glu ${ }^{1}$ gal 6
37	kaempferol 3-O-(2"-O-rhamnosyl)galactoside	H	OH	rham ${ }^{1}$-gal ${ }^{2}$
39	kaempferol 3-O-(6"-O-glucosyl)glucoside (kaempferol 3-O-gentiobioside)	H	OH	glu^{1}-glu ${ }^{6}$ (gen)
43	kaempferol 3-O-(2"-O-rhamnosyl)glucoside (kaempferol 3-O-neohesperidoside)	H	OH	rham ${ }^{1}$-glu ${ }^{2}$ (neo)
54	kaempferol 3-O-(6"-O-rhamnosyl)galactoside (kaempferol 3-O-robinobioside)	H	OH	$\mathrm{rham}^{1}-\mathrm{gal}^{6}$ (rob)
57	kaempferol 3-O-galactoside (trifolin)	H	OH	Ogal
58	kaempferol 3-O-(6"-O-rhamnosyl)glucoside (kaempferol 3-O-rutinoside, nicotiflorin)	H	OH	rham 1 - glu ${ }^{6}$ (rut)
63	kaempferol 3-O-glucoside (astragalin)	H	OH	Oglu
Isorhamnetin				
12	isorhamnetin 3-O-(2"-O-rhamnosyl-6"-O-glucosyl)galactoside	OCH_{3}	OH	$\operatorname{rham}^{1}\left(\mathrm{glu}^{(1)}\right)$-gal ${ }^{2(6)}$
15	isorhamnetin 3-O-(2"-O-rhamnosyl-6"-O-glucosyl)glucoside	OCH_{3}	OH	$\operatorname{rham}^{1}\left(\mathrm{glu}^{(1)}\right)-\mathrm{glu}^{2(6)}$
22	isorhamnetin 3-O-(2"-O-glucosyl-6"-O-rhamnosyl)galactoside (soyanin I)	OCH_{3}	OH	$\mathrm{glu}^{1}\left(\right.$ rham $\left.^{(1)}\right)-\mathrm{gal}^{2(6)}$
23	isorhamnetin 3-O-(2"-O-glucosyl-6"-O-rhamnosyl)glucoside (soyanin II)	OCH_{3}	OH	$\mathrm{glu}^{1}\left(\mathrm{rham}^{(1)}\right)-\mathrm{glu}^{2(6)}$
31	isorhamnetin 3-O-(2"-O-glucosyl)galactoside	OCH_{3}	OH	glu^{1}-gal ${ }^{2}$
32	isorhamnetin 3-O-(2"-O-glucosyl)glucoside (isorhamnetin 3-O-sophoroside)	OCH_{3}	OH	glu^{1}-glu ${ }^{2}$ (sop)
33	isorhamnetin 3-O-(2",6"-di-O-rhamnosyl)galactoside (soyanin III)	OCH_{3}	OH	$\operatorname{rham}^{1}\left(\right.$ rham $\left.^{(1)}\right)-\mathrm{gal}^{2(6)}$
34	isorhamnetin 3-O-(4",6"-di-O-rhamnosyl)galactoside (soyanin IV)	OCH_{3}	OH	$\operatorname{rham}^{1}\left(\right.$ rham $\left.^{(1)}\right)-\mathrm{gal}^{4(6)}$
42	isorhamnetin 3-O-(2",6"-di-O-rhamnosyl)glucoside (soyanin V)	OCH_{3}	OH	$\operatorname{rham}^{1}\left(\operatorname{rham}^{(1)}\right)$-glu ${ }^{2(6)}$
44	isorhamnetin 3-O-(6"-O-glucosyl)galactoside	OCH_{3}	OH	glu^{1}-gal ${ }^{6}$
47	isorhamnetin 3-O-(2"-O-rhamnosyl)galactoside	OCH_{3}	OH	rham ${ }^{1}$-gal ${ }^{2}$
51	isorhamnetin 3-O-(6"-O-glucosyl)glucoside (isorhamnetin 3-O-gentiobioside)	OCH_{3}	OH	$\mathrm{glu}^{1}-\mathrm{glu}^{6}$ (gen)
55	isorhamnetin 3-O-(2"-O-rhamnosyl)glucoside (isorhamnetin 3-O-neohesperidoside)	OCH_{3}	OH	rham ${ }^{1}$ glu 2 (neo)

Figure 1. Chemical structures of eighty-three flavonoid derivatives (A, 55 flavonols and 9 flavones; B, 19 isoflavones) presented from young leaves of 21 soybean cultivars. mal, malonyl; api, apiose; gal, galactose; glu, glucose; rham, rhamnose; gen, gentiobiose; rob, robinobiose; rut, rutinose; neo, neohesperidose; sop, sophorose.

60	isorhamnetin 3-O-(6"-O-rhamnosyl)galactoside (isorhamnetin 3-O-robinobioside)	OCH_{3}	OH	rham ${ }^{1}$-gal ${ }^{6}$ (rob)
62	isorhamnetin 3-O-(6"-O-rhamnosyl)glucoside (isorhamnetin 3-O-rutinoside, narcissin)	OCH_{3}	OH	rham ${ }^{1}$-glu ${ }^{6}$ (rut)
64	isorhamnetin 3-O-galactoside (cacticin)	OCH_{3}	OH	Ogal
66	isorhamnetin 3-O-glucoside	OCH_{3}	OH	Oglu

Peaks 41, 52 and 53 having two methyl groups combined with 3-O-glycosides (binding positions were not accurately determined), were tentatively identified as kaempferol 3-O-(2"-O-glucosyl-6"-O-rhamnosyl)galactoside dimethyl ester, kaempferol 3-O-(2"-O-glucosyl)galactoside dimethyl ester and kaempferol 3-O-(2"-O-glucosyl)glucoside dimethyl ester, respectively.
** di-glycosides : rham ${ }^{1}$-gal ${ }^{2}, O-\left(2^{\prime \prime}-O\right.$-rhamnosyl) galactoside; rham 1-glu ${ }^{2}, O-\left(2^{\prime \prime}-O\right.$-rhamnosyl)glucoside (neohesperidose, neo); rham ${ }^{1}$-gal ${ }^{6}$ (robinobiose, rob), O ((6"-O-rhamnosyl)galactoside; rham ${ }^{1}$-glu ${ }^{6}$ (rutinose, rut), $O-\left(6^{\prime \prime}-O\right.$-rhamnosyl)glucoside; glu ${ }^{1}$-gal ${ }^{2}, O-\left(2^{\prime \prime}-O\right.$-glucosyl)galactoside; glu ${ }^{1}$-glu ${ }^{2}$ (sophorose, sop), $O-\left(2^{\prime \prime}-O\right.$-glucosyl) glucoside; glu ${ }^{1}$-gal ${ }^{6}, O-\left(6^{\prime \prime}-O\right.$-glucosyl)galactoside; glu ${ }^{1}$-glu ${ }^{6}$ (gentiobiose, gen), $O-\left(6^{\prime \prime}-O\right.$-glucosyl)glucoside.
 rhamnosyl-6"-O-glucosyl)galactoside; $\mathbf{r h a m}^{\mathbf{1}} \mathbf{(g l u}^{(\mathbf{1})}$)-glu ${ }^{2(6)}$, $O-\left(2^{\prime \prime}-O\right.$-rhamnosyl-6"-O-glucosyl)glucoside; $\quad \mathbf{g l u}^{1}\left(\mathbf{r h a m}^{(1)}\right)$-gal ${ }^{\mathbf{2}(\boldsymbol{(6)}}, \quad O-\left(2^{\prime \prime}-O\right.$-glucosyl-6"- $O-$ rhamnosyl)galactoside; $\quad \mathbf{g l u}^{1}\left(\mathbf{r h a m}^{(1)}\right)$-glu ${ }^{\mathbf{2 (6)}}, \quad O-\left(2^{\prime \prime}-O\right.$-glucosyl-6"- O-rhamnosyl)glucoside; $\quad \mathbf{r h a m}^{1}\left(\mathbf{r h a m}^{(1)}\right)$-gal ${ }^{\mathbf{2 (6)}}, \quad O$-(2", $6^{\prime \prime}$-di- O-rhamnosyl)galactoside; $\boldsymbol{r h a m}^{1}\left(\mathbf{r h a m}^{(1)}\right)$-gal ${ }^{4(6)}, O-\left(4^{\prime \prime}, 6\right.$ "-di- O-rhamnosyl)galactoside; $\boldsymbol{r h a m}^{1}\left(\mathbf{r h a m}^{(1)}\right)$-glu ${ }^{\mathbf{2 (6)}}, O-\left(2^{\prime \prime}, 6\right.$ "-di- O-rhamnosyl)glucoside.

Peak No.	Compounds	R_{1}	R_{2}	R_{3}
Flavones (A structure, 9 compounds)				
Luteolin				
48	luteolin 7-O-glucoside (cynaroside)	OH	Oglu	H
61	luteolin 7-O-(2"-O-malonyl)glucoside	OH	$\mathrm{O}(2 \mathrm{mal}) \mathrm{glu}$	H
68	luteolin 7-O-(6"-O-malonyl)glucoside	OH	$\mathrm{O}(6 \mathrm{mal}) \mathrm{glu}$	H
76	luteolin	OH	OH	H
Apigenin				
65	apigenin 7-O-glucoside (cosmosiin)	H	Oglu	H
74	apigenin 7-O-(6"-O-malonyl)glucoside	H	$\mathrm{O}\left(6{ }^{\text {"mal }}\right.$)glu	H
80	apigenin	H	OH	H
Chrysoeriol				
67	chrysoeriol 7-O-glucoside (thermopsoside)	OCH_{3}	Oglu	H
75	chrysoeriol 7-O-(6"-O-malonyl)glucoside	OCH_{3}	$\mathrm{O}(6 \mathrm{mal}) \mathrm{glu}$	H

Peak No.	Compounds	R4	R_{5}	R_{6}	R_{7}
Isoflavones (B structure, 19 compounds)					
Dadizein					
9	daidzein 7-O-glucoside (daidzin)	OH	H	H	Oglu
50	daidzein 4'-O-(6"-O-malonyl)glucoside (6"-O-malonylisodaidzin)	$\mathrm{O}(6 \mathrm{\prime} \mathrm{\prime mal}) \mathrm{glu}$	H	H	OH
59	daidzein 7-O-(6"-O-malonyl)glucoside (6"-O-malonyldaidzin)	OH	H	H	$\mathrm{O}(6 \mathrm{mal}) \mathrm{glu}$
73	daidzein	OH	H	H	OH
Genistein					
36	genistein 7-O-(6"-O-apiosyl)glucoside (6"-O-apiosylgenistin)	OH	OH	H	O(6"api)glu
45	genistein 7-O-(2"-O-apiosyl)glucoside (2"-O-apiosylgenistin)	OH	OH	H	$\mathrm{O}\left(2{ }^{\text {"api }}\right.$)glu
49	genistein 7-O-glucoside (genistin)	OH	OH	H	Oglu
69	genistein 4'-O-($6^{\prime \prime}-O$-malonyl)glucoside ($6^{\prime \prime}-O$-malonylsophoricoside)	$\mathrm{O}(6 \mathrm{mal}) \mathrm{glu}$	OH	H	OH
70	genistein 7-O-(6"-O-malonyl)glucoside (6"-O-malonylgenistin)	OH	OH	H	$\mathrm{O}(6 \mathrm{mal}) \mathrm{glu}$
79	genistein	OH	OH	H	OH
Glycitein					
19	glycitein 7-O-glucoside (glycitin)	OH	H	OCH_{3}	Oglu
Tectorigenin					
56	tectorigenin 7-O-glucoside (tectoridin)	OH	OH	OCH_{3}	Oglu
71	tectorigenin 7-O-(6"-O-malonyl)glucoside (6"-O-malonyltectoridin)	OH	OH	OCH_{3}	$\mathrm{O}(6 \mathrm{mal}) \mathrm{glu}$
81	tectorigenin	OH	OH	OCH_{3}	OH
Afromosin					
72	afromosin 7-O-glucoside	OCH_{3}	H	OCH_{3}	Oglu
78	afromosin 7-O-(6"-O-malonyl)glucoside	OCH_{3}	H	OCH_{3}	$\mathrm{O}(6 \mathrm{mal}) \mathrm{glu}$
83	afromosin	OCH_{3}	H	OCH_{3}	OH
Formononetin					
77	formononetin 7-O-(6"-O-malonyl)glucoside (6"-O-malonylononin)	OCH_{3}	H	H	$\mathrm{O}(6 \mathrm{mal}) \mathrm{glu}$
82	formononetin	OCH_{3}	H	H	OH

Figure 1. (continued)
$465[\mathrm{M}+\mathrm{H}-2 \mathrm{glu}]^{+}$and $303[\mathrm{M}+\mathrm{H}-2 \mathrm{glu}-\mathrm{gal}]^{+} /[\mathrm{M}+\mathrm{H}-3 \mathrm{glu}]^{+}$. Also, peak $4\left(\mathrm{~m} / \mathrm{z} 773[\mathrm{M}+\mathrm{H}]^{+}\right)$was found to be 'K 3-O-(2",6"-di-O-glu)glu' including structure of primary 'K 3-O-(2"-O-glu)glu' (K 3-O-sop, peak 28) and showed similar fragment patterns with peaks 1 and $\mathbf{2}$. Three tri-glycosides (peaks 1, 2 and $\mathbf{4}$) were reported for the first time in this source.

Peaks 6 and $7\left(m / z 773[M+H]^{+}\right.$, based on $\left.\mathbf{Q}\right)$ corresponding to above $\mathbf{g l u}^{1}\left(\mathbf{r h a m}^{(1)}\right)$-gal ${ }^{\mathbf{2 (6)}}$ and $\mathbf{g l u}^{\mathbf{1}}\left(\mathbf{r h a m}^{(1)}\right)$ $\mathbf{g l u}^{2(6)}$, respectively, were tentatively identified as 'Q 3-O-(2"-O-glu-6"-O-rham) gal' and 'Q 3-O-(2"-O-glu$6^{\prime \prime}-\mathrm{O}$-rham $)$ glu' with fragment ions of $\mathrm{m} / \mathrm{z} 627[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}, 611[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, 465[\mathrm{M}+\mathrm{H} \text {-rham-glu }]^{+}$, and $303[\mathrm{M}+\mathrm{H} \text {-rham-glu-gal }]^{+} /[\mathrm{M}+\mathrm{H} \text {-rham-2glu }]^{+}$, which were predominant components from black coated cultivars (SLs 8, 12, 17 and 19) including Cheongja 2 (SL3) (Tables 1 and 2). Likewise, ' $\mathrm{K} 3-O-\left(2^{\prime \prime}-O\right.$-glu-6"-O-rham) gal^{\prime} (peak 16) and 'K 3-O-(2"-O-glu-6"-O-rham)glu' (peak 21) with $m / z 757[\mathrm{M}+\mathrm{H}]^{+}$were highly contained in

Peak No	Individual flavonoids	Abbreviation	$\begin{aligned} & \text { RT } \\ & (\mathbf{m i n}) \end{aligned}$	Molecular Formula	ESI(+)-QToF/MS (experimental ions, $\boldsymbol{m} / \boldsymbol{z}$)		
					[M+H] ${ }^{+}$	error (ppm)	Fragmentation
$1^{\text {a }}$	quercetin $3-O-\left(2^{\prime \prime}, 6^{\prime \prime}\right.$-di-O-glucosyl)galactoside	$\begin{aligned} & \text { Q 3-O-(2", } 6^{\prime \prime} \text {-di- } \\ & \text { O-glu)gal } \end{aligned}$	9.03	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{22}$	789.2092	1.0	$\begin{aligned} & 827[\mathrm{M}+\mathrm{K}]^{+}, 811[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 789[\mathrm{M}+\mathrm{H}]^{+}, 627[\mathrm{M}+\mathrm{H}-\mathrm{glu}]^{+}, \\ & 465[\mathrm{M}+\mathrm{H}-2 \mathrm{glu}]^{+}, 303[\mathrm{M}+\mathrm{H}-2 \mathrm{glu}-\mathrm{gal}]^{+} \end{aligned}$
$2^{\text {a }}$	quercetin 3-O-(2", $6^{\prime \prime}$-di-O-glucosyl)glucoside	$\begin{aligned} & \text { Q 3-O-(} 2^{\prime \prime}, 6^{\prime \prime} \text {-di- } \\ & \text { O-glu)glu } \end{aligned}$	9.06	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{22}$	789.2099	1.9	$\begin{array}{\|l\|} \hline 827[\mathrm{M}+\mathrm{K}]^{+}, 811[\mathrm{M}+\mathrm{Na}]^{+}, \\ 789[\mathrm{M}+\mathrm{H}]^{+}, 627[\mathrm{M}+\mathrm{H}-\text { glu }]^{+}, 465[\mathrm{M}+ \\ \mathrm{H}-2 \mathrm{glu}]^{+}, 303[\mathrm{M}+\mathrm{H}-3 g \mathrm{glu}]^{+} \end{array}$
$3^{\text {a }}$	quercetin 3-O-(2"- O-rhamnosyl-6"-O- glucosyl)galactoside	$\begin{aligned} & \text { Q 3-(2"-O-rham- } \\ & 6^{\prime \prime} \text {-O-glu)gal } \end{aligned}$	10.02	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{21}$	773.2138	0.4	$\begin{array}{\|l} 811[\mathrm{M}+\mathrm{K}]^{+}, 795[\mathrm{M}+\mathrm{Na}]^{+}, \\ 773[\mathrm{M}+\mathrm{H}]^{+}, 627[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}, \\ 611[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, 465[\mathrm{M}+\mathrm{H} \text {-rham- } \\ \text { glu }]^{+}, 303[\mathrm{M}+\mathrm{H} \text {-rham-glu-gal }]^{+} \end{array}$
$4^{\text {a }}$	kaempferol 3-O-(2", $6^{\prime \prime}$ -di-O-glucosyl)glucoside	$\begin{aligned} & \text { K 3-O-(2", } 6^{\prime \prime} \text {-di- } \\ & \text { O-glu)glu } \end{aligned}$	10.38	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{21}$	773.2139	0.5	$\begin{aligned} & 811[\mathrm{M}+\mathrm{K}]^{+}, 795[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 773[\mathrm{M}+\mathrm{H}]^{+}, 611[\mathrm{M}+\mathrm{H}-\mathrm{glu}]^{+}, 449[\mathrm{M}+ \\ & \mathrm{H}-2 \mathrm{glu}]^{+}, 287[\mathrm{M}+\mathrm{H}-3 \mathrm{glu}]^{+} \end{aligned}$
$5^{\text {a }}$	quercetin 3-O-(2"- O-rhamnosyl-6"-O- glucosyl)glucoside	$\begin{aligned} & \text { Q 3-O-(2"-O- } \\ & \text { rham-6"-O-glu)glu } \end{aligned}$	10.41	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{21}$	773.2139	0.5	$\begin{aligned} & 811[\mathrm{M}+\mathrm{K}]^{+}, 795[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 773[\mathrm{M}+\mathrm{H}]^{+}, 627[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}, \\ & 611[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, 465[\mathrm{M}+\mathrm{H} \text {-rham- } \\ & \text { glu }]^{+}, 303[\mathrm{M}+\mathrm{H} \text {-rham-2glu }]^{+} \end{aligned}$
6	quercetin 3-O-(2"- O-glucosyl-6"-O- rhamnosyl)galactoside	$\begin{aligned} & \text { Q 3-O-(2"-O-glu- } \\ & \text { 6"-O-rham)gal } \end{aligned}$	10.43	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{21}$	773.2138	0.4	$\begin{aligned} & 811[\mathrm{M}+\mathrm{K}]^{+}, 795[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 773[\mathrm{M}+\mathrm{H}]^{+}, 627[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}, \\ & 611[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, 465[\mathrm{M}+\mathrm{H} \text {-rham- } \\ & \text { glu }]^{+}, 303\left[\mathrm{M}+\mathrm{H} \text {-rham-glu-gal] }{ }^{+}\right. \end{aligned}$
7	quercetin 3-O-(2"- O-glucosyl-6"-O- rhamnosyl)glucoside	$\begin{aligned} & \text { Q 3-O-(2"-O-glu- } \\ & 6^{\prime \prime}-\mathrm{O} \text {-rham)glu } \end{aligned}$	10.65	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{21}$	773.2136	0.2	$\begin{aligned} & 811[\mathrm{M}+\mathrm{K}]^{+}, 795[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 773[\mathrm{M}+\mathrm{H}]^{+}, 627[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}, \\ & 611[\mathrm{M}+\mathrm{H}-\text { glu }]^{+}, 465[\mathrm{M}+\mathrm{H} \text {-rham- } \\ & \text { glu }]^{+}, 303[\mathrm{M}+\mathrm{H} \text {-rham-2glu }]^{+} \end{aligned}$
8	quercetin 3-O-(2"-Oglucosyl)galactoside	$\begin{aligned} & \text { Q 3-O-(2"-O- } \\ & \text { glu)gal } \end{aligned}$	11.16	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{17}$	627.1548	-1.2	$665[\mathrm{M}+\mathrm{K}]^{+}, 649[\mathrm{M}+\mathrm{Na}]^{+}$, $627[\mathrm{M}+\mathrm{H}]^{+}, 465[\mathrm{M}+\mathrm{H}-\mathrm{glu}]^{+}$, $303[\mathrm{M}+\mathrm{H}-\mathrm{glu}-\mathrm{gal}]^{+}$
$9^{\text {c }}$	daidzein 7-O-glucoside (daidzin)	D 7-O-glu	11.25	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{9}$	417.1181	0.2	$\begin{aligned} & 455\left[\mathrm{M}+\mathrm{K}^{+}, 439[\mathrm{M}+\mathrm{Na}]^{+}, 417[\mathrm{M}+\mathrm{H}]^{+},\right. \\ & 255[\mathrm{M}+\mathrm{H}-\text { glu }]^{+} \end{aligned}$
10	kaempferol 3-O-(2"-O-rhamnosyl-6"-Oglucosyl)galactoside	K 3-O-(2"-O-rham-6"-O-glu)gal	11.35	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{20}$	757.2194	0.7	$\begin{aligned} & 795[\mathrm{M}+\mathrm{K}]^{+}, 779[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 757[\mathrm{M}+\mathrm{H}]^{+}, 611[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}, \\ & 595[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, 449[\mathrm{M}+\mathrm{H} \text {-rham- } \\ & \text { glu }]^{+}, 287\left[\mathrm{M}+\mathrm{H} \text {-rham-glu-gal] }{ }^{+}\right. \end{aligned}$
$11^{\text {c }}$	quercetin 3-O-(2"-O-glucosyl)glucoside (quercetin 3-O-sophoroside)	$\begin{aligned} & \text { Q 3-O-(2"-O-glu) } \\ & \text { glu } \end{aligned}$	11.39	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{17}$	627.1545	-1.7	$\begin{aligned} & 665[\mathrm{M}+\mathrm{K}]^{+}, 649[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 627[\mathrm{M}+\mathrm{H}]^{+}, 465[\mathrm{M}+\mathrm{H}-\text { glu }]^{+}, \\ & 303[\mathrm{M}+\mathrm{H}-2 \mathrm{glu}]^{+} \end{aligned}$
$12^{\text {a }}$	isorhamnetin 3-O-(2"- O-rhamnosyl-6"-O- glucosyl)galactoside	$\begin{aligned} & \text { I 3-O-(2"-O-rham- } \\ & 6^{\prime \prime} \text {-O-glu)gal } \end{aligned}$	11.54	$\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{21}$	787.2293	0.2	$825[\mathrm{M}+\mathrm{K}]^{+}, 809[\mathrm{M}+\mathrm{Na}]^{+}$, $787[\mathrm{M}+\mathrm{H}]^{+}, 641[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}$, $625[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, 479[\mathrm{M}+\mathrm{H}$-rham- glu $]^{+}, 317[\mathrm{M}+\mathrm{H}-\text { rham-glu-gal }]^{+}$, $302\left[\mathrm{M}+\mathrm{H} \text {-rham-glu-gal- } \mathrm{CH}_{3}\right]^{+}$
$13^{\text {a }}$	quercetin 3-O-(2", $6^{\prime \prime}$-di-O-rhamnosyl)galactoside	$\begin{aligned} & \text { Q 3-O-(2", } 6^{\prime \prime} \text {-di- } \\ & \text { O-rham)gal } \end{aligned}$	11.55	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{20}$	757.2190	0.6	```795[M+K]+,}779[\textrm{M}+\textrm{Na}\mp@subsup{]}{}{+} 757[M +H]+,611[M+H-rham]+, 465[M+H-2rham] +, 303[M+H-2rham- gal]+```
14	quercetin 3-O-(4", $6^{\prime \prime}$-di-O-rhamnosyl)galactoside	$\begin{aligned} & \text { Q 3-O-(4", } 6^{\prime \prime} \text {-di- } \\ & \text { O-rham)gal } \end{aligned}$	11.71	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{20}$	757.2189	0.4	```795[M+K] +, 779[M+Na]', 757[M+H]+,611[M+H-rham]+, 465[M + H-2rham] }\mp@subsup{}{}{+},303[M+H-2rham- gal]+```
$15^{\text {a }}$	isorhamnetin 3-O-(2"-O-rhamnosyl-6"-Oglucosyl)glucoside	$\begin{aligned} & \text { I 3-O-(2"-O-rham- } \\ & 6^{\prime \prime} \text {-O-glu)glu } \end{aligned}$	11.79	$\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{21}$	787.2289	-0.3	$\begin{aligned} & 825[\mathrm{M}+\mathrm{K}]^{+}, 809[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 787[\mathrm{M}+\mathrm{H}]^{+}, 641[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}, \\ & 625[\mathrm{M}+\mathrm{H}-\text { glu }]^{+}, 479[\mathrm{M}+\mathrm{H}-\mathrm{rham}- \\ & \text { glu }]^{+}, 317[\mathrm{M}+\mathrm{H}-\mathrm{rham}-2 \text { glu }]^{+}, \\ & 302[\mathrm{M}+\mathrm{H}-\text { rham-2glu-CH }]^{+} \end{aligned}$
16	kaempferol 3-O-(2"- O-glucosyl-6"-Orhamnosyl)galactoside	$\begin{aligned} & \text { K 3-O-(2"-O-glu- } \\ & 6^{\prime \prime} \text {-O-rham) gal } \end{aligned}$	11.83	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{20}$	757.2159	-3.5	$\begin{aligned} & 795[\mathrm{M}+\mathrm{K}]^{+}, 779[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 757[\mathrm{M}+\mathrm{H}]^{+}, 611[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}, \\ & 595[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, 449[\mathrm{M}+\mathrm{H} \text {-rham- } \\ & \text { glu }]^{+}, 287\left[\mathrm{M}+\mathrm{H} \text {-rham-glu-gal] }{ }^{+}\right. \end{aligned}$
$17^{\text {a }}$	kaempferol 3-O-(2"-O-rhamnosyl-6"-Oglucosyl)glucoside	K 3-O-(2"-O-rham-6"-O-glu)glu	11.84	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{20}$	757.2189	0.4	$\begin{aligned} & 795[\mathrm{M}+\mathrm{K}]^{+}, 779[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 757[\mathrm{M}+\mathrm{H}]^{+}, 611[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}, \\ & 595[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, 449[\mathrm{M}+\mathrm{H} \text {-rham- } \\ & \text { glu }]^{+}, 287[\mathrm{M}+\mathrm{H} \text {-rham-2glu }]^{+} \end{aligned}$
$18^{\text {a }}$	quercetin 3-O-(6"-O- glucosyl)galactoside	$\begin{aligned} & \text { Q 3-O-(6"-O- } \\ & \text { glu)gal } \end{aligned}$	11.99	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{17}$	627.1559	0.5	$\begin{aligned} & 665[\mathrm{M}+\mathrm{K}]^{+}, 649[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 627[\mathrm{M}+\mathrm{H}]^{+}, 465[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, \\ & 303[\mathrm{M}+\mathrm{H} \text {-glu-gal }]^{+} \end{aligned}$
$19^{\text {c }}$	glycitein 7-O-glucoside (glycitin)	$\mathrm{G}_{\mathrm{y}} 7$-O-glu	12.07	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{10}$	447.1286	0.1	$\begin{aligned} & 485[\mathrm{M}+\mathrm{K}]^{+}, 469[\mathrm{M}+\mathrm{Na}]^{+}, 447[\mathrm{M}+\mathrm{H}]^{+}, \\ & 285[\mathrm{M}+\mathrm{H}-\mathrm{glu}]^{+}, 270\left[\mathrm{M}+\mathrm{H} \text {-glu- } \mathrm{CH}_{3}\right]^{+} \end{aligned}$
$20^{\text {a,c }}$	quercetin 3-O-(6"-O-glucosyl)glucoside (quercetin 3-O-gentiobioside)	$\begin{aligned} & \text { Q 3-O-(6"-O-glu) } \\ & \text { glu } \end{aligned}$	12.15	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{17}$	627.1550	-0.9	$\begin{aligned} & 665[\mathrm{M}+\mathrm{K}]^{+}, 649[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 627[\mathrm{M}+\mathrm{H}]^{+}, 465[\mathrm{M}+\mathrm{H}-\text { glu }]^{+}, \\ & 303[\mathrm{M}+\mathrm{H}-2 \mathrm{glu}]^{+} \end{aligned}$
Continued							

Peak No	Individual flavonoids	Abbreviation	$\begin{aligned} & \text { RT } \\ & (\mathbf{m i n}) \end{aligned}$	Molecular Formula	ESI(+)-QToF/MS (experimental ions, m / \boldsymbol{z})		
					[M+H] ${ }^{+}$	error (ppm)	Fragmentation
21	kaempferol 3-O-(2"-O-glucosyl-6"-Orhamnosyl)glucoside	K 3-O-(2"-O-glu-6"-O-rham)glu	12.16	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{20}$	757.2160	-3.4	$\begin{aligned} & 795[\mathrm{M}+\mathrm{K}]^{+}, 779[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 757[\mathrm{M}+\mathrm{H}]^{+}, 611[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}, \\ & 595[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, 449[\mathrm{M}+\mathrm{H} \text {-rham- } \\ & \text { glu }]^{+}, \\ & 287[\mathrm{M}+\mathrm{H} \text {-rham-2glu }]^{+} \end{aligned}$
$22^{\text {a,b }}$	isorhamnetin 3-O-(2"-O-glucosyl-6"-Orhamnosyl)galactoside (soyanin I)	$\begin{aligned} & \text { I 3-O-(2"-O-glu- } \\ & \left.6^{\prime \prime} \text {-rham }\right) \text { gal } \end{aligned}$	12.36	$\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{21}$	787.2283	-1.1	$\begin{aligned} & 825[\mathrm{M}+\mathrm{K}]^{+}, 809[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 787[\mathrm{M}+\mathrm{H}]^{+}, 641[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}, \\ & 625[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, 479[\mathrm{M}+\mathrm{H} \text {-rham- } \\ & \text { glu }]^{+}, \\ & 317[\mathrm{M}+\mathrm{H} \text {-rham-glu-gal }]^{+} \end{aligned}$
$23^{\text {a,b }}$	isorhamnetin 3-O-(2"-O-glucosyl-6"-Orhamnosyl)glucoside (soyanin II)	$\begin{aligned} & \text { I 3-O-(2"-O-glu- } \\ & \text { 6"-O-rham)glu } \end{aligned}$	12.36	$\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{21}$	787.2281	-1.3	$\begin{aligned} & 825[\mathrm{M}+\mathrm{K}]^{+}, 809[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 787[\mathrm{M}+\mathrm{H}]^{+}, 641[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}, \\ & 625[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, 479[\mathrm{M}+\mathrm{H} \text {-rham- } \\ & \text { glu }]^{+}, \\ & 317[\mathrm{M}+\mathrm{H} \text {-rham-2glu }]^{+} \end{aligned}$
24	quercetin 3-O-(2"-Orhamnosyl)galactoside	$\begin{aligned} & \text { Q 3-O-(2"-O- } \\ & \text { rham) gal } \end{aligned}$	12.40	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{16}$	611.1613	1.0	$\begin{aligned} & 649[\mathrm{M}+\mathrm{K}]^{+}, 633[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 611[\mathrm{M}+\mathrm{H}]^{+}, 465[\mathrm{M}+\mathrm{H}-\mathrm{rham}]^{+}, \\ & 303[\mathrm{M}+\mathrm{H}-\text { rham }- \text { gal }]^{+} \end{aligned}$
$25^{\text {a }}$	quercetin 3-O-(2"-Orhamnosyl)glucoside (quercetin 3-O-neohesperidoside)	$\begin{aligned} & \text { Q 3-O-(2"-O- } \\ & \text { rham)glu } \end{aligned}$	12.68	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{16}$	611.1612	0.9	$\begin{aligned} & 649[\mathrm{M}+\mathrm{K}]^{+}, 633[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 611[\mathrm{M}+\mathrm{H}]^{+}, 465[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}, \\ & 303[\mathrm{M}+\mathrm{H} \text {-rham-glu }]^{+} \end{aligned}$
26	kaempferol 3-O-(2"-Oglucosyl)galactoside	$\begin{aligned} & \text { K 3-O-(2"-O-glu) } \\ & \text { gal } \end{aligned}$	12.75	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{16}$	611.1602	-0.8	$\begin{aligned} & 649[\mathrm{M}+\mathrm{K}]^{+}, 633[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 611[\mathrm{M}+\mathrm{H}]^{+}, 449[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, \\ & 287[\mathrm{M}+\mathrm{H} \text {-glu-gal }]^{+} \end{aligned}$
27	kaempferol 3-O-(2", $6^{\prime \prime}$ -di-O-rhamnosyl) galactoside	$\begin{aligned} & \text { K 3-O-(2",6"-di- } \\ & \text { O-rham)gal } \end{aligned}$	12.80	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{19}$	741.2240	0.5	$\begin{array}{\|l\|} \hline 779\left[\mathrm{M}+\mathrm{K}^{+}, 763[\mathrm{M}+\mathrm{Na}]^{+},\right. \\ 741[\mathrm{M}+\mathrm{H}]^{+}, 595[\mathrm{M}+\mathrm{H}-\text { rham }]^{+}, \\ 449[\mathrm{M}+\mathrm{H}-2 \text { rham }]^{+}, 287[\mathrm{M}+\mathrm{H}-2 \text { rham }- \\ \text { gal }^{+} \end{array}$
28	kaempferol 3-O-(2"-O-glucosyl)glucoside (kaempferol 3-O-sophoroside)	$\begin{aligned} & \text { K 3-O-(2"-O-glu) } \\ & \text { glu } \end{aligned}$	12.99	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{16}$	611.1602	-0.8	$\begin{aligned} & 649[\mathrm{M}+\mathrm{K}]^{+}, 633[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 611[\mathrm{M}+\mathrm{H}]^{+}, 449[\mathrm{M}+\mathrm{H}-\mathrm{glu}]^{+}, \\ & 287[\mathrm{M}+\mathrm{H}-2 \mathrm{glu}]^{+} \end{aligned}$
29	kaempferol 3-O-(4", $6^{\prime \prime}$ -di-O-rhamnosyl) galactoside	$\begin{aligned} & \text { K 3-O-(4", } 6^{\prime \prime} \text {-di- } \\ & \text { O-rham)gal } \end{aligned}$	13.11	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{19}$	741.2259	0.3	$\begin{aligned} & 779\left[\mathrm{M}+\mathrm{K}^{+}, 763[\mathrm{M}+\mathrm{Na}]^{+},\right. \\ & 741[\mathrm{M}+\mathrm{H}]^{+}, 595[\mathrm{M}+\mathrm{H}-\text { rham }]^{+}, \\ & 449[\mathrm{M}+\mathrm{H}-2 \text { rham }]^{+}, 287[\mathrm{M}+\mathrm{H}-2 \text { rham }- \\ & \text { gall }^{+} \end{aligned}$
$30^{\text {a }}$	kaempferol 3-O-(6"-Oglucosyl)galactoside	$\begin{aligned} & \text { K 3-O-(6"-O-glu) } \\ & \text { gal } \end{aligned}$	13.27	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{16}$	611.1610	0.6	$\begin{aligned} & 649[\mathrm{M}+\mathrm{K}]^{+}, 633[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 611[\mathrm{M}+\mathrm{H}]^{+}, 449[\mathrm{M}+\mathrm{H}-\text { glu }]^{+}, \\ & 325[\mathrm{glu}+\text { gal }+\mathrm{H}]^{+}, 287[\mathrm{M}+\mathrm{H}-\text { glu-gal }]^{+} \end{aligned}$
31	isorhamnetin 3-O-(2"-O-glucosyl)galactoside	$\begin{aligned} & \text { I 3-O-(} \left.2^{\prime \prime}-O-\mathrm{glu}\right) \\ & \text { gal } \end{aligned}$	13.30	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{17}$	641.1705	-1.1	$\begin{aligned} & 679[\mathrm{M}+\mathrm{K}]^{+}, 663[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 641[\mathrm{M}+\mathrm{H}]^{+}, 479[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, \\ & 317[\mathrm{M}+\mathrm{H} \text {-glu-gal }]^{+} \end{aligned}$
$32^{\text {a }}$	isorhamnetin 3-O-(2"-O-glucosyl) glucoside (isorhamnetin 3-O-sophoroside)	$\begin{aligned} & \text { I 3-O-(} \left.2^{\prime \prime}-O-\mathrm{glu}\right) \\ & \text { glu } \end{aligned}$	13.30	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{17}$	641.1705	-0.7	$\begin{aligned} & 679[\mathrm{M}+\mathrm{K}]^{+}, 663[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 641[\mathrm{M}+\mathrm{H}]^{+}, 479[\mathrm{M}+\mathrm{H}-\mathrm{glu}]^{+}, \\ & 317[\mathrm{M}+\mathrm{H}-2 \mathrm{glu}]^{+} \end{aligned}$
$33^{\text {a,b }}$	isorhamnetin 3-O-($2^{\prime \prime}, 6^{\prime \prime}-$ di- $O-$ rhamnosyl)galactoside (soyanin III)	$\begin{aligned} & \text { I 3-O-(2", } 6^{\prime \prime} \text {-di- } O- \\ & \text { rham) gal } \end{aligned}$	13.37	$\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{20}$	771.2345	0.4	$\begin{aligned} & 809\left[\mathrm{M}+\mathrm{K}^{+}, 793[\mathrm{M}+\mathrm{Na}]^{+},\right. \\ & 771[\mathrm{M}+\mathrm{H}]^{+}, 625[\mathrm{M}+\mathrm{H}-\text { rham }]^{+}, \\ & 479[\mathrm{M}+\mathrm{H}-2 \text { rham }]^{+}, 317[\mathrm{M}+\mathrm{H}-2 \text { rham- } \\ & \text { gal }^{+} \end{aligned}$
$34^{\text {a,b }}$	isorhamnetin 3-O-(4", $6^{\prime \prime}$-di- - rhamnosyl)galactoside (soyanin IV)	$\begin{aligned} & \text { I 3-O-(4", } 6^{\prime \prime}-\mathrm{di}-O- \\ & \text { rham)gal } \end{aligned}$	13.59	$\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{20}$	771.2342	0.0	```809[M+K]+},793[M+Na\mp@subsup{]}{}{+} 771[M+H\mp@subsup{]}{}{+},625[M+H-rham]}\mp@subsup{}{}{+} 479[M+H-2rham] +, 317[M + H-2rham- gal]+```
35	quercetin 3-O-(6"-Orhamnosyl)galactoside (quercetin 3-O-robinobioside)	$\begin{aligned} & \text { Q 3-O-(} 6^{\prime \prime}-O- \\ & \text { rham) gal } \end{aligned}$	13.59	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{16}$	611.1611	0.7	$\begin{aligned} & 649[\mathrm{M}+\mathrm{K}]^{+}, 633[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 611[\mathrm{M}+\mathrm{H}]^{+}, 465[\mathrm{M}+\mathrm{H}-\mathrm{rham}]^{+}, \\ & 303[\mathrm{M}+\mathrm{H}-\text { rham-gal }]^{+} \end{aligned}$
$36^{\text {a }}$	$\begin{array}{\|l} \hline \text { genistein 7-O-(6"- } \\ O \text {-apiosyl)glucoside } \\ \text { (6"-O-apiosylgenistin) } \end{array}$	$\begin{aligned} & \mathrm{G}_{\mathrm{n}} 7-O-\left(6^{\prime \prime}-O-\right. \\ & \text { api)glu } \end{aligned}$	13.69	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{14}$	565.1555	0.6	$\begin{aligned} & 603[\mathrm{M}+\mathrm{K}]^{+}, 587[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 565[\mathrm{M}+\mathrm{H}]^{+}, 433\left[\mathrm{M}+\mathrm{H}-\text { api }^{+},\right. \\ & 271[\mathrm{M}+\mathrm{H} \text {-api-glu }]^{+} \end{aligned}$
37	kaempferol 3-O-(2"-Orhamnosyl)galactoside	K 3-O-(2"-Orham) gal	13.83	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{15}$	595.1658	0.1	$\begin{aligned} & 633[\mathrm{M}+\mathrm{K}]^{+}, 617[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 595[\mathrm{M}+\mathrm{H}]^{+}, 449[\mathrm{M}+\mathrm{H}-\mathrm{rham}]^{+}, \\ & 287[\mathrm{M}+\mathrm{H}-\text { rham-gal }]^{+} \end{aligned}$
$38^{\text {c }}$	quercetin 3-O-($6^{\prime \prime}-\mathrm{O}-$ rhamnosyl)glucoside (quercetin 3-O-rutinoside, rutin)	$\begin{aligned} & \text { Q 3-O-(} 6^{\prime \prime}-O- \\ & \text { rham) glu } \end{aligned}$	13.95	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{16}$	611.1603	-0.6	$\begin{aligned} & 649[\mathrm{M}+\mathrm{K}]^{+}, 633[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 611[\mathrm{M}+\mathrm{H}]^{+}, 465[\mathrm{M}+\mathrm{H}-\mathrm{rham}]^{+}, \\ & 303[\mathrm{M}+\mathrm{H}-\text { rham-glu }]^{+} \end{aligned}$
$39^{\text {c }}$	kaempferol 3-O-(6"-O-glucosyl)glucoside (kaempferol 3-O-gentiobioside)	$\begin{aligned} & \text { K 3-O-(6"-O-glu) } \\ & \text { glu } \end{aligned}$	14.01	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{16}$	611.1607	0.1	$649[\mathrm{M}+\mathrm{K}]^{+}, 633[\mathrm{M}+\mathrm{Na}]^{+}$, $611[\mathrm{M}+\mathrm{H}]^{+}, 449[\mathrm{M}+\mathrm{H}-\mathrm{glu}]^{+}$, $325[2 \mathrm{glul}+\mathrm{H}]^{+}, 287[\mathrm{M}+\mathrm{H}-2 \mathrm{glu}]^{+}$
$40^{\text {c }}$	quercetin 3-O-galactoside (hyperoside)	Q 3-O-gal	14.04	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{12}$	465.1032	1.0	$\begin{aligned} & 503[\mathrm{M}+\mathrm{K}]^{+}, 487[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 465[\mathrm{M}+\mathrm{H}]^{+}, 303[\mathrm{M}+\mathrm{H} \text {-gal }]^{+} \end{aligned}$
Continued							

Peak No	Individual flavonoids	Abbreviation	$\begin{array}{\|l} \text { RT } \\ (\mathbf{m i n}) \end{array}$	Molecular Formula	ESI(+)-QToF/MS (experimental ions, $\boldsymbol{m} / \boldsymbol{z}$)		
					[M+H] ${ }^{+}$	error (ppm)	Fragmentation
$41^{\text {a }}$	kaempferol 3-O-(2"- O-glucosyl-6"-O- rhamnosyl)galactoside dimethyl ester	K 3-O-(2"-O-glu-6"-O-rham)gal DME	14.06	$\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{O}_{20}$	785.2136	-46.2	$\begin{aligned} & 823[\mathrm{M}+\mathrm{K}]^{+}, 807[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 785[\mathrm{M}+\mathrm{H}]^{+}, 639[\mathrm{M}+\mathrm{H}-\text { rham }]^{+}, \\ & 287\left[\mathrm{M}+\mathrm{H} \text {-rham-glu-gal- } 2 \mathrm{CH}_{3}\right]^{+} \end{aligned}$
$42^{\text {a,b }}$	isorhamnetin 3-O-($2^{\prime \prime}, 6^{\prime \prime}-$ di- O rhamnosyl)glucoside (soyanin V)	$\begin{aligned} & \text { I 3-O-(2", } 6^{\prime \prime} \text {-di-O- } \\ & \text { rham)glu } \end{aligned}$	14.14	$\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{20}$	771.2350	1.0	$\begin{aligned} & 809[\mathrm{M}+\mathrm{K}]^{+}, 793[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 771[\mathrm{M}+\mathrm{H}]^{+}, 625[\mathrm{M}+\mathrm{H}-\mathrm{rham}]^{+}, \\ & 479[\mathrm{M}+\mathrm{H}-2 \text { rham }]^{+}, 317[\mathrm{M}+\mathrm{H}-2 \text { rham }- \\ & \text { glu }^{+} \end{aligned}$
$43^{\text {a }}$	kaempferol 3-O-(2"-Orhamnosyl)glucoside (kaempferol 3-O-neohesperidoside)	K 3-O-(2"-Orham)glu	14.22	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{15}$	595.1657	-0.1	$\begin{aligned} & 633[\mathrm{M}+\mathrm{K}]^{+}, 617[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 595[\mathrm{M}+\mathrm{H}]^{+}, 449[\mathrm{M}+\mathrm{H}-\text { rham }]^{+}, \\ & 287[\mathrm{M}+\mathrm{H} \text {-rham-glu }]^{+} \end{aligned}$
$44^{\text {a }}$	isorhamnetin 3-O-(6"-O-glucosyl)galactoside	$\begin{aligned} & \text { I 3-O-(6"-O-glu) } \\ & \text { gal } \end{aligned}$	14.27	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{17}$	641.1712	0.0	$\begin{aligned} & 679[\mathrm{M}+\mathrm{K}]^{+}, 663[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 641[\mathrm{M}+\mathrm{H}]^{+}, 479[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, \\ & 317[\mathrm{M}+\mathrm{H} \text {-glu-gal }]^{+} 302[\mathrm{M}+\mathrm{H} \text {-glu- } \\ & \text { gal- } \left.-\mathrm{CH}_{3}\right]^{+} \end{aligned}$
$45^{\text {a }}$	genistein 7-O-(2"- O-apiosyl)glucoside (2"-O-apiosylgenistin)	$\begin{aligned} & \begin{array}{l} \mathrm{G}_{\mathrm{n}} 7-O-\left(2^{\prime \prime}-O-\right. \\ \text { api)glu } \end{array} \\ & \hline \end{aligned}$	14.37	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{14}$	565.1553	0.2	$\begin{aligned} & 603[\mathrm{M}+\mathrm{K}]^{+}, 587[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 565[\mathrm{M}+\mathrm{H}]^{+}, 433\left[\mathrm{M}+\mathrm{H}-\mathrm{api}^{+},\right. \\ & 271[\mathrm{M}+\mathrm{H}-\mathrm{api} \text {-glu }]^{+} \end{aligned}$
$46^{\text {c }}$	quercetin 3-O-glucoside (isoquercitrin)	Q 3-O-glu	14.46	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{12}$	465.1032	1.0	$\begin{aligned} & 503[\mathrm{M}+\mathrm{K}]^{+}, 487[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 465[\mathrm{M}+\mathrm{H}]^{+}, 303[\mathrm{M}+\mathrm{H}-\mathrm{glu}]^{+} \end{aligned}$
47	isorhamnetin 3-O-(2"-Orhamnosyl)galactoside	I 3-O-(2"-O-rham) gal	14.46	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{16}$	625.1769	0.9	$\begin{aligned} & 663[\mathrm{M}+\mathrm{K}]^{+}, 647[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 625[\mathrm{M}+\mathrm{H}]^{+}, 479[\mathrm{M}+\mathrm{H}-\mathrm{rham}]^{+}, \\ & 317\left[\mathrm{M}+\mathrm{H} \text {-rham-gal] }{ }^{+}\right. \end{aligned}$
$48^{\text {c }}$	luteolin 7-O-glucoside (cynaroside)	L 7-O-glu	14.48	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{11}$	449.1080	0.4	$449\left[\mathrm{M}+\mathrm{H}^{+}, 287[\mathrm{M}+\mathrm{H}-\mathrm{glu}]^{+}\right.$
$49^{\text {c }}$	genistein 7-O-glucoside (genistin)	$\mathrm{G}_{\mathrm{n}} 7-\mathrm{O}$-glu	14.63	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{10}$	433.1128	-0.3	$\begin{aligned} & 471[\mathrm{M}+\mathrm{K}]^{+}, 455[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 433[\mathrm{M}+\mathrm{H}]^{+}, 271[\mathrm{M}+\mathrm{H}-\mathrm{glu}]^{+} \end{aligned}$
$50^{\text {a }}$	daidzein 4'-O-(6"-Omalonyl)glucoside	$\begin{aligned} & \text { D 4'-O-(6"-O- } \\ & \text { mal)glu } \end{aligned}$	14.66	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{12}$	503.1183	-0.2	$\begin{aligned} & 541[\mathrm{M}+\mathrm{K}]^{+}, 525[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 503[\mathrm{M}+\mathrm{H}]^{+}, 255[\mathrm{M}+\mathrm{H}-\text { mal }- \text { glu }]^{+} \end{aligned}$
$51^{\text {a }}$	isorhamnetin 3-O-(6"-O-glucosyl) glucoside (isorhamnetin 3-O-gentiobioside)	$\begin{aligned} & \text { I 3-O-(6"-O-glu) } \\ & \text { glu } \end{aligned}$	14.67	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{17}$	641.1711	-0.2	$\begin{aligned} & 679[\mathrm{M}+\mathrm{K}]^{+}, 663[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 641[\mathrm{M}+\mathrm{H}]^{+}, 479[\mathrm{M}+\mathrm{H}-\text { glu }]^{+}, \\ & 317[\mathrm{M}+\mathrm{H}-2 \mathrm{glu}]^{+} 302[\mathrm{M}+\mathrm{H}-2 \text { glu- } \\ & \left.\mathrm{CH}_{3}\right]^{+} \end{aligned}$
$52^{\text {a }}$	kaempferol 3-O-(2"-O-glucosyl)galactoside dimethyl ester	K 3-O-(2"-O-glu) gal DME	14.90	$\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{16}$	639.1558	-56.6	$\begin{aligned} & 677[\mathrm{M}+\mathrm{K}]^{+}, 661[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 639[\mathrm{M}+\mathrm{H}]^{+}, 287\left[\mathrm{M}+\mathrm{H} \text {-glu-gal-2CH }{ }_{3}\right]^{+} \end{aligned}$
$53^{\text {a }}$	kaempferol 3-O-(2"-O-glucosyl)glucoside dimethyl ester	K 3-O-(2"-O-glu) glu DME	15.03	$\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{16}$	639.1559	-56.4	$\begin{aligned} & 677[\mathrm{M}+\mathrm{K}]^{+}, 661[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 639[\mathrm{M}+\mathrm{H}]^{+}, 287\left[\mathrm{M}+\mathrm{H}-2 \mathrm{glu}-2 \mathrm{CH}_{3}\right]^{+} \end{aligned}$
54	kaempferol 3-O-(6"-Orhamnosyl)galactoside (kaempferol 3-O-robinobioside, biorobin)	$\text { K 3-O-(} 6^{\prime \prime}-\mathrm{O}-$ rham)gal	15.03	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{15}$	595.1658	0.1	$\begin{aligned} & 633[\mathrm{M}+\mathrm{K}]^{+}, 617[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 595[\mathrm{M}+\mathrm{H}]^{+}, 449[\mathrm{M}+\mathrm{H}-\mathrm{rham}]^{+}, \\ & 287[\mathrm{M}+\mathrm{H} \text {-rham-gal }]^{+} \end{aligned}$
$55^{\text {a,c }}$	isorhamnetin 3-O-(2"-O-rhamnosyl) glucoside (isorhamnetin 3-O-neohesperidoside, calendoflavoside)	$\begin{aligned} & \text { I 3-O-(2"-O-rham) } \\ & \text { glu } \end{aligned}$	15.13	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{16}$	625.1767	0.6	$\begin{aligned} & 663[\mathrm{M}+\mathrm{K}]^{+}, 647[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 625[\mathrm{M}+\mathrm{H}]^{+}, 479[\mathrm{M}+\mathrm{H}-\text { rham }]^{+}, \\ & 317[\mathrm{M}+\mathrm{H} \text {-rham-glu }]^{+} \end{aligned}$
$56^{\text {a }}$	tectorigenin 7-O-glucoside (tectoridin)	T 7-O-glu	15.37	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{11}$	463.1239	0.9	$\begin{aligned} & 501[\mathrm{M}+\mathrm{K}]^{+}, 485[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 463[\mathrm{M}+\mathrm{H}]^{+}, 301[\mathrm{M}+\mathrm{H}-\text { glu }]^{+}, \\ & 286\left[\mathrm{M}+\mathrm{H}-\mathrm{glu}-\mathrm{CH}_{3}\right]^{+} \end{aligned}$
$57^{\text {a,c }}$	kaempferol 3-O-galactoside (trifolin)	K 3-O-gal	15.67	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{11}$	449.1083	1.0	$\begin{aligned} & 487[\mathrm{M}+\mathrm{K}]^{+}, 471[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 449[\mathrm{M}+\mathrm{H}]^{+}, 287[\mathrm{M}+\mathrm{H}-\mathrm{gal}]^{+} \end{aligned}$
$58^{\text {c }}$	kaempferol 3-O-(6"-Orhamnosyl)glucoside (kaempferol 3-O-rutinoside, nicotiflorin)	$\text { K 3-O- }\left(6^{\prime \prime}-\mathrm{O}-\right.$ rham)glu	15.95	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{15}$	595.1657	-0.1	$\begin{aligned} & 633[\mathrm{M}+\mathrm{K}]^{+}, 617[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 595[\mathrm{M}+\mathrm{H}]^{+}, 449[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}, \\ & 287[\mathrm{M}+\mathrm{H} \text {-rham-glu }]^{+} \end{aligned}$
$59^{\text {c }}$	daidzein 7-O-(6"-Omalonyl)glucoside ($6^{\prime \prime}$-O-malonyldaidzin)	$\begin{aligned} & \text { D 7-O-(6"-O-mal) } \\ & \text { glu } \end{aligned}$	16.09	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{12}$	503.1185	0.2	$\begin{aligned} & 541[\mathrm{M}+\mathrm{K}]^{+}, 525[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 503[\mathrm{M}+\mathrm{H}]^{+}, 255[\mathrm{M}+\mathrm{H}-\mathrm{mal} \text {-glu }]^{+} \end{aligned}$
60	isorhamnetin 3-O-(6"-O-rhamnosyl)galactoside (isorhamnetin 3-O-robinobioside)	I 3-O-(6"'-O-rham) gal	16.12	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{16}$	625.1764	0.1	$\begin{aligned} & 663[\mathrm{M}+\mathrm{K}]^{+}, 647[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 625[\mathrm{M}+\mathrm{H}]^{+}, 479[\mathrm{M}+\mathrm{H}-\text { rham }]^{+}, \\ & 317[\mathrm{M}+\mathrm{H} \text {-rham-gal }]^{+} \end{aligned}$
61	luteolin 7-O-(2"-Omalonyl)glucoside	$\begin{aligned} & \text { L 7-O-(2"-O-mal) } \\ & \text { glu } \end{aligned}$	16.24	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{14}$	535.1089	1.3	$\begin{aligned} & 573[\mathrm{M}+\mathrm{K}]^{+}, 557[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 535[\mathrm{M}+\mathrm{H}]^{+}, 287[\mathrm{M}+\mathrm{H}-\mathrm{mal}-\mathrm{glu}]^{+} \end{aligned}$
$62^{\text {c }}$	isorhamnetin 3-O-(6"-O-rhamnosyl)glucoside (isorhamnetin 3-O-rutinoside, narcissin)	$\begin{array}{\|l} \text { I 3-O-(6"-O-rham) } \\ \text { glu } \end{array}$	16.48	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{16}$	625.1761	-0.3	$\begin{aligned} & 663[\mathrm{M}+\mathrm{K}]^{+}, 647[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 625[\mathrm{M}+\mathrm{H}]^{+}, 479[\mathrm{M}+\mathrm{H}-\text { rham }]^{+}, \\ & 317[\mathrm{M}+\mathrm{H} \text {-rham-glu }]^{+} \end{aligned}$
$63^{\text {c }}$	kaempferol 3-O-glucoside (astragalin)	K 3-O-glu	16.49	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{11}$	449.1084	1.2	$\begin{aligned} & 487[\mathrm{M}+\mathrm{K}]^{+}, 471[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 449[\mathrm{M}+\mathrm{H}]^{+}, 287[\mathrm{M}+\mathrm{H}-\mathrm{glu}]^{+} \end{aligned}$
Co							

Peak No	Individual flavonoids	Abbreviation	$\begin{aligned} & \text { RT } \\ & (\mathbf{m i n}) \end{aligned}$	Molecular Formula	ESI(+)-QToF/MS (experimental ions, $\boldsymbol{m} / \boldsymbol{z}$)		
					[M+H] ${ }^{+}$	error (ppm)	Fragmentation
$64^{\text {a,c }}$	isorhamnetin 3-O-galactoside (cacticin)	I 3-O-gal	16.60	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{12}$	479.1191	1.5	$\begin{aligned} & 517[\mathrm{M}+\mathrm{K}]^{+}, 501[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 479[\mathrm{M}+\mathrm{H}]^{+}, 317[\mathrm{M}+\mathrm{H}-\mathrm{gal}]^{+} \end{aligned}$
$65^{\text {c }}$	apigenin 7-O-glucoside (cosmosiin)	$\mathrm{A}_{\mathrm{p}} 7-\mathrm{O}$-glu	16.95	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{10}$	433.1133	0.9	$\begin{aligned} & 455[\mathrm{M}+\mathrm{Na}]^{+}, 433[\mathrm{M}+\mathrm{H}]^{+}, \\ & 271[\mathrm{M}+\mathrm{H} \text {-glu }]^{+} \end{aligned}$
$66^{\text {a,c }}$	isorhamnetin 3-O-glucoside	I 3-O-glu	17.05	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{12}$	479.1188	0.8	$\begin{aligned} & 517[\mathrm{M}+\mathrm{K}]^{+}, 501[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 479[\mathrm{M}+\mathrm{H}]^{+}, 317[\mathrm{M}+\mathrm{H}-\mathrm{glu}]^{+} \end{aligned}$
67	chrysoeriol 7-O-glucoside (thermopsoside)	C 7-O-glu	17.70	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{11}$	463.1237	0.5	$\begin{aligned} & 485[\mathrm{M}+\mathrm{Na}]^{+}, 463[\mathrm{M}+\mathrm{H}]^{+}, \\ & 301[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, 286\left[\mathrm{M}+\mathrm{H} \text {-glu- } \mathrm{CH}_{3}\right]^{+} \end{aligned}$
$68^{\text {a }}$	luteolin 7-O-(6"-Omalonyl)glucoside	$\begin{aligned} & \text { L 7-O-(6" }-O-\mathrm{mal}) \\ & \text { glu } \end{aligned}$	17.98	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{14}$	535.1084	0.3	$\begin{aligned} & 557[\mathrm{M}+\mathrm{Na}]^{+}, 535[\mathrm{M}+\mathrm{H}]^{+}, \\ & 287[\mathrm{M}+\mathrm{H}-\text { mal-glu }]^{+} \end{aligned}$
$69^{\text {a }}$	genistein $4^{\prime}-\mathrm{O}$-($6^{\prime \prime}-\mathrm{O}-$ malonyl)glucoside	$\begin{aligned} & \begin{array}{l} \mathrm{G}_{\mathrm{n}} \text { ' }^{\prime}-\mathrm{O}-\left(6^{\prime \prime}-\mathrm{O}-\right. \\ \text { mal)glu } \end{array} \\ & \hline \end{aligned}$	18.12	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{13}$	519.1136	0.5	$\begin{aligned} & 557[\mathrm{M}+\mathrm{K}]^{+}, 541[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 519[\mathrm{M}+\mathrm{H}]^{+}, 271[\mathrm{M}+\mathrm{H}-\text { mal-glu }]^{+} \end{aligned}$
$70^{\text {c }}$	genistein 7-O-(6"-Omalonyl)glucoside (6"-O-malonylgenistin)	$\begin{aligned} & \mathrm{G}_{\mathrm{n}}-7-\mathrm{O}-\left(6^{\prime \prime}-\mathrm{O}-\right. \\ & \mathrm{mal}) \mathrm{glu} \end{aligned}$	19.16	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{13}$	519.1130	-0.6	$\begin{aligned} & 557[\mathrm{M}+\mathrm{K}]^{+}, 541[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 519[\mathrm{M}+\mathrm{H}]^{+}, 271[\mathrm{M}+\mathrm{H}-\mathrm{mal} \text {-glu }]^{+} \end{aligned}$
$71^{\text {a }}$	tectorigenin 7-O-(6"-O-malonyl)glucoside (6"-O-malonyltectoridin)	$\begin{aligned} & \text { T 7-O-(6"-O-mal) } \\ & \text { glu } \end{aligned}$	19.71	$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{14}$	549.1237	-0.3	$\begin{aligned} & 587[\mathrm{M}+\mathrm{K}]^{+}, 571[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 549[\mathrm{M}+\mathrm{H}]^{+}, 301[\mathrm{M}+\mathrm{H}-\mathrm{mal}-\mathrm{glu}]^{+}, \\ & 286\left[\mathrm{M}+\mathrm{H}-\text { glu-CH } \mathrm{CH}_{3}\right]^{+} \end{aligned}$
72	afromosin 7-O-glucoside	$\mathrm{A}_{\mathrm{f}} 7-\mathrm{O}$-glu	19.71	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{10}$	461.1445	0.6	$\begin{aligned} & 499[\mathrm{M}+\mathrm{K}]^{+}, 483[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 461[\mathrm{M}+\mathrm{H}]^{+}, 299[\mathrm{M}+\mathrm{H}-\text { glu }]^{+}, \\ & 284\left[\mathrm{M}+\mathrm{H}-\text { glu }-\mathrm{CH}_{3}\right]^{+} \\ & \hline \end{aligned}$
$73^{\text {c }}$	daidzein	D	20.17	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{4}$	255.0653	0.4	$277[\mathrm{M}+\mathrm{Na}]^{+}, 255[\mathrm{M}+\mathrm{H}]^{+}$
$74^{\text {a }}$	apigenin 7-O-(6"-Omalonyl)glucoside	$\begin{aligned} & \begin{array}{l} \mathrm{A}_{\mathrm{p}} 7-O-\left(6^{\prime \prime}-O-\right. \\ \text { mal)glu } \end{array} \\ & \hline \end{aligned}$	20.50	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{13}$	519.1129	-0.8	$\begin{aligned} & 557[\mathrm{M}+\mathrm{K}]^{+}, 541[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 519[\mathrm{M}+\mathrm{H}]^{+}, 271[\mathrm{M}+\mathrm{H}-\mathrm{mal}-\mathrm{glu}]^{+} \end{aligned}$
$75^{\text {a }}$	chrysoeriol 7-O-(6"-Omalonyl)glucoside	$\begin{aligned} & \text { C 7-O-(6"-O-mal) } \\ & \text { glu } \end{aligned}$	21.00	$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{14}$	549.1239	0.0	$\begin{aligned} & 571[\mathrm{M}+\mathrm{Na}]^{+}, 549[\mathrm{M}+\mathrm{H}]^{+}, \\ & 301[\mathrm{M}+\mathrm{H}-\mathrm{mal} \text {-glu }]^{+} \end{aligned}$
$76^{\text {c }}$	luteolin	L	22.02	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{6}$	287.0550	0.0	$287[\mathrm{M}+\mathrm{H}]^{+}$
77	formononetin 7-O-(6"- O-malonyl)glucoside (6"-O-malonylononin)	$\begin{aligned} & \text { F 7-O-(6"-O-mal) } \\ & \text { glu } \end{aligned}$	22.68	$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{12}$	517.1344	0.7	$\begin{aligned} & 555[\mathrm{M}+\mathrm{K}]^{+}, 539[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 517[\mathrm{M}+\mathrm{H}]^{+}, 269[\mathrm{M}+\mathrm{H}-\mathrm{mal}-\mathrm{glu}]^{+}, \\ & 254\left[\mathrm{M}+\mathrm{H}-\text { mal-glu-} \mathrm{CH}_{3}\right]^{+} \end{aligned}$
$78^{\text {a }}$	afromosin 7-O-(6"-Omalonyl)glucoside	$\begin{aligned} & \mathrm{A}_{\mathrm{f}} 7-\mathrm{O}-\left(6^{\prime \prime}-\mathrm{O}-\mathrm{mal}\right) \\ & \mathrm{glu} \end{aligned}$	22.74	$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{13}$	547.1448	0.3	$\begin{aligned} & 585[\mathrm{M}+\mathrm{K}]^{+}, 569[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 547[\mathrm{M}+\mathrm{H}]^{+}, 299[\mathrm{M}+\mathrm{H}-\mathrm{mal} \text {-glu }]^{+}, \\ & 284\left[\mathrm{M}+\mathrm{H}-\text { mal-glu-CH }{ }^{2}\right]^{+} \\ & \hline \end{aligned}$
$79^{\text {c }}$	genistein	G_{n}	23.54	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{5}$	271.0601	0.0	$271[\mathrm{M}+\mathrm{H}]^{+}$
$80^{\text {c }}$	apigenin	A_{p}	23.68	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{5}$	271.0600	-0.4	$271[\mathrm{M}+\mathrm{H}]^{+}$
$81^{\text {a }}$	tectorigenin	T	23.82	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{6}$	301.0710	1.1	$\begin{aligned} & 323[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 301[\mathrm{M}+\mathrm{H}]^{+}, 286\left[\mathrm{M}+\mathrm{H}-\mathrm{CH}_{3}\right]^{+} \end{aligned}$
$82^{\text {c }}$	formononetin	F	24.99	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}$	269.0809	0.2	$\begin{aligned} & 291[\mathrm{M}+\mathrm{Na}]^{+}, 269[\mathrm{M}+\mathrm{H}]^{+}, \\ & 254\left[\mathrm{M}+\mathrm{H}-\mathrm{CH}_{3}\right]^{+} \end{aligned}$
83	afromosin	A_{f}	25.22	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5}$	299.0914	0.0	$\begin{aligned} & 337[\mathrm{M}+\mathrm{K}]^{+}, 321[\mathrm{M}+\mathrm{Na}]^{+}, \\ & 299[\mathrm{M}+\mathrm{H}]^{+}, 284\left[\mathrm{M}+\mathrm{H}-\mathrm{CH}_{3}\right]^{+} \end{aligned}$

Table 1. Characterization of eighty-three flavonoid derivatives from young leaves of 21 soybean cultivars using UPLC-DAD-QToF/MS. All samples analyzed in positive ESI-ionization mode ($\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$) of ToF$\mathrm{MS} ;[\mathrm{M}+\mathrm{Na}]^{+}$and $[\mathrm{M}+\mathrm{K}]^{+}$adduct ions presented. Each peak was tentatively determined by comparing elution order, MS fragmentation and NMR confirmation presented in constructed library. RT = retention time; DME = dimethyl ester; $\mathrm{A}_{\mathrm{f}}=$ afromosin; $\mathrm{A}_{\mathrm{p}}=$ apigenin; $\mathrm{C}=$ chrysoeriol; $\mathrm{D}=$ daidzein; $\mathrm{F}=$ formononetin; $\mathrm{G}_{\mathrm{n}}=$ genistein; $\mathrm{G}_{\mathrm{y}}=$ glycitein; $\mathrm{I}=$ isorhamnetin; $\mathrm{K}=$ kaempferol; $\mathrm{L}=$ luteolin; $\mathrm{Q}=$ quercetin; $\mathrm{T}=$ tectorigenin; api $=$ apiose $(132 \mathrm{Da})$; gal = galactose $(162 \mathrm{Da})$; glu = glucose $(162 \mathrm{Da})$; rham = rhamnose (146 Da); $\mathrm{mal}=$ malonyl (86 Da). a, new flavonoid in soybean leaves; b , newly named; c , further confirmed in comparison with authentic standards.
similar cultivars (SLs 6, 9 and 14) with Daewon kong (SL2, yellow) and consistent with deglycosidic patterns of peaks 6 and $7^{14-17,20,23,25}$. Especially, two di-glycosides related to peaks 16 and 21, 'K 3-O-(2"-O-glu)gal' (peak 26) and 'K 3-O-(2"-O-glu)glu' (K 3-O-sop, peak 28) were only detected with large amount in SLs 7 and 21 ${ }^{14,15,17,24}$. Additionally, new tri-glycosides, peaks 22 and $23\left(\mathrm{~m} / z 787[\mathrm{M}+\mathrm{H}]^{+}\right.$, based on I) were identified as 'I 3-O- $\left(2^{\prime \prime}\right.$ -O-glu-6"-O-rham)gal' (named as soyanin I) and 'I 3-O-(2"-O-glu-6"-O-rham)glu' (named as soyanin II) in mainly SLs 13 and 19, respectively.

Twelve glycosides of $\mathbf{g l u}^{1}-$ gal $^{6}\left(\right.$ peaks 18, 30 and 44) / $\mathbf{g l u}^{1}-$ glu $^{6}\left(\right.$ gen, peaks 20, 39 and 51) and $\mathbf{r h a m}^{1}\left(\mathbf{g l u}^{(\mathbf{1})}\right.$)$\mathbf{g a l}^{2(6)}$ (peaks 3, 10 and 12)/ $\mathbf{r h a m}^{1}\left(\mathbf{g l u}^{(1)}\right)$-glu $^{2(6)}$ (peaks 5, 17 and 15) were closely related to each other and identified simultaneously in SL4 unlike other cultivars (Supplementary Fig. S1). Among them, most glycosides were confirmed as new compounds except for K 3-O-($2^{\prime \prime}$-O-rham- $6^{\prime \prime}-O$-glu) gal (peak 10) and K 3-O-($6^{\prime \prime}-O-$ glu)glu (K 3-O-gen, peak 39) 5, 14,23,25. In special, 'I 3-O-(2"-O-rham-6"-O-glu)gal' (peak 12) and 'I 3-O-(2"-O-rham- $6^{\prime \prime}-O$-glu $)$ glu' (peak 15) with $m / z 787[\mathrm{M}+\mathrm{H}]^{+}$were tentatively determined as new tri-IGs through mass fragmented interpretation.

Twelve di-glycosides of rham $^{1}{ }^{1}$ gal ${ }^{6}$ (rob, peaks 35, 54 and 60) ${ }^{5,14,19,21,23,25} /$ rham 1-glu ${ }^{6}$ (rut, peaks 38, 58 and 62) ${ }^{5,14,19,21}$ and rham $^{1}-$ gal 2 (peaks 24, 37 and 47$)^{14,16} /$ rham 1-glu ${ }^{2}$ (neo, peaks 25,43 and 55) were fragmented
from the parent ions $\left([\mathrm{M}+\mathrm{H}]^{+}, m / z 611,595,625\right.$, based on \mathbf{Q}, \mathbf{K} and \mathbf{I}, respectively) to $[\mathrm{M}+\mathrm{H} \text {-rham }]^{+}$and $[\mathrm{M}+\mathrm{H} \text {-rham-gal }]^{+}$/ $[\mathrm{M}+\mathrm{H} \text {-rham-glu }]^{+}$. Six glycosides belonging to rham 1-gal ${ }^{6}$ and rham 1-glu ${ }^{6}$ described above were evenly distributed in SLs 1 (Shinpaldalkong2ho), 4 and 16 , while, ' $\mathrm{K} 3-\mathrm{O}-\left(6{ }^{\prime \prime}-\mathrm{O}\right.$-rham) gal' ($\mathrm{K} 3-\mathrm{O}-$ rob, biorobin, peak 54) and ' $\mathrm{K} 3-\mathrm{O}$-(6 "-O-rham)glu' (K 3-O-rut, nicotiflorin, peak 58) were only detected with large amount in SL5 (Supplementary Fig. S1). 'K 3-O-(2"-O-rham)gal' (peak 37) and 'I 3-O-(2"-O-rham) gal' (peak 47) of $\mathbf{r h a m}^{1}-$ gal 2 were confirmed as major constituents, but new glycosides (peaks 25, $\mathbf{4 3}$ and 55) of rham 1-glu ${ }^{2}$ (neo) slightly contained in SL18.

Six tri-glycosides $\left([\mathrm{M}+\mathrm{H}]^{+}, m / z 757,741,771\right.$, based on \mathbf{Q}, \mathbf{K} and \mathbf{I}, respectively), $\mathbf{r h a m}^{\mathbf{1}}\left(\mathbf{r h a m}^{(\mathbf{1})}\right)$-gal $^{\mathbf{2}(6)}$ (peaks 13, 27 and 33) and $\operatorname{rham}^{1}\left(\mathbf{r h a m}^{(1)}\right)$-gal ${ }^{4(6)}$ (peaks 14, 29 and 34) composed of rham 1-gal ${ }^{6}$ (peaks 35, 54 and 60) and rham ${ }^{1}$-gal 2 (peaks 24, 37 and 47) were fragmented with [$\left.\mathrm{M}+\mathrm{H}-\mathrm{rham}\right]^{+}$, $[\mathrm{M}+\mathrm{H}-2 \mathrm{rham}]^{+}$and $[\mathrm{M}+\mathrm{H}-2 \text { rham-gal }]^{+}$. As major compound from mainly SL5, it was reported that ' $\mathrm{K} 3-\mathrm{O}$-($2^{\prime \prime}, 6^{\prime \prime}$-di- $\mathrm{O}-\mathrm{rham}$) gal' (peak 27) ${ }^{5,14-17,23,25}$ have significant antioxidant and hepatoprotective activities against carbon tetrachlorideinduced liver injury in mice ${ }^{20}$. Especially, peak 42 of rham $^{1}\left(\mathbf{r h a m}^{(1)}\right)$-glu ${ }^{2(6)}$ with peaks $\mathbf{1 3}, 33$, and $\mathbf{3 4}$ were newly identified from SLs $1,3,4,8,12,13,16,17,19$ and 20 , among them, 'I $3-O$-($2^{\prime \prime}, 6$ " -di- O-rham) gal' (peak 33) largely found as well as closely related to peak 27 presented as major tri-KGs in Korean representative variety, Shinpaldalkong2ho (SL1). Furthermore, peak 33, 'I 3-O-(4",6"-di-O-rham)gal' (peak 34) and 'I 3-O-(2",6"-di-O-rham)glu' (peak 42) were termed as soyanins III, IV and V, respectively (Fig. 3 and Supplementary Fig. S2). Recently, two tri-IGs (isorhamnetin 3-O-rhamnosylrhamnosylglucoside and 3-O-rhamnosylrhamnosylgalactoside) were partially characterized by LC-MS, UV spectra and hydrolysis from the leaves of wild Taiwanese G. max subsp. formosana, but their glycosylated positions have not been determined ${ }^{21}$.

Flavone (9) and isoflavone (19) derivatives. Among nine flavone derivatives identified as minor compounds, seven glycosides (peaks $\mathbf{4 8}, \mathbf{6 1}, \mathbf{6 5}, \mathbf{6 7}, \mathbf{6 8}, 74$ and $\mathbf{7 5}$) were described with combination to the $7-\mathrm{OH}$ of luteolin ($\mathbf{L}, m / z 287$), apigenin ($\mathbf{A}_{\mathbf{P}}, m / z 271$) and chrysoeriol (C, $m / z 301$) (Fig. 1A and Table 1). Four glycosides (peaks 61/68, 74 and $\mathbf{7 5} ;[\mathrm{M}+\mathrm{H}]^{+}, m / z 535,519,549$, based on $\mathbf{L}, \mathbf{A}_{\mathrm{p}}$ and \mathbf{C}, respectively) were malonylated with L 7-O-glu (cynaroside, peak 48), $\mathrm{A}_{\mathrm{p}} 7-\mathrm{O}$-glu (cosmosiin, peak 65) and C 7-O-glu (thermopsoside, peak 67) corresponding to structures confirmed by comparing authentic standards and previous reports ${ }^{14,21,23,26}$. These new malonylated (mal) glycosides were tentatively identified as 'L 7-O-(2"-O-mal)glu' (peak 61), 'L 7-O-(6"-Omal)glu' (peak 68), ' $\mathrm{A}_{\mathrm{p}} 7-\mathrm{O}-\left(6^{\prime \prime}-\mathrm{O}-\mathrm{mal}\right) \mathrm{glu}$ ' (peak 74) and 'C 7-O-(6"-O-mal)glu' (peak 75) with key fragment of $[\mathrm{M}+\mathrm{H}-\mathrm{mal}-\mathrm{glu}]^{+}$. Peak 68 was found to be consistent with that isolated from Korean lettuce samples ${ }^{27}$.

From nineteen isoflavone derivatives (5 aglycones and 14 glycosides), the glycosides were presented as structures in which glucose (162 Da ; peaks $9,19,49,56$ and 72), malonylglucose (mal-glu, 248 Da ; peaks 50, 59, 69-71, 77 and 78) and apiosylglucose (api-glu, 294 Da; peaks 36 and 45) combined to the $7-\mathrm{OH}$ or $4^{\prime}-\mathrm{OH}$ of daidzein ($\mathbf{D}, m / z 255$; peak 73), genistein ($\mathbf{G}_{\mathrm{n}}, m / z 271$; peak 79), glycitein ($\mathbf{G}_{\boldsymbol{y}}, m / z 285$), formononetin ($\mathbf{F}, m / z$ 269; peak 82), afromosin ($\mathbf{A}_{\mathrm{f}}, m / z$ 299; peak 83) and tectorigenin (T, $m / z 301$; peak 81) (Fig. 1B and Table 1). Among them, eleven isoflavones ${ }^{28-30}$ corresponding to aglycones (peaks 73 and 79), 7-O-glu (peaks 9, 19 and 49), 7-O-(6"-O-mal)glu (peaks 59 and 70), $4^{\prime}-\mathrm{O}-\left(6^{\prime \prime}-\mathrm{O}\right.$-mal)glu (peaks 50 and 69), 7 -O-($\mathbf{6}^{\prime \prime}$ - O -api) glu (peak 36) and $\mathbf{7 - O}-\left(\mathbf{2}^{\prime \prime}-\mathbf{O}-\mathbf{a p i}\right) \mathbf{g l u}$ (peak 45) have already been reported from seeds of soybean cultivars used in the present study. Particularly, peaks 50 and $\mathbf{6 9}$ were newly reported as 'D 4'-O-($\left.6^{\prime \prime}-O-m a l\right)$ glu' (6 " $-O$-malonylisodaidzin; $m / z 503[\mathrm{M}+\mathrm{H}]^{+}, 255[\mathrm{M}+\mathrm{H} \text {-mal-glu }]^{+}$) and ' $\mathrm{G}_{\mathrm{n}} 4^{4}$ ' $-O-\left(6^{\prime \prime}-O\right.$-mal)glu' ($6^{\prime \prime}$-O-malonylsophoricoside; $\left.m / z 519[\mathrm{M}+\mathrm{H}]^{+}, 271[\mathrm{M}+\mathrm{H}-\mathrm{mal}-\mathrm{glu}]^{+}\right)^{30}$ from the SLs, respectively, and provided similar fragmentation with the peaks 59 ($6^{\prime \prime}$-O-malonyldaidzin) and 70 ($6^{\prime \prime}-O$-malonylgenistin) well-known from soybean seeds and leaves (Supplementary Fig. S1, Supplementary Table S1 and Table 1) ${ }^{16,23,25,31-35}$. Additional peaks $\mathbf{3 6}$ and $\mathbf{4 5}$ were tentatively identified as new di-glycosides of ' $\mathrm{G}_{\mathrm{n}} 7-\mathrm{O}-\left(6^{\prime \prime}-\mathrm{O}\right.$-api)glu' ($6^{\prime \prime}-\mathrm{O}$-apiosylgenistin) and ' $\mathrm{G}_{\mathrm{n}} 7-\mathrm{O}-\left(2^{\prime \prime}-\mathrm{O}\right.$-api) glu' ($2^{\prime \prime}-\mathrm{O}$-apiosylgenistin) with same $m / z 565[\mathrm{M}+\mathrm{H}]^{+}, 433[\mathrm{M}+\mathrm{H} \text {-api }]^{+}$and $271[\mathrm{M}+\mathrm{H}-\mathrm{api}-\mathrm{glu}]^{+}$, and have also not been reported in the SLs yet.

Eight methoxy-isoflavones of 7-O-glu (peaks 56 and 72) and 7-O-(6"-O-mal)glu (peaks 71, 77 and 78) based on $\mathbf{F}, \mathbf{A}_{\mathrm{f}}$ and $\mathbf{T}\left([\mathrm{M}+\mathrm{H}]^{+}, m / z 269,299,301\right.$; peaks $\mathbf{8 2}, \mathbf{8 3}$ and $\mathbf{8 1}$, respectively) were interestingly developed during the SLs growth, and their aglycones indicated certain fragment ion related to methyl $\left(\mathrm{CH}_{3}, 15 \mathrm{Da}\right)$ loss in MS positive ionization. Peaks 77 ($6^{\prime \prime}$-O-malonylononin), $\mathbf{8 2}(\mathbf{F})$ and $\mathbf{8 3}\left(\mathrm{A}_{\mathrm{f}}\right)$ have been studied from the SLs by NMR and $\mathrm{MS}^{14,36,37}$, while two glycosides close to peaks 72 and 78 were characterized as afromosin O-glucoside and O-malonylglucoside whose malonylated and glycosylated positions are not determined ${ }^{38}$. Nevertheless, peaks 72 and 78 could be suggested as ' $\mathrm{A}_{\mathrm{f}} 7-\mathrm{O}$-glu' ($\mathrm{m} / \mathrm{z} 461[\mathrm{M}+\mathrm{H}]^{+}, 299[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, 284\left[\mathrm{M}+\mathrm{H} \text {-glu- } \mathrm{CH}_{3}\right]^{+}$) and ' A_{f} $7-\mathrm{O}-\left(6^{\prime \prime}-\mathrm{O}-\mathrm{mal}\right) \mathrm{glu}{ }^{\prime}\left(\mathrm{m} / \mathrm{z} 547[\mathrm{M}+\mathrm{H}]^{+}, 299[\mathrm{M}+\mathrm{H}-\mathrm{mal} \text {-glu }]^{+}, 284\left[\mathrm{M}+\mathrm{H}-\mathrm{mal}-\mathrm{glu}-\mathrm{CH}_{3}\right]^{+}\right)$considering isoflavone profiles (elution order, UV spectra and QToF-MS data) presented in roots of Medicago truncatula ${ }^{39}$. Besides, peaks 56, 71 and 81 newly generated from the SLs were tentatively identified as ' $\mathrm{T} 7-O$-glu' $\left(\mathrm{m} / \mathrm{z} 463[\mathrm{M}+\mathrm{H}]^{+}\right.$, $301[\mathrm{M}+\mathrm{H} \text {-glu }]^{+}, 286\left[\mathrm{M}+\mathrm{H} \text {-glu- } \mathrm{CH}_{3}\right]^{+}$), 'T 7-O- $\left(6^{\prime \prime}-\mathrm{O}-\mathrm{mal}\right) \mathrm{glu}$ ' $\left(\mathrm{m} / \mathrm{z} 549[\mathrm{M}+\mathrm{H}]^{+}, 301[\mathrm{M}+\mathrm{H}-\mathrm{mal}-\mathrm{glu}]^{+}\right.$, $286\left[\mathrm{M}+\mathrm{H}-\mathrm{mal} \text {-glu- } \mathrm{CH}_{3}\right]^{+}$) and ' T ' $\left(\mathrm{m} / \mathrm{z} 301[\mathrm{M}+\mathrm{H}]^{+}, 286\left[\mathrm{M}+\mathrm{H}-\mathrm{CH}_{3}\right]^{+}\right.$), respectively, depending on reports of Stellaria species belong to the Caryophyllaceae ${ }^{40}$, and necessary to confirm through further NMR studies.

Quantification of 83 flavonoid derivatives in soybean leaves. The contents of eighty-three flavonoid derivatives are summarized according to their aglycones and glycosides in Table 2. The total content ($\mathrm{mg} / 100 \mathrm{~g}$, dry weight) of these derivatives ranged from 342.5 to 992.7 (average 684.9) in young leaves of 21 soybean cultivars, and detailed as flavonols (275.1-854.0), flavones (3.6-17.3) and isoflavones (61.2-154.0) (Fig. 2A). These results (mainly flavonols, 83.6%) are consistent with previous reports that the leaf-flavonols (487.3-2280.0) were much higher than seed-isoflavones (240.2-445.2) as well as leaf-isoflavones (91.3-124.3) ${ }^{5,6,28}$. As presented in Fig. 2B,C, the abundant flavonols contained primarily as di- (50.4\%) and tri- (44.0\%) glycosidic forms from the SLs were distributed in the order of $\mathbf{K}(79.7-853.5,57.5 \%), \mathbf{Q}(1.6-376.3,23.9 \%)$ and $\mathbf{I}(70.0-243.2,18.6 \%)$

Glycosides	$\begin{aligned} & \text { Peak } \\ & \text { No } \end{aligned}$	Shinpuldal2ho（SLI）	$\begin{array}{\|l\|} \hline \text { Daewon } \\ \text { kong (SL.2) } \end{array}$		SLA	sts	SL6	st7	Sts	sı9	sıı0	stı1	st12	st13	st14	st15	su16	su7	suı	st19	SL20	SL21
Flavonos（55）																						
Querection derinatives（18）																						
Mono	40	ND	ND	${ }^{1.110 .1}$	1.5 ± 0.1	ND	ND	ND	${ }^{1.1 .10 .3}$	ND	7.2 ± 0.2	4.8 ± 0.7	4.600 .6	1.2 ± 0.3	ND	7.1 ± 0.6	${ }^{0.8 \pm 0.3}$	${ }^{6.3 \pm 0.8}$	13.0 ± 1.1	${ }^{0.8 \pm 0.4}$	${ }^{6.0 \pm 0.0}$	ND
	46	2.0 ± 0.3	ND	${ }_{1.4 \pm 0.3}$	${ }^{1.8 \pm 0.1}$	ND	ND	ND	3．70．2	ND	${ }^{13.000 .2}$	${ }^{8.4 \pm 0.4}$	${ }^{6.8 \pm 0.4}$	${ }^{2.1 \pm 0.2}$	ND	11.5 ± 1.0	2.1 ± 0.4	${ }_{6} 6.10 .5$	${ }^{42.0 \pm 1.1}$	${ }^{3.9 \pm 0.9}$	${ }^{7.6 \pm 0.0}$	ND
Di	8	${ }^{1.440 .3}$	ND	10.0 ± 0.2	ND	${ }_{0} 0.4 \pm 0.1$	0.6 ± 0.0	${ }^{1.110 .3}$	10.6 ± 0.3	ND	1069×6.4	58.1 ± 2.5	32.1 ± 0.6	${ }^{4.7 \pm 0.6}$	ND	113.9 ± 11.3	24 ± 0.4	12.2 ± 0.4	${ }^{2.3 \pm 0.5}$	${ }^{8.10 .5}$	${ }^{2.1 \pm 0.1}$	ND
	11	${ }^{1.0 \pm 0.1}$	ND	10.3 ± 0.2	ND	ND	${ }^{0.3 \pm 0.0}$	${ }_{0} 0.60 .1$	11.6 ± 0.6	ND	146.188 .2	${ }^{72.7 \pm 5.9}$	48.2 ± 0.4	${ }^{3.5 \pm 0.2}$	ND	1649 ± 121	24 ± 0.6	${ }^{13.3 \pm 0.4}$	${ }^{4.3 \pm 0.6}$	${ }^{7.2 \pm 0.6}$	${ }^{2.3 \pm 0.3}$	ND
	18＇	ND	ND	ND	11.2 ± 0.2	ND																
	20＇0	ND	ND	ND	27．2土0．2	ND	${ }^{1.110 .1}$	ND	ND	ND												
	24	ND	11.5 ± 0.8	${ }_{7} \mathbf{2} \pm 0.6$	12.5 ± 2.9	ND	ND	10.5 ± 1.2	ND	ND	17.1 ± 0.6	ND	ND	ND								
	${ }^{25}$	ND	${ }^{1.440 .2}$	ND	ND	${ }^{8.9 \pm 0.7}$	ND	${ }^{1.5 \pm 0.3}$	ND	ND	${ }^{4} .7 \pm 0.5$	ND	ND	ND								
	35	18.6 ± 1.1	ND	${ }_{2.8 \pm 0.3}$	16.243 .2	ND	ND	ND	10.1 ± 1.1	ND	ND	ND	19.6 ± 1.4	9．70．4	ND	ND	15.3 ± 1.5	29.9 ± 0.3	ND	12.6 ± 1.8	61.9 ± 4.8	ND
	38	41.5 ± 1.7	ND	${ }^{3.6 \pm 0.3}$	36.8 ± 1.2	0．70．${ }^{\text {a }}$	ND	ND	18.0 ± 1.2	ND	ND	ND	45.3 ± 0.7	ND	ND	ND	28.3 ± 0.7	65.6 ± 1.4	ND	23.2 ± 0.6	176.7 ± 9.1	ND
Tri	${ }^{1}$	ND	ND	ND	2.1 ± 0.5	ND																
	${ }^{2}$	ND	ND	ND	2.1 ± 0.9	ND																
	${ }^{3}$	ND	ND	ND	13.3 ± 0.3	ND																
	5	ND	ND	ND	1.4 ± 0.3	ND																
	${ }^{6}$	2.0 ± 0.3	1.3 ± 0.0	22.3 ± 1.2	ND	0.6 ± 0.1	${ }_{0} 0.6 \pm 0.1$	ND	69.95 .6	${ }_{0} 0.50 .1$	ND	ND	${ }^{76.3 \pm 4.6}$	56.5 ± 1.7	ND	ND	1.5 ± 0.2	85.8 ± 3.7	ND	59.4 ± 7.2	${ }_{4} .0 \pm 0.0$	ND
	7	1.0 ± 0.2	1.5 ± 0.1	21.3 ± 0.7	${ }_{1} 1.1 \pm 0.1$	${ }^{0.7 \pm 0.1}$	${ }_{0} 0.50 .2$	ND	86.0 ± 6.1	ND	ND	ND	10.18 ± 5.7	46.3 ± 1.5	ND	ND	1.0 ± 0.2	${ }^{113.8 \pm 4.6}$	ND	80.6 ± 7.0	5．300．2	ND
	13 ${ }^{13}$	17．440．3	ND	4．00． 1	${ }^{13.8 \pm 0.2}$	ND	ND	ND	15.1 ± 1.0	ND	ND	ND	18.3 ± 0.4	15.1 ± 0.6	ND	ND	${ }_{8.50 .5}$	41.0 ± 0.7	ND	${ }^{18.111 .3}$	${ }^{78.2 \pm 0.4}$	ND
	14	1.2 ± 0.1	ND	ND	0.9 ± 0.0	ND	ND	ND	${ }_{0.8 \pm 0.1}$	ND	ND	ND	1.6 ± 0.1	${ }^{0.7} 70.1$	ND	ND	ND	24 ± 0.2	ND	${ }^{1.3 \pm 0.1}$	5.4 ± 0.3	ND
Subtoal		86．2土2．2	${ }^{2.8 \pm 0.1}$	76.6 ± 2.6	129.3 ± 8.1	${ }^{2.3 \pm 0.1}$	${ }^{2.0 \pm 0.3}$	1.600 .4	226.9 ± 14.2	${ }_{0} 0.50 .1$	288.0 ± 15.2	151．377．9	367.2 ± 12.8	148.7 ± 2.4	ND	399．4 25.6	62.2 ± 0.9	376.3 ± 9.7	${ }^{84.5 \pm 2.1}$	215．2115．2	349.6 ± 16.3	ND
Kaempferol derivatives（20）																						
Mono	57\％	1.4 ± 0.1	2.1 ± 0.1	1．500．1	0.5 ± 0.1	15.1 ± 1.2	79 ± 0.2	15.8 ± 0.7	4．8£0．2	${ }^{8.4 \pm 0.4}$	${ }^{8.3 \pm 0.4}$	14.8 ± 0.7	${ }^{2.1 \pm 0.0}$	${ }^{2.4 \pm 0.0}$	${ }^{3.4 \pm 0.2}$	3．990．4	${ }^{3.8 \pm 0.1}$	${ }^{2.5 \pm 0.1}$	34.4 ± 0.4	1.5 ± 0.1	2．50．3	20.7 ± 0.8
	${ }^{63}$	1.5 ± 0.3	${ }^{1.4 \pm 0.0}$	${ }^{1.11 \pm 0.1}$	${ }_{10 \pm 0.2}$	15.4 ± 1.2	${ }_{5.50 .4}$	${ }^{11.8 \pm 1.0}$	${ }^{4.0 \pm 0.6}$	${ }_{6} 6.20 .4$	${ }^{3.2 \pm 0.1}$	${ }^{8.3 \pm 0.2}$	${ }^{2.3 \pm 0.5}$	${ }^{0.8 \pm 0.1}$	${ }^{2.3 \pm 0.1}$	${ }_{2} 2.2 \pm 0.2$	${ }^{5.0 \pm 1.2}$	2.50 .6	${ }^{65.8 \pm 0.3}$	1．3\＃0．4	${ }^{2.8 \pm 0.6}$	124 ± 0.6
Di	26	${ }^{1.3 \pm 0.3}$	${ }^{129 \pm 00.3}$	17.4 ± 0.1	ND	ND	49.7 ± 0.2	303.6 ± 9.8	31.2 ± 6.0	56.5 ± 2.5	${ }^{69.8 \pm 2.5}$	179．055．0	21.9 ± 0.6	${ }_{6} 67 \pm 0.5$	26.8 ± 3.6	${ }^{61.1 \pm 6.5}$	${ }^{3.7 \pm 0.9}$	${ }^{7.3 \pm 1.3}$	${ }^{7.2 \pm 0.3}$	7.6 ± 0.8	${ }^{9.1 \pm 0.4}$	258.0 ± 11.5
	28	ND	5．440．2	121 ± 0.7	ND	ND	24.7 ± 0.4	218.8 ± 6.5	17.7 ± 1.0	${ }^{31.140 .5}$	55.6 ± 29	126.4 ± 4.3	18.000 .7	${ }_{2} .3 \pm 0.1$	15.8 ± 0.1	54.2 ± 3.6	4.6 ± 1.0	47 ± 0.2	${ }^{6.8 \pm 0.5}$	${ }^{3.500 .3}$	2.0 ± 0.2	192.5 ± 8.6
	${ }^{30^{\circ}}$	ND	ND	ND	9.1 ± 0.5	ND	0.400 .2	ND	ND	ND												
	37	${ }^{0.5 \pm 0.1}$	0．50．0	${ }^{1.4 \pm 0.1}$	ND	5．000．2	${ }_{2} 8 \pm 0.1$	45.0 ± 27	1.9 ± 0.0	4.4 ± 0.2	24.8 ± 1.0	42.6 ± 1.1	8.7 ± 0.3	${ }_{0}^{0.9 \pm 0.1}$	${ }^{2.0 \pm 0.1}$	11.3 ± 0.9	1.4 ± 0.2	0.7 ± 0.1	64.7 ± 2.7	${ }_{0} 0.6 \pm 0.1$	${ }_{0} 0.4 \pm 0.0$	1.7 ± 0.1
	39	ND	ND	ND	11．4土1．1	0．8 ± 0.1	ND															
	${ }^{43^{3}}$	ND	ND	ND	ND	1.0 ± 0.2	${ }_{0} .5 \pm 0.1$	${ }^{6.4 \pm 0.3}$	ND	${ }_{0} .8 \pm 0.2$	1.7 ± 0.1	57.0 .6	2.3 ± 0.1	ND	${ }^{0.4 \pm 0.1}$	${ }^{1.3 \pm 0.1}$	ND	ND	23.2 ± 2.0	ND	ND	ND
	54	${ }^{31.8 \pm 0.8}$	18.5 ± 0.9	${ }^{5.3 \pm 0.1}$	13.2 ± 0.5	171．4 113.3	31.5 ± 1.4	ND	22.2 ± 1.0	29.5 ± 1.5	ND	ND	16.7 ± 0.3	12.8 ± 0.4	20.0 ± 0.7	ND	71.2 ± 27	28.8 ± 0.8	ND	9.6 ± 0.6	41.0 ± 1.9	ND
	58	${ }^{41.3 \pm 2.6}$	16.8 ± 0.6	4．850．2	16.9 ± 0.9	245.6 ± 17.6	31.1 ± 1.0	ND	19.2 ± 1.4	32.1 ± 1.2	ND	ND	17.0 ± 0.8	${ }_{6} 6.8 \pm 0.2$	19.7 ± 0.5	ND	73.9 ± 4.3	33.7 ± 1.3	ND	9．60．4	627 ± 0.9	ND
	524	ND	ND	0.2 ± 0.0	ND	ND	ND	1.3 ± 0.5	ND	ND	0.6 ± 0.1	ND	ND	ND	ND	0.6 ± 0.0	ND	ND	ND	ND	ND	2.60 .6
	${ }^{53}{ }^{4}$	ND	ND	ND	ND	ND	ND	${ }^{0.7 \pm 0.2}$	ND	ND	${ }_{0} 0.2 \pm .1$	ND	ND	ND	ND	0.4 ± 0.0	ND	ND	ND	ND	ND	1.6 ± 0.4
Tir	$4{ }^{4}$	ND	ND	ND	2.4 ± 0.4	ND	${ }^{0.7 \pm 0.0}$	3．600．2	ND	1.5 ± 0.1	ND	29 ± 0.3	ND	10.2 ± 1.5								
	10	ND	ND	ND	9.9 ± 0.5	0.6 ± 0.0	ND	${ }^{1.0 \pm 0.1}$	ND	${ }^{3} .0 \pm 0.3$	ND	ND	ND									
	16	2．4 ± 0.4	1759.9 .0	44．5さ2．4	ND	7．000．2	303.5 ± 5.8	ND	151.1 ± 5.5	298.6 ± 15.9	ND	ND	46.2 ± 1.7	65.7 ± 3.3	191.5 ± 13.5	ND	42.2 ± 0.2	57．41．9	ND	${ }_{520 \pm 4.9}$	${ }^{4.8 \pm 0.2}$	ND
	${ }^{17}{ }^{7}$	ND	ND	ND	1.2 ± 0.2	ND																
	21	1.2 ± 0.2	116．7 ± 7.7	28.8 ± 0.9	ND	${ }^{3.500 .3}$	${ }_{198.8 \pm 9.3}$	ND	104.0 ± 4.8	22.3 ± 123	ND	ND	${ }^{38.4 \pm 0.8}$	32.6 ± 0.7	${ }_{14.5 \pm 63}$	ND	1.6 ± 0.1	4.0 ± 0.5	ND	40.6 ± 2.9	3.6 ± 0.3	ND
	27	39.7 ± 2.2	49.3 ± 2.2	10.3 ± 0.2	12.9 ± 0.6	307.2 ± 24.6	99.6 ± 1.3	ND	${ }^{60.9 \pm 23}$	146.644 .6	ND	ND	18.7 ± 1.5	39.9 ± 0.9	64.7 ± 10.0	ND	57.3 ± 4.6	49.4 ± 2.6	ND	25.6 ± 2.7	51.3 ± 20	ND
	29	${ }^{4.000 .2}$	3．0土0．2	${ }_{0} .8 \pm 0.2$	1.3 ± 0.1	28.2 ± 1.1	5.9 ± 0.1	ND	27 ± 0.3	9.0 ± 0.6	ND	ND	1.8 ± 0.5	1.3 ± 0.2	4.4 ± 0.3	ND	4.0 ± 0.1	3．000．2	ND	1.4 ± 0.3	5．400．1	ND
	41^{1}	ND	0．9 0.4	${ }^{0.3} \pm 0.0$	ND	ND	${ }^{1.4 \pm 0.6}$	ND	27 ± 0.1	2.5 ± 0.5	ND	ND	ND	ND	2.4 ± 0.1	ND						
Subtoal		125．14．7	403.5 ± 19.0	128.448 .3	79.7 ± 0.6	800.7 ± 58.2	763．7440．0	6079 ± 14.8	422．4 43.3	853．5 54.4	16.1 ± 4.3	379.5 ± 10.4	194.0 ± 11.2	172．144．6	495．0土31．5	135.0 ± 10.3	$23.8 \pm \pm 11.5$	23.1 ± 6.4	205．6 6.7	153．4 11.4	185.6 ± 4.7	499.7 ± 13.9
Lsorhamnetinderivativs（17）																						
Mono	6^{6+}	${ }^{6.4 \pm 1.4}$	ND	0．9 0.0 .2	1．50．0．2	ND	ND	ND	${ }^{2.0 \pm 0.3}$	ND	3．400．1	7.5 ± 0.1	1.7 ± 0.1	2．50．8	ND	${ }^{1.8 \pm 0.1}$	${ }^{7.0 \pm 2.6}$	2．9̇0．4	13.3 ± 1.7	3．00． 0	5.1 ± 1.1	ND
	6^{60}	2.8 ± 0.1	ND	1.2 ± 0.2	1.1 ± 0.0	ND	ND	ND	${ }^{1.4 \pm 0.1}$	ND	4.4 ± 0.4	88.50 .6	1.2 ± 0.1	${ }^{2.0 \pm 0.2}$	ND	2.5 ± 0.0	5.0 ± 0.0	2.2 ± 0.3	15.5 ± 0.7	3.1 ± 0.4	2.8 ± 0.3	ND

Glycosides	$\begin{aligned} & \text { Peak } \\ & \text { No } \end{aligned}$	Shinpuldal2ho（SLI）	$\begin{array}{\|l\|} \hline \text { Daewon } \\ \text { kong (SL2) } \end{array}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Cheongia 2 } \\ \text { (SL3) } \end{array} \\ \hline \end{array}$	SLA	sts	SLL	SL7	Sts	sı9	sL10	SLII	SL12	SL13	SL14	st15	SL16	SL17	suı	st19	SL20	st21
	79	4.7 ± 0.3	10.5 ± 0.1	4.7 ± 0.2	3.7 ± 0.2	4.1 ± 0.5	3．770．1	4．900．7	${ }^{2.3 \pm 0.2}$	4．200．3	23 ± 0.4	1.0 ± 0.1	5.900 .3	8.1 ± 0.7	${ }^{6.1 \pm 0.9}$	2.6 ± 0.2	${ }_{5.5 \pm 0.2}$	27 ± 0.3	22 ± 0.2	${ }_{5.50} 0.6$	3．770．4	${ }^{3.8 \pm 0.4}$
	49	39.2 ± 1.5	21.3 ± 0.2	${ }_{8.0 \pm 0.7}$	19.1 ± 5.8	33.5 ± 1.8	39.1 ± 20	44.5 ± 1.7	23.2 ± 0.6	54．5 52.4	10.7 ± 4.1	17．2 2.4	13.54 .8	23.9 ± 2.7	17．9土0．4	7.2 ± 0.5	${ }^{33.6 \pm 25}$	28.4 ± 3.0	12.5 ± 0.6	47．147．0	17.3 ± 3.0	16.3 ± 0.7
	$3_{6}{ }^{\text {a }}$	ND	ND	ND	1.3 ± 0.4	ND																
	45^{4}	1.3 ± 0.4	ND	ND	1.1 ± 0.2	ND	1.0 ± 0.2	ND	ND	8.7 ± 1.2	ND	${ }^{0.3 \pm 0.0}$	${ }^{0.4 \pm 0.0}$	1.0 ± 0.2	${ }_{0.8 \pm} 0.3$	ND						
	6^{69}	2.5 ± 0.4	${ }^{3.3} \pm 0.0$	2.0 ± 0.5	1.1 ± 0.0	${ }^{4.40 .5}$	1.0 ± 0.2	${ }^{2.6 \pm 0.3}$	2.0 ± 0.5	${ }^{2.1 \pm 0.6}$	3．000．2	28 ± 0.1	2.5 ± 0.5	2.5 ± 0.3	${ }^{3.5 \pm 0.4}$	3.6 ± 0.3	2.1 ± 0.5	2.7 ± 0.5	20 ± 0.2	${ }^{3.3 \pm 0.4}$	2.4 ± 0.7	${ }^{4.1 \pm 0.2}$
	70	44.4 ± 1.2	53.9 ± 0.4	36.4 ± 2.9	23．3土 1.7	76.5 ± 5.9	18.5 ± 1.2	56.1 ± 24	41.5 ± 29	40.1 ± 1.1	57．0さ4．3	50.3 ± 1.4	44.6 ± 2.4	41.6 ± 1.0	${ }^{64.0 \pm 1.5}$	68.0 ± 1.5	426 ± 26	${ }^{51.9 \pm 2.0}$	48.4 ± 0.3	66.7 ± 2.7	47.2 ± 23	75.2 ± 1.6
Subtoal		92．0土6．2	89．00．4	51.1 ± 4.8	49.6 ± 3.5	49.6 ± 3.5	63.2 ± 2.2	108.2 ± 2.9	69.1 ± 4.0	109．6t1．2	729 ± 2.6	71．344．2	68.5 ± 6.9	76.1 ± 3.3	91.6 ± 2.8	${ }^{81.3 \pm 1.8}$	${ }^{83.8 \pm 4.3}$	86.6 ± 6.0	65.5 ± 8.7	123．599．3	${ }^{71.4 \pm 2.4}$	99.3 ± 2.3
Tectorigenin derinativs（3）																						
	${ }^{81}{ }^{1}$	${ }^{0.7 \pm 0.1}$	${ }^{1.4 \pm 0.5}$	${ }^{0.6 \pm 0.1}$	0.7 ± 0.1	ND	ND	ND	0．440．0	ND	ND	ND	${ }^{0.4 \pm 0.0}$	0．4 40.0	ND	ND	ND	ND	ND	ND	0．9土 0.0	ND
	5^{6}	ND	ND	ND	2.6 ± 0.1	ND	0.7 ± 0.1	1.0 ± 0.2	ND	ND	2.6 ± 0.1	ND	ND									
	71	10.2 ± 0.1	2.2 ± 0.1	5.4 ± 0.6	8.7 ± 0.5	${ }^{3.40 .3}$	${ }_{0} 0.5 \pm 0.1$	${ }^{2} 3 \pm 0.5$	1.8 ± 0.2	ND	${ }_{6} 6.40 .6$	23 ± 0.1	5.4 ± 0.5	2.9 ± 0.3	2．50．2	8.2 ± 0.2	${ }_{4} .6 \pm 0.6$	4.3 ± 0.2	5.6 ± 0.4	11.2 ± 0.5	${ }^{5.1 \pm 0.1}$	2．400．2
Subtoal		10.9 ± 0.1	${ }^{3.6 \pm 0.5}$	${ }^{6.000 .7}$	12.0 ± 0.6	3．440．3	0.5 ± 0.1	2.3 ± 0.5	${ }^{2.2 \pm 0.4}$	ND	6.4 ± 0.6	23 ± 0.1	${ }_{5} .8 \pm 0.6$	${ }^{3.3 \pm 0.3}$	${ }^{2.5 \pm 0.2}$	${ }^{8.9 \pm 0.3}$	5．60． 0.7	4.3 ± 0.2	5．60．4	13.9 ± 0.6	6．000．1	2．400．2
Afromsin derinatives（3）																						
	${ }^{83}$	ND	${ }^{8.4 \pm 0.1}$	ND	ND	ND	ND	1.0 ± 0.1	ND	ND	ND	ND	1.8 ± 0.1	ND	0．5＊0．1	ND	${ }^{0.3 \pm 0.1}$	ND	ND	2.4 ± 0.1	ND	ND
	72	ND	ND	ND	ND	ND	${ }_{0} 0.9 \pm 0.3$	${ }^{0.2 \pm 0.1}$	ND	1.3 ± 0.2	ND											
	${ }^{78}{ }^{8}$	0.7 ± 0.2	1.9 ± 0.2	1.4 ± 0.4	ND	ND	${ }^{1.1 .10 .2}$	2．50．2	1.0 ± 0.2	1.6 ± 0.4	${ }_{0} 0.2 \pm 0.1$	25 ± 0.3	1.7 ± 0.1	1.2 ± 0.3	1.7 ± 0.2	1.5 ± 0.3	${ }^{0.8 \pm 0.2}$	1.8 ± 0.3	${ }^{0.505 .1}$	4．200．3	2.5 ± 0.3	2.2 ± 0.4
Subotal		0.7 ± 0.2	10.4 ± 0.3	1.4 .40 .4	ND	ND	${ }^{2.1 \pm 0.3}$	${ }^{3} .8 \pm 0.4$	1.0 ± 0.2	29 ± 0.5	0.2 ± 0.1	25 ± 0.3	3.5 ± 0.1	1.2 ± 0.3	${ }^{2.2 \pm 0.2}$	1.5 ± 0.3	1.1 ± 0.2	1.18 ± 0.3	0.5 ± 0.1	6．600．2	2.5 ± 0.5	2.2 ± 0.4
Formononetin derinatives（2）																						
	82	0．440．0	1.9 ± 0.2	ND	ND	ND	ND	0.6 ± 0.1	ND	ND	ND	ND	1.2 ± 0.1	ND	1.0 ± 0.1	ND	24 ± 0.0	ND	ND	1.1 ± 0.1	ND	ND
	π	1．3土0．2	${ }_{5.3 \pm 0.1}$	ND	ND	2.1 ± 0.5	1.0 ± 0.4	${ }_{0} 0.9 \pm 0.1$	${ }^{1.440 .2}$	1.4 ± 0.0	2.4 ± 0.7	${ }_{0} .5 \pm 0.1$	1.5 ± 0.5	0．440．2	3．00．4	1.3 ± 0.2	2.7 ± 0.1	1.3 ± 0.3	${ }^{3.5 \pm 0.1}$	1.6 ± 0.3	0.6 ± 0.2	2.1 ± 0.2
Subotal		1.600 .2	7．200．2	ND	ND	2.1 ± 0.5	1.0 ± 0.4	1.4 ± 0.1	1.4 ± 0.2	1.4 ± 0.0	2.4 ± 0.7	${ }^{0.5 \pm 0.1}$	2.7 ± 0.5	0．440．2	${ }^{4.000 .3}$	1.3 ± 0.2	5．000．2	1.3 ± 0.3	${ }^{3.5 \pm 0.1}$	2.7 ± 0.2	0.6 ± 0.2	2.1 ± 0.2
Ssolavones		112．453．9	130.6 ± 0.8	61.2 ± 8.0	63.7 ± 3.5	135．245．1	70.6 ± 1.8	121.4 ± 2.7	${ }^{77.3 \pm 4.2}$	121.3 ± 1.9	90.7 ± 1.1	92.5 ± 0.5	${ }^{87.855 .5}$	85.6 ± 1.9	104.5 ± 1.9	95.9 ± 1.5	105.1 ± 8.1	98．4＊7．9	15.1 ± 0.5	154.0 ± 5.6	84.1 ± 4.1	1095 ± 1.3
Total		532.8 ± 18.6	542.8 ± 16.3	342.5 ± 17.2	427．0115．7	951.1 ± 33.4	849.1 ± 43.4	747．0018．2	842.5 ± 56.1	$9927+33.2$	671.7 ± 30.6	874．2＋31．0	742．599．3	578．2土11．7	613.6 ± 30.0	640.942 .3	576.3 ± 26.0	8827 ± 29.4	408.4 ± 1.9	776.1 ± 34.1	769.9 ± 25.3	6199 ± 12.6

Table 2．Contents of flavonoid derivatives according to the aglycones and glycosides in young leaves of 21 soybean cultivars（ $\mathrm{mg} / 100 \mathrm{~g}$ ，dry weight）．Each value calculated as mean values \pm SD $(n=3)$ using internal standards（6－methoxyluteolin and 6－methoxyflavone for flavonol－flavone and isoflavone，respectively）．SL，soybean leaf；ND，not detected．a，new flavonoid in soybean leaves；b，newly named．Compound names are presented according to peak numbers in Table 1．Significant values are in［bold］．

B

Figure 2. Comparison in total contents ($\mathrm{mg} / 100 \mathrm{~g}$, dry weight) according to flavonoid (A) types (flavonol, flavone and isoflavone) as well as flavonol (B) aglycones (quercetin, kaempferol and isorhamnetin) and (C) glycosides (mono-, di- and tri-) in young leaves of 21 soybean cultivars.

Figure 2. (continued)
according to their aglycone types, and had different predominant aglycones under affected by the cultivar's characteristics. Among eleven cultivars belonging to K-rich SLs (with yellow-coated seeds), the SLs 2, 5, 6, 7, 9, 14 and 21 were composed of about 100% KGs ${ }^{14,15}$. In particular, the SLs 7 (Kongnamulkong, Korean landrace for bean sprouts) and 21 (Himeyudaga, Japanese breeding line) showed the largest proportion of di-glycosides (94.7 and 91.3%), while the SLs 6 (Kongnamulkong, Korean landrace for bean sprouts) and 9 (Nongrim 51, Japanese breeding line) were expected to be superior cultivars due to their higher total flavonols (TFs; 765.6 and 854.0) with tri-glycosides levels (79.8 and 80.1\%), respectively. In addition, the Q-rich SL17 (CS 02,028, Korean landrace) with QGs and TFs (48.5% and 776.3) possessed much higher tri-glycosides (65.3%) compared to the SLs 10 (49.9 and 93.1) and 15 (57.7 and 94.6) with QGs (\%) and di-glycosides (\%), respectively. Interestingly, despite the low TFs (359.6) of SL4 (PI 90,763, Chinese landrace), its flavonol profile mostly composed of new glycosides such as $\mathbf{r h a m}^{1}\left(\mathrm{glu}^{(1)}\right)-$ gal $^{\mathbf{2}(6)}$ (peaks 3, 10 and 12) and $\mathbf{r h a m}^{1}\left(\mathrm{glu}^{(1)}\right)$-glu ${ }^{2(6)}$ (peaks 5, 17 and 15) varied from that of other Korean cultivars based on differences in the collected origins. The SL18 (GNU-2007-14502, Korean landrace; TFs 378.8) also provided a specific profile of higher mono-glycosides (48.6\%; mainly 3-O-glucose and3-O-galactose) as presented in Fig. 2C and Table 2.

Among I-rich SLs 1, 4, 11, 13, 16, 17 and 19, exceptionally, SL11 (Geomjeongkong-5, Korean landrace; IGs 31.4%, di- 92.7%) with higher TFs (773.5) contained predominantly di-glycosides of glu ${ }^{1}$-gal ${ }^{2}$ (peaks 8, 26 and 31), glu 1-glu 2 (sop, peaks 11,28 and 32) and $\mathbf{r h a m}^{1}$-gal 2 (peaks 24,37 and 47) including I $3-O-\left(2^{\prime \prime}-O-\mathrm{glu}\right) \mathrm{gal}$ (peak 31, 103.8), I 3-O-($\left.2^{\prime \prime}-\mathrm{O}-\mathrm{glu}\right)$ glu (peak 32, 65.3) and I 3-O-(2"-O-rham)gal (peak 47, 54.6), which were reported as low level in previous studies ${ }^{14-17,24}$. Besides, the new tri-IGs (178.7; soyanins I-V, peaks 22, 23, 33, 34 and 42) closely related to di-IGs in above SL11 included I 3-O-(2"-O-glu-6"-O-rham)glu (70.5; soyanin II, peaks 23), I 3-O-($2^{\prime \prime}, 6^{\prime \prime}$-di- O-rham)gal (19.1; soyanin III, peaks 33) and I 3-O-(4", $6^{\prime \prime}$-di-O-rham)gal (45.9; soyanin IV, peaks 34) as major IGs in SL19 (Junyeorikong, Korean landrace; TFs 611.8, IGs 39.8\%, tri- 74.8\%). It is considered that these IGs results play an important role on prediction of flavonol biosynthesis as well as determination of their precise structures (based on NMR) and contents from the SLs in further research.

In Fig. 3 and Supplementary Fig. S3, the flavonol biosynthetic pathways could be predicted through the present 52 glycosides (6 mono-, 24 di- and 22 tri-) according to aglycones (\mathbf{K}, \mathbf{Q}, and \mathbf{I}) found from young leaves of 21 core-collected soybean cultivars. In general, the cyanidin 3-O-glucoside and peonidin 3-O-glucoside have been reported as major anthocyanins from black soybean seeds ${ }^{41-43}$. The rich QGs and IGs characterized only in black coated cultivars of this study ${ }^{14,16}$ suggest that they are closely related to the corresponding cyanidin and peonidin based-structures. Thus, it is considered significant that the rich SLs flavonol profiles can contribute to enhanced overproduction of seed anthocyanins through regulation of specific genes at the growth stage ${ }^{23,44,45}$ as well as select superior varieties which are expected to have higher biological activities. Thus, the present study summarized the relationship between cultivars and individual flavonoids content according to their aglycones and glycosides, and further described that the SLs from yellow-coated seed mostly composed of KGs, whereas, the SLs from black-coated seed presented as QGs and IGs rich sources (Fig. 2 and Table 2). In the future, it is also necessary to perform metabolomics approach to how these SLs flavonols change during the leaf growth

Figure 3. Proposed biosynthetic pathway of 17 isorhamnetin (I) glycosides (mono-, peaks $\mathbf{6 4}$ and $\mathbf{6 6}$; di-, peaks 31, 32, 44, 47, 51, 55, 60 and 62; tri-, peaks 12, 15, 22, 23, 33, 34 and 42) identified from young leaves of soybean cultivars (SLs 1, 4, 16 and 19). Compound names are presented according to peak numbers in Table 1. gal, galactose; glu, glucose; rham, rhamnose; gen, gentiobiose; rob, robinobiose; rut, rutinose; neo, neohesperidose; sop, sophorose.

No	Code	Accession number	Name	Seed coat color	Origins	Cultivars
1	SL1	IT263155	Shinpaldalkong2ho	Yellow	Korea	Variety
2	SL2	IT212859	Daewon kong	Yellow	Korea	Variety
3	SL3	IT213192	Cheongja 2	Black	Korea	Variety
4	SL4	IT021665	PI 90763	Black	China	Landrace
5	SL5	IT024099	YJ208-1	Yellow	Korea	Landrace
6	SL6	IT104690	Kongnamulkong	Yellow	Korea	Landrace
7	SL7	IT113218	Kongnamulkong	Yellow	Korea	Landrace
8	SL8	IT154724	KAS651-21	Green-Black	Korea	Landrace
9	SL9	IT155963	Nongrim 51	Yellow	Japan	Breeding line
10	SL10	IT161904	PI 84578	Black	Korea	Landrace
11	SL11	IT177573	Geomjeongkong-5	Black	Korea	Landrace
12	SL12	IT186183	Kongnamulkong	Black	Korea	Landrace
13	SL13	IT194560	Geomjeongkong	Black	Korea	Landrace
14	SL14	IT231360	Kongnamulkong	Yellow	Korea	Landrace
15	SL15	IT239896	Jwineorikong	Black	Korea	Landrace
16	SL16	IT252768	326	Black	Korea	Landrace
17	SL17	IT269617	CS 02028	Black	Korea	Landrace
18	SL18	IT274515	GNU-2007-14502	Black	Korea	Landrace
19	SL19	IT308619	Junyeorikong	Black	Korea	Landrace
20	SL20	K137773	Heukseong	Black	Korea	Breeding line
21	SL21	IT156272	Himeyudaga	Yellow	Japan	Breeding line

Table 3. Characteristics of core collected soybean cultivars used in the present study.
and its fermentation, and investigate the correlation between SLs flavonoids and their biological activities in addition to agronomic characteristics.

Materials and methods

Plant materials. Among 23,199 soybean germplasms provided by the Gene Bank of National Agrobiodiversity Center (NAC, Korea), 1,000 core collected accessions with superior agronomic and functional traits were chosen. Finally, a total of twenty-one soybean cultivars (varieties, landraces and breeding lines) with a specific introduction (IT) number including three Korean representative varieties (Shinpaldalkong2ho, Daewon kong and Cheongja 2) were selected considering their genetic diversity and flavonoid profiles (Table 3). The seeds of these cultivars were sown on experimental field (5 June 2019, in rows at a spacing of 15 cm) located at the center (latitude/longitude: $35^{\circ} 4938.37 \mathrm{~N} / 127^{\circ} 0907.78 \mathrm{E}$), and cultivated under similar conditions during the country's cropping season (June-November 2019) and their leaves (randomly taken with $5-10 \mathrm{~cm}$) were harvested after 4 weeks. The SLs were lyophilized and finely grounded with a sample mill for their use as analytical samples. Additionally, the seed coat color matured were further grouped as yellow, black and green-black when approximately 95% of their pods reached 'mature color 46 ' in a maturity index. Experimental research and field studies on plant materials of this study complies with relevant institutional, national, and international guidelines and legislation.

Chemical reagents. Reference standards of apigenin, daidzein, daidzin, formononetin, genistein and genistin were obtained from Sigma-Aldrich Co. (St Louis, MO, USA); astragalin, calendoflavoside, cosmosiin, cynaroside, glycitin, hyperoside, isoquercitrin, isorhamnetin 3-O-glucoside, luteolin, narcissin, nicotiflorin and rutin as well as 6-methoxyluteolin and 6-methoxyflavone as internal standards were purchased from Extrasynthese (Genay, France); 6-O-malonyldaidzin and 6-O-malonylgenistin from Synthose Inc. (Ontario, Canada); kaempferol 3-O-gentiobioside, quercetin 3-O-gentiobioside and quercetin 3-O-sophoroside from PhytoLab GmbH \& Co. (Vestenbergsgreuth, Germany); Cacticin and trifolin from MedChemExpress (Monmouth Junction, USA). LC-MS grade methanol, acetonitrile and water were supplied from Thermo Fisher Scientific Inc. (Waltham, MA, USA). Besides, formic acid (Junsei Chemical, Tokyo, Japan) was used as eluent additive in extraction and chromatographic separation of flavonoid derivatives.

Extraction of flavonoid derivatives. The powdered samples (1.0 g) were extracted with mixed solvents (10 mL , methanol:water:formic acid, $50: 45: 5, \mathrm{v} / \mathrm{v} / \mathrm{v}$) for 30 min at 200 rpm using an orbital shaker, and then centrifuged at $2016 \times g$ and $4^{\circ} \mathrm{C}$ for 15 min (LABOGENE 1580R, LABOGENE, Korea). Each supernatant was filtered through a PVDF syringe filter ($0.2 \mu \mathrm{~m}$, Thermo Fisher Scientific Inc., Waltham, MA, USA). The filtrates $(0.5 \mathrm{~mL})$ and internal standards (IS, 0.5 mL) were further diluted with distilled water to 7 mL (final volume), respectively. The IS solution ($50 \mu \mathrm{~g} / \mathrm{mL}$) was composed of 6-methoxyluteolin (for flavonol and flavone) and 6-methoxyflavone (for isoflavone) to quantify the identified flavonoid derivatives. In order to obtain the crude flavonoids, a solid phase extraction (SPE) method was performed with a Hypersep C_{18} SPE cartridge (Thermo

Fisher Scientific Inc., Waltham, MA, USA). Briefly, the initial cartridge activation was proceeded through washing with methanol (3 mL), followed by conditioning with distilled water $(5 \mathrm{~mL})$. Then, the previously diluted solutions of extracts and IS were sequentially loaded on activated cartridge and washed with distilled water $(5 \mathrm{~mL})$ to remove impurities. Finally, a loaded sample was eluted from the cartridge by 5 mL of methanol (with 1% formic acid). The semi-purified flavonoid eluate was concentrated using N_{2} gas and re-dissolved in 0.5 mL of extraction solvent prior to UPLC-DAD-QToF/MS analysis. All analyzes were carried out in triplicates.

UPLC-DAD-QTOF/MS analysis. An analytical system of UPLC-DAD (ACQUITY UPLC ${ }^{\text {mw }}$ system, Waters Co., Miliford, MA, USA) and QToF/MS (Xevo G2-S QToF, Waters MS Technologies, Manchester, UK) equipped with CORTECS T3 C18 column ($2.1 \times 150 \mathrm{~mm}, 1.6 \mu \mathrm{~m}$, Waters Co.) were operated to identify and quantify numerous flavonoid derivatives from young leaves of soybean cultivars. According to our previous reports ${ }^{46,47}$, chromatographic conditions used were: flow rate $(0.3 \mathrm{~mL} / \mathrm{min})$, column oven temperature ($30^{\circ} \mathrm{C}$), sample injection volume ($1 \mu \mathrm{~L}$). UV spectra was multi-scanned in the region of $210-400 \mathrm{~nm}$ (representative wavelengths; 254 nm for isoflavones, 350 nm for flavonols and flavones). The gradient profile was set followed as: initial 5% B; $20 \mathrm{~min}, 25 \% \mathrm{~B} ; 25 \mathrm{~min}, 50 \% \mathrm{~B} ; 30-32 \mathrm{~min}, 90 \%, 35-40 \mathrm{~min}, 5 \%$ B with 0.5% formic acid in water for eluent A and 0.5% formic acid in acetonitrile for eluent B used as mobile phases. Mass spectra were simultaneously measured with the range of $m / z 100-1,200$ in positive ionized mode using an electrospray ionization (+ESI) probe, and their parameters used were: capillary voltage 3.5 kV , sampling cone voltage 40 V , source temperature $120^{\circ} \mathrm{C}$, desolvation temperature $500^{\circ} \mathrm{C}$, desolvation N_{2} gas flow $1020 \mathrm{~L} / \mathrm{h}$. To maintain mass accuracy, 0.5 mM sodium formate solution was used externally for the mass calibration, and also, leucine-enkephalin ($2 \mathrm{ng} / \mathrm{\mu L}$) was monitored internally as a reference standard ($m / z 556.2766$) in real time and introduced using the LockSpray interface at $10 \mu \mathrm{~L} / \mathrm{min}$.

Identification and quantification of flavonoid derivatives. The LC-MS library (from 'RDA DB 1.0-Flavonoids' completed in 2016 $)^{47}$ was constructed to carry out more clear and efficient identification of flavonoid derivatives from the SLs based on literature's analytical data with structural evidences elucidated by NMR and MS spectroscopies, and composed of 53 flavonoids information including positive and negative ion fragmentations (Supplementary Table S1). The purposed flavonoids were tentatively determined by considering the positive fragmentation (reported and proposed), UV spectra ($\lambda_{\text {max }}$, data not shown) and elution order presented in the constructed library ${ }^{48}$ (Table 2). Additionally, some derivatives of them were further confirmed through comparison with 25 types of reference standards provided in Table 2. However, since it is not complete to obtain all available standards consistent with the identified derivatives, the quantification for each peak (based on UV detection) was calculated as $1: 1$ without considering the relative response factor for IS, and expressed as mean \pm standard deviation of their triplicated results (Table 3). Especially, in order to select and maintain a stable IS, it was verified that the pre-inserted IS did not overlap with sample peaks, and its recovery was repeatedly validated to correct errors that may occur during the SPE process.

Conclusions

In this study, a total of 83 flavonoid derivatives were comprehensively identified and quantified from young leaves of 21 core-collected soybean cultivars based on high-resolution UPLC-DAD-QToF/MS analysis with constructed LC-MS library previously reported. Among flavonoid derivatives, the abundant flavonols contained mainly as di- and tri-glycosidic forms from the SLs were distributed in the order of \mathbf{K}, \mathbf{Q}, and \mathbf{I} according to their aglycone types, and had different predominant aglycones under affected by the cultivar's characteristics. The SLs from yellow-coated seed mostly composed of KGs, whereas, the SLs from black-coated seed presented as QGs and IGs rich sources. From identified 83 flavonoid derivatives, the flavonol biosynthetic pathways were proposed according to the aglycones (\mathbf{K}, \mathbf{Q}, and \mathbf{I}), so it is considered that the pathways can play a key role in determining their structures precisely and predicting flavonol biosynthesis. Thus, the SLs flavonoid profiles can contribute to breed superior varieties with excellent biological activities and perform metabolomics approach to investigate the changes of these flavonols of SLs during the leaf growth and fermentation in further study.

Data availability

The flavonoids data presented in this study was cited from a 'Flavonoid Database Search' (http://koreanfood.rda. go.kr/eng/fctFoodSrchEng/main) belong to Korean Food Composition Database provided in National Institute of Agricultural Sciences, Rural Development Administration (RDA).

Received: 20 April 2022; Accepted: 8 August 2022
Published online: 29 August 2022

References

1. Harborne, J. B. \& Williams, C. A. Advances in flavonoid research since 1992. Phytochem. 55(6), 481-504 (2000).
2. Palma-Tenango, M., Soto-Hernández, M. \& Aguirre-Hernández, E. Chapter 10. Flavonoids in agriculture. Flavonoids-from biosynthesis to human health. 189-201 (2017).
3. Panche, A. N., Diwan, A. D. \& Chandra, S. R. Flavonoids: An overview. J. Nutr. Sci. 5, 1-15 (2016).
4. Terahara, N. Flavonoids in foods: A review. Nat. Prod. Commun. 10(3), 521-528 (2015).
5. Ho, H. M. et al. Difference in flavonoid and isoflavone profile between soybean and soy leaf. Biomed. Pharmacother. 56, 289-295 (2002).
6. Romani, A. et al. Polyphenolic content in different plant parts of soy cultivars grown under natural conditions. J. Agric. Food Chem. 51, 5301-5306 (2003).
7. Ryu, S-H., Lee, H-S., Lee, Y-S. \& Moon, G-S. Contents of isoflavones and antioxidative related compounds in soybean leaf, soybean leaf Jangachi, and soybean leaf Kimchi. Korean J Food Cookery Sci. 21(4), 433-439 (2005).
8. Choi, M-S. et al. The beneficial effect of soybean (Glycine max(L.) Merr.) leaf extracts in adults with prediabetes: a randomized placebo controlled trial. Food Funct. 5, 1621-1630 (2014).
9. Zang, Y., Zhang, L., Igarashi, K. \& Yu, C. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food Funct. 6, 834-841 (2015).
10. Ho, H. M., Leung, L. K., Chan, F. L., Huang, Y. \& Chen, Z.-Y. Soy leaf lowers the ratio of non-HDL to HDL cholesterol in hamsters. J. Agric. Food Chem. 51, 4554-4558 (2003).
11. Kim, J.-E. et al. Does Glycine max leaves or Garcinia cambogia promote weight-loss or lower plasma cholesterol in overweight individuals: A randomized control trial. Nutr. J. 10, 1-11 (2011).
12. Han, J.-M. et al. Soy-leaf extract exerts atheroprotective effects via modulation of Krüppel-like factor 2 and adhesion molecules. Int. J. Mol. Sci. 18(2), 373 (2017)
13. Ho, H. M., Chen, R., Huang, Y. \& Chen, Z. Y. Vascular effects of a soy leaves (Glycine max) extract and kaempferol glycosides in isolated rat carotid arteries. Planta Med. 68, 487-491 (2002).
14. Jeong, T. S. et al. Composition for prevention or treatment of metabolic syndrome or for antioxidation containing black bean leaf extracts and flavonol glycosides isolated therefrom as active ingredients. Patent Application Publication, United States. US2019/0075823A1 (2019).
15. Li, H. et al. Soy leaf extract containing kaempferol glycosides and pheophorbides improves glucose homeostasis by enhancing pancreatic β-cell function and suppressing hepatic lipid accumulation in $\mathrm{db} / \mathrm{db}$ mice. J. Agric. Food Chem. 63, 7198-7210 (2015).
16. Li, H. et al. Suppression of hyperglycemia and hepatic steatosis by black-soybean-leaf extract via enhanced adiponectin-receptor signaling and AMPK activation. J. Agric. Food Chem. 67, 90-101 (2019).
17. Zang, Y., Sato, H. \& Igarashi, K. Anti-diabetic effects of a kaempferol glycoside-rich fraction from unripe soybean (Edamame, Glycine max L. Merrill. 'Jindai') leaves on KK-A' mice. Biosci. Biotechnol. Biochem. 75(9), 1677-1684 (2011).
18. Zang, et al. Antioxidant and hepatoprotective activity of kaempferol 3-O- β-D-(2,6-di-O- α-L-rhamnopyranosyl)galactopyranoside against carbon tetrachloride-induced liver injury in mice. Food Sci. Biotechnol. 26(4), 1071-1076 (2017).
19. Murai, Y., Takahashi, R., Kitajima, J. \& Iwashina, T. New quercetin triglycoside from the leaves of soybean cultivar 'Clark'. Nat. Prod. Commun. 14(5), 1934578X19843614 (2019).
20. Murai, Y., Takahashi, R., Rodas, F. R., Kitajima, J. \& Iwashina, T. New flavonol triglycosides from the leaves of soybean cultivars. Nat. Prod. Commun. 8(4), 453-456 (2013).
21. Iwashina, T. et al. Flavonoids from three Wild Glycine species in Japan and Taiwan. Nat. Prod. Commun. 13(12), 1641-1644 (2018).
22. Viacava, G. E. et al. Characterization of phenolic compounds in green and red oak-leaf lettuce cultivars by UHPLC-DAD-ESIQToF/MS using MS ${ }^{\mathrm{E}}$ scan mode. J. Mass Spectrom. 52, 873-902 (2017).
23. Song, H.-H. et al. Metabolomics investigation of flavonoid synthesis in soybean leaves depending on the growth stage. Metabolomics 10, 833-841 (2014).
24. Hur, J. M. et al. Flavonoids from the leaves of Glycine max showing anti-lipid peroxidative effect. Nat. Prod. Sci. 7(2), 49-52 (2001).
25. Yuk, H. J. et al. Ethylene induced a high accumulation of dietary isoflavones and expression of isoflavonoid biosynthetic genes in soybean (Glycine max) leaves. J. Agric. Food Chem. 64, 7315-7324 (2016).
26. Lee, J. H. et al. Phytochemical constituents from the leaves of soybean [Glycine max (L.) Merr.]. Food Sci. Biotechnol. 17(3), 578-586 (2008).
27. Kim, H-W. et al. Study on phenolic compounds in lettuce samples cultivated from Korea using UPLC-DAD-QToF/MS. Kor. J. Food Nutr. 32(6), 717-729 (2019).
28. Lee, S. J. et al. Characterization of isoflavones from seed of selected soybean (Glycine max L.) resources using high-resolution mass spectrometry. Kor. J. Food Nutr. 33(6), 655-665 (2020).
29. Chu, H.-N. et al. A correlation study on in vitro physiological activities of soybean cultivars, 19 individual isoflavone derivatives, and genetic characteristics. Antioxidants. 10, 2027 (2021).
30. Kwon, R. H. et al. Isoflavone characterization in soybean seed and fermented products based on high-resolution mass spectrometry. J. Kor. Soc. Food Sci. Nutr. 50(9), 950-961 (2021).
31. Aguiar, C. L. et al. Thermal behavior of malonylglucoside isoflavones in soybean flour analyzed by RPHPLC/DAD and eletrospray ionization mass spectrometry. LWT - Food Sci. Technol. 48, 114-119 (2012).
32. $\mathrm{Gu}, \mathrm{L} . \& \mathrm{Gu}, \mathrm{W}$. Characterization of soy isoflavones and screening for novel malonyl glycosides using high-performance liquid chromatography-electrospray ionisation-mass spectrometry. Phytochem. Anal. 12, 377-382 (2001).
33. Hong, J.-L. et al. Comparative study of isoflavones in wild and cultivated soybeans as well as bean products by high-performance liquid chromatography coupled with mass spectrometry and chemometric techniques. Eur. Food Res. Technol. 233, 869-880 (2011).
34. Yerramsetty, V., Mathias, K., Bunzel, M. \& Ismail, B. Detection and structural characterization of thermally generated isoflavone malonylglucoside derivatives. J. Agric. Food Chem. 59, 174-183 (2011).
35. Zhang, S. et al. A novel isoflavone profiling method based on UPLC-PDA-ESI-MS. Food Chem. 219, 40-47 (2017).
36. Murakami, S. et al. Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Metabolites 4, 532-546 (2014).
37. Yuk, H. J. et al. The most abundant polyphenol of soy leaves, coumestrol, displays potent α-glucosidase inhibitory activity. Food Chem. 126, 1057-1063 (2011).
38. Veremeichik, G. N. et al. Isoflavonoid biosynthesis in cultivated and wild soybeans grown in the field under adverse climate conditions. Food Chem. 342, 128292 (2021).
39. Farag, M. A., Huhman, D. V., Lei, Z. \& Sumner, L. W. Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI-MS and GC-MS. Phytochem. 68, 342-354 (2007).
40. Mikšátková, P. et al. Determination of flavonoids in Stellaria by high-performance liquid chromatography-tandem mass spectrometry. Anal. Lett. 47, 2317-2331 (2014).
41. Wu, H-J. et al. Metabolite profiling of isoflavones and anthocyanins in black soybean [Glycine max (L.) Merr.] seeds by HPLC-MS and geographical differentiation analysis in Southwest China. Anal. Methods. 9, 792-802 (2017).
42. Lee, J. H. et al. Characterisation of anthocyanins in the black soybean (Glycine max L.) by HPLC-DAD-ESI/MS analysis. Food Chem. 112, 226-231 (2009).
43. Koh, K., Youn, J. E. \& Kim, H-S. Identification of anthocyanins in black soybean (Glycine max (L.) Merr.) varieties. J. Food. Sci. Technol. 51(2), 377-381 (2014).
44. Fujita, A., Goto-Yamamoto, N., Aramaki, I. \& Hashizume, K. Organ-specific transcription of putative flavonol synthase genes of grapevine and effects of plant hormones and shading on flavonoid biosynthesis in grape berry skins. Biosci. Biotechnol. Biochem. 70(3), 632-638 (2006).
45. D'Amelia, V., Aversano, R., Chiaiese, P. \& Carputo, D. The antioxidant properties of plant flavonoids: their exploitation by molecular plant breeding. Phytochem. Rev. 17, 611-625 (2018).
46. Lee, M-K. et al. Characterization of catechins, theaflavins, and flavonols by leaf processing step in green and black teas (Camellia sinensis) using UPLC-DAD-QToF/MS. Eur. Food Res. Technol. 245(5), 997-1010 (2019).
47. Kim, J. B. et al. RDA DB 1.0 - Flavonoids. Rural Development Administration (RDA), Wanju, Republic of Korea (2016).
48. Kim, H.-W. et al. Identification and quantification of hydroxybenzoyl and hydroxycinnamoyl derivatives from Korean sweet potato cultivars by UPLC-DAD-QToF/MS. J Food Compos Anal. 100, 103905 (2021).

Acknowledgements

This study was supported by 'Cooperative Researcher Program for Agricultural Science and Technology Development (Project No. PJ014172012020)', 'RDA fellowship Program' and 'Collaborative Research Program between University and RDA' of National Institute of Agricultural Sciences, Rural Development Administration (RDA), Republic of Korea.

Author contributions

S.H.L. and H-W.K. designed the study. S.H.L., S.L., H-W.K., S-J.L., H.N., R.H.K., J.H.K., Y-M.C. and H.Y. collected the leaves of soybean cultivars. S.L., S-J.L., H.N., R.H.K. and J.H.K. participated in sample preparation, extraction and analysis. S.L. performed the data collection and processing. S.L. and H-W.K. wrote main manuscript. S.H.L. and H-W.K. reviewed the manuscript. S.H.L., Y-M.C., H.Y., Y-S.K., C-D.W. and S.M.Y. supervised the research. All authors have read and agreed to the published version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/ 10.1038/s41598-022-18226-4.

Correspondence and requests for materials should be addressed to S.H.L.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
© The Author(s) 2022

[^0]: ${ }^{1}$ Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea. ${ }^{2}$ National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea. ${ }^{3}$ Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea. ${ }^{4}$ These authors contributed equally: Suji Lee and Heon-Woong Kim. ${ }^{\boxtimes}$ email: spprigan@korea.kr

