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Improving RED algorithm
congestion control by using
the Markov decision process
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Congestion control plays an essential role on the internet to manage overload, which affects data
transmission performance. The random early detection (RED) algorithm belongs to active queue
management (AQM), which is used to manage internet traffic. The RED is used to eliminate weakness
in default control of the Transport Control Protocol (TCP) drop-tail mechanism. The drawback of RED

is parameter tuning, while adaptive RED (ARED) automatically adjusts these parameters. In this
study, the suggested algorithm, the Markov decision process RED (MDPRED) uses the Markov decision
process (MDP) to suitably adapt values for queue weight in the RED algorithm based on average queue
length to enhance the performance of the traditional RED during TCP Slow Startup phase. This study
is conducted based on fluctuations among the rate of service, queuing weight, and the mean queue
length by using open-source network simulator NS3. The study shows efficient results by fluctuating
end-to-end packet throughput and fast response to the inception of congestion in the network.

The modified algorithm achieves a low level of drop packets by evaluating the results with other

five algorithms, which is done by increasing the algorithm’s response when the average queue size
becomes close to the maximum queue length threshold.

The high-speed network and rapid growth of user numbers make congestion control more attractive for research-
ers. The congestion control algorithm increases the Quality of Service (QoS) by managing the overload in the
router queue, increasing the throughput, and reducing the drop of packets in a network. The router in the
network has a limited buffer, while congestion makes the buffer full, causing packets to drop. In TCP protocol
the congestion effect by two main phases the Slow Startup phase which is responsible on seeking the capacity
of path between two end points by increasing the rate exponentially, and then the Congestion Avoidance phase
takes place to manage the sending rate with linear increasing rate. However, the default active queue manage-
ment (AQM)" algorithm is used as congestion control in Congestion Avoidance phase to reduce packet dropping
and maintain the stability of data flow in the router’s queue. Many queue management algorithms have been
developed to handle congestion that focused on managing congestion in Congestion Avoidance phase, such as
the Random Early Detection (RED) algorithm?, Adaptive Random Early Detection (ARED) algorithm?, Gentle
Random Early Detection (GRED)*, NonLinear Random Early Detection (NLRED)®, and Reconfigurable Non-
Linear Gentle Random Early Detection (RNLGRED)®.

The RED algorithm is used to overcome the drawback of the drop-tail (DT) mechanism used in Transmission
Control Protocol/Internet Protocol (TCP/IP). While the ARED is developed to overcome the drawback of RED
by dynamically updating the value of maxp to keep the avg closer to the target queue size. The target queue size
is selected halfway of the two thresholds, miny, and maxg,. By comparing the avg and target queue size, maxp
can be updated to minimize the gap between the avg and the target queue. Nevertheless, the ARED fails when a
large number of senders with a substantially varying data rate are sent. Also, both algorithms mange the conges-
tion during the Congestion Avoidance not on the Slow Startup phase of TCP flow. The GRED algorithm used
to increase dropping probability slowly when the average queue exceeds maxy, by duplicate the maxy, to reduce
the number of drop packets. The NLRED used exponential increasing probability unlike the above algorithms
which depend on linear probability. The NLRED is useful in the traffic load that increasing exponentially while
the RNLGRED used the Gentle feature (double maxy,) and nonlinear increase of drop probability. The algo-
rithms (GRED, NLRED and RNLGRED) have slow responses due to the static value of queue weight which has
a problem when sender nodes used different data rates.

In internet today the short TCP flow is widely used such as web traffic objects and Internet of Things (IoT)
applications. These type of traffic operate by alternate between active and inactive transmission periods, which
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mean that these traffics belongs to Slow Startup phase and default AQM algorithms have problems to manage
such traffics. In this work the ON-OFF application used to reflect the Slow Startup flow rates.

To eliminate the problems in RED and ARED, the Markov Decision Process RED (MDPRED) algorithm
has been suggested to give a fast response when many connections send different flow rates that belong to Slow
Startup phase. The proposed algorithm used the feature of GRED by duplicate the max;h in addition to dynamic
adjust of queue weight. The MDP is a stochastic control process in discrete time; it has a set of states S and a
set of actions A, and the MDP has a state transition matrix. The MDP is used to implement the reinforcement
learning features, and it can be used with the RED algorithm to improve the performance by reducing the drop
packets. The MDP needs to satisfy a Markov property that is independent of the past state, but it depends only
on the present state.

The MDP has been used in many network fields as a stochastic process that builds an optimal model in uncer-
tain environments to make proper action for a given state. For example’, used MDP to reduce the energy wastage
in a wireless sensor network (WSN). Additionally, in®, the MDP was used to manage the network flow risks. In’,
software-defined networking (SDN) used MDP as a defense strategy against distributed denial of service (DDoS)
attacks. In'°, the Wireless Body Area Network (WBAN), an optimal transmission policy between nodes was made
based on the MDP to reduce energy consumption. In this study, the MDP is used to manage congestion in the
router queue by taking proper action in a specific state to reduce drop packets. This paper examines the new
algorithm with RED and ARED by using NS3 as a simulator to observe the number of packets dropped when
the number of connections changes. “Related works” section describes the other work related to AQM and the
Markov processes. “The proposed algorithm and model design” section introduces the suggested algorithm and
the network design in this study. In “Simulation results and discussion” section, the implementation and analysis
of the results are presented, while “Conclusion” section addresses the conclusion.

Related works

Many algorithms have been developed to reduce the effect of congestion control in TCP/IP connections over the
network!!. The most recent AQM algorithms used optimization algorithm solutions to achieve optimal results.
In'?, the new model was used to control the window size of TCP packets with the help of the MDP to estimate
the round-trip-time (RTT). That study used three types of congestion control states: CA-Open (Packets sent and
acknowledgment received), CA-Recovered (the packets retransmitted), and CA-Loss (packets lost). The states
of MDP are s for the initial state, s; for the window size increasing state, s, for the congestion control state, and
s3 for the maximum window size. The proposed control shows the best performance in unreliable links and net-
works that have long been delayed by increasing or decreasing the window size based on congestion state. The
problem with that study is in solving congestion with edge networks, while the most congestion issue is found
in core networks, such as routers and switches.

The Markov-Modulated Bernoulli Arrival Process (MMBP)" used in the AQM algorithm (such as Gentle
Blue, which uses a dynamic calculation of max, based on queue length) is based on the Bernoulli Process (BP).
In this method, the traffic properties have been correlated based on discrete time. The two states are used based
on packet arrival probability, and in a specific slot time, the arrival packet to queue is evaluated to assign which
state this packet’s rate belongs to. Study’ used an analysis based on the effect of varying the service rate within
the queue in the system. The Poisson distribution is used to determine the servers distribution arrival rate when
using variable service rates. The study focused on the management performance between the servers’ arrival rate
and the service arrival rate, while improving the throughput and reducing the drop packet was ignored in that
study.' used an intelligent method to tune the AQM parameters depending on explicit congestion notification
(ECN). In that study, there were two parts: congestion prediction and AQM parameter tuning. The first part
used the neural network (NN), which learned from experience and ECN feedback, while the MDP was used to
adjust the parameters. The study was used to improve the collision delay (CoDel), which depended on the delay
of packets in the queue. The problem in that study was dependent on the ECN that started the congestion in the
backward direction of transmission packets, which had some delay to handle congestion.

As mentioned before, the RED algorithm was the earliest algorithm that was developed based on the AQM
principles. The RED algorithm needed to carefully tune its parameters; therefore, this algorithm struggled with
the difficulty in adopting changes in the type of services and applications. ARED? was designed to improve the
weakness in RED by auto-tuning parameters using the automatic calculation of the drop probability. The draw-
back of the ARED algorithm was increasing complexity due to the auto tuning of the maxj.

The Gentle RED (GRED)* was developed to improve the RED algorithm by duplicating the max;h to twice
max;h. This duplicate provided smooth tuning to the maxp. The problem with the GRED was the increased num-
ber of thresholds that needed to be selected carefully for a good result. Nonlinear RED (NLRED)?® by applying
nonlinear change of drop probability, depending on the avg in the router queue. The researcher in' incremented
the queue weight when increasing the avg. The aggressive increase in the value of the queue weight enabled an
increase in drop packets when the avg approached the double max;h. The problem in that study was also the
increased number of parameters required to be carefully tuned.

All AQM algorithm mentioned above and the research done recently focused on congestion that occur in TCP
Congestion Avoidance phase while the'® develop AQM that manage the congestion during TCP Slow Startup
phase which is interested in this study.
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The proposed algorithm and model design

The AQM algorithm.  The default of AQM algorithm work is represent in RED algorithm. The RED Incep-
tion of the congestion depends on the average queue size (avg), two thresholds (miny, and max;;) and maximum
drop probability (max,). Each packet arrives at the router queue; the algorithm calculates the avg by using expo-
nential weight moving average (EWMA) as a low pass filter, which is shown in Eq. (1) as follows:

avg = (1 — wy)avg + wyq (1)

where w, is the queue weight and q is the current queue size. If the avg value is mingy, < avg < maxgy, the algo-
rithm starts marking the arrival packets to the router’s queue using the Explicit Congestion Notification (ECN)
available in TCP/IP. Therefore, to reduce the sending rate, the drop probability P can be calculated based on Eq.
(2) as follows:

P = max,(avg — ming,)/(maxy, + mingy,) )

The RED algorithm starts dropping all incoming packets when avg exceeds max;h to manage the congestion
in the queue. The drawbacks of RED have a slow response to congestion and a difficulty tuning the parameter.
Thus, these drawbacks make the algorithm work incorrectly when different applications and services use dif-
ferent data rates. The GRED has three values of thresholds (min¢h,max;h and double max;h) to reduce of drop
probability slop curve. The proposed algorithm used three thresholds as in GRED and the dynamic value of w,
selected based on the Markov process.

Markov Process. The MDP depends on the combination of (s, a¢, 7, t)'7 with transitional probability to
determine which action needs to be taken for a given state, which can be seen in Eq. (3) as follows:

P(sty1lsia) = P(spy1 = jlss =i, a=k) (3)

where s; and s, indicate the present state and the next state, respectively, while a indicates that an action needs
to be taken. i and j can be 1,2,3, ... that represent states, where j is the next state and i is the current state; and k
can be 1,2,3, ... to indicate which action is taken.

r¢ is the reward (return) from the environment to the agent after an action is applied to the current state,
as shown in Eq. (4), and this reward can be the maximum or minimum. In this work, the reward represents a
minimum number of packets dropped as follows:

o0
Ry = Z e e S e (4)
i=t

The MDP includes the discount factor y, which has a value between 0 and 1 to give a weight for future rewards.
In this study, the value of y=0 includes only the immediate reward without involving future rewards, which is
shown in Eq. (5) as follows:

o0
Ri=ri+ Y y'n (5)
i=t+1

To map MDP on the RED algorithm, there is a need to consider the average queue length, avg, as a state and the
type of drop packets as an action. We assume four sets of states S=sy, 53, 53, s4. Then, we have the 4 x 4 transi-
tion probability matrix shown in Eq. (6). s; means the avg state TCP for a slow start below a minimum thresh-
old (0 < avg < miny,), s; indicates the avg state between miny, thresholds and halfway of the two thresholds
(miny, < avg < (miny, + maxy,)/2), s3 indicates the state when the avg is between halfway of the two thresholds
and below the maxy, ((ming, + maxy,) /2 < avg < maxy,), and s4 indicates the state when the avg is greater than
maxy, and less than double maxy, (maxih < avg < 2 % max.h). We assume that there are three sets of action
A=ay, ay, a3, where a; represents the no-drop packet, while a; and a3 indicate the unforced drop and the forced
drop, respectively, as follows:

Poo Por Pox Pos
Py P11 P1x Pi3 ©)
Py P21 Py Po3
P3y P31 P3; P33

Py =

Design and methodology. The Point-To-Point Dumbbell network topology built by NS3 with ON-OFF
application was used in this study, as shown in Fig. 1. In the current study, the network has five nodes on each left
and right side at beginning then increasing by 5 nodes in each simulation round up to 200 nodes, the source and
the destination, respectively, and the two nodes in the middle that reflect the router in the core network create a
bottleneck. Figure 1 shows that the sending nodes have not sent any packet, while in Fig. 2, the bottleneck link
has been congested, and the drop packets procedure started.

TCP slow start. The TCP protocol has a default congestion control with four phases: slow start, conges-
tion avoidance, fast retransmit, and fast recovery®. The slow start phase allows the TCP to inform the capacity
of links in the transition path; this occurs by duplicating the window size per RTT of each acknowledgment
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Figure 1. NS3 Point-To-Point Dumbbell topology before starting simulation.
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Figure 2. NS3 Point-To-Point Dumbbell topology after 10 sec of run time.

received. If no acknowledgment is received, the TCP indicates that congestion occurs, and the congestion avoid-
ance phase starts; then, the window size increases by one for all successful acknowledgments. Therefore, the TCP
slow starts increasing exponentially in each RTT, which means that congestion can occur within a short time.

Tuning algorithm parameters. The default values in the RED algorithm parameters are w,=0.002, ming,
=5, maxy=15, max,=1/ 507 In the present study, the probability transition matrix Pjjin Eq. (6) is calculated based
on queue weight w,. Equation (7) shows the relation between the load rate and wy, as well as their effect on the
avg value? as follows:

(1 —wg) D —1

avg =L+ 1+ ”
q

(7)

where L represents the load rate of the sending packets. w, works as a time constant in a low pass filter on the
average queue value, which reflects the response time and queue weight of incoming packets, as shown in Fig. 3.
Therefore, if wy is too large, then the algorithm does not filter out the congestion that appeared in a short time,
especially in the slow start of the TCP protocol, as mentioned in the previous subsection. If w, is too small, then
the algorithm response to congestion is too slow to reflect the change in queue size, and the small value of the
queue weight is suitable for the slow start phase in the TCP. In this study the initial value of w, set to zero and
increment by 0.002 when the state of avg change to other state, these values selected to manage the exponential
increase of TCP Slow Startup flow. Table 1 shows the range of the w, used in the suggested algorithm.

By using the values of the wy, the MDP probability transition matrix is obtained, shown in Eq. (6) as follows:

0 0.002 0.002 0.002
b 0004 0 0004 0.004
i = 10.006 0.006 0 0.006 ®)
0.008 0.008 0.008 0

The diagonal matrix assigns a zero value, which means there is no change in the queue weight value if the state
is the same. The parameters of the implemented network are shown in Table 2:
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Figure 3. The effect of the avg as a function of w, and the load rate.

0 < avg < miny, 0.002

ming, < avg < (ming, + maxy,)/2 0.004

(ming, + maxy,) /2 < avg < maxy, 0.006

maxgy < avg < 2 % maxgy, 0.008

Table 1. The value of avg based on the queue length state.

Packet size 512 Bytes
Data rate 10 Mbps
Bottleneck link capacity | 1 Mbps
ming, 5

maxy, 15

Table 2. The parameter values of the implemented algorithm.

Scientific Reports |

(2022) 12:13363 | https://doi.org/10.1038/s41598-022-17528-x

nature portfolio



www.nature.com/scientificreports/

No. of Nodes RED | ARED | GRED | NLRED | RNLGRED | MDPRED
5 162 140 174 161 174 142

50 1348 1320 1433 1315 1575 1241

100 5116 3731 3562 4579 3094 2940

150 11029 | 4905 5705 10877 5361 4725

200 18196 | 8387 7762 18300 7251 7180

Table 3. The sample of implementation reading for number of drop packets.

Algorithm 1 The pseudocode of proposed algorithm

Set Parameters (packetSize, dataRate, linkCapacity, min threshold and max threshold)
for each packet arrival
Calculate avg «— (1 —wy) avg +wyq
if 0 < avg < min,;, then
wg < 0.002
else if min,, < avg < (miny, +max,;,)/2 then
wq < 0.004
else if (min, +max;;, /2) < avg < max, then
wy < 0.006
else
wy < 0.008
end if
Calculate drop probability
Count the total Drop, FORCED and UNFORCED drop packets as a reward of MDP
Note: the values of w, represent the probability transition matrix of MDP

Simulation results and Discussion

The NS3 simulation is used to analyze and evaluate the new algorithm, MDPRED, against five algorithms: RED,
ARED, GRED, NLRED and RNLGRED based on the total drop, forced drop, and unforced drop packets. In this
paper, the performance of the suggested algorithm has been analyzed based on varying of the sending rates and
the effect on the average queue length'® by increasing the number of nodes in the Point-To-Point Dumbbell
network topology.

In Table 3, which shows samples of implementation results for six algorithms for five different node readings,
the total number of dropped packets is displayed. The MDPRED provides the optimum performance, especially
as data load increases, according to the table. In each simulation run from 5 to 200 nodes, Fig. 4 displays the
six algorithms dropping packets when the number of sending nodes is increased by 5 (Increasing nodes means
increasing data load on a network). The figure shows that when the data rates increase, the dropping gap between
the MDPRED and the two algorithms (RED and NLRED) increases. While the dropping rates of the other three
algorithms are comparable to the proposed algorithm, Table 3 and Fig. 4 demonstrate that the MDPRED has
the lowest dropping rates of all the algorithms. Accordingly , the MDPRED performs better and returns less
dropped packets.

The congestion algorithm can either drop the packets before enqueueing them in the router queue as forced
drop or mark the incoming packets with congestion notification of max, to be dropped later when congestion
increases as unforced drop. Similar to Tables 3 and 4 presents some of implementation readings for Forced drop
packets, while Fig. 5 presents all readings. Moreover Table 4 and Fig. 5 show that the MDPRED mostly has less
forced drop than the other five algorithms, which means that the new algorithm has better performance than the
default RED, ARED and NLRED algorithms. While the forced drop rate of GRED and RNLGRED algorithms is
close to MDPRED, but still the new algorithm has less Forced drop packets, so the new algorithm is less aggres-
sive to deal with congestion by reducing forced drop.

Table 5 presents some of implementation readings for Unforced drop packets, while all readings of unforced
drop packets are shown in Fig. 6. The unforced drop packets (marked packets) in the MDPRED present better
performance than those in the other three algorithms (RED, ARED, and NLRED). On the other hand, the GRED
and RNLGRED provide the best results, but still the MDPRED algorithm gives the best result in overall drop
packets as shown in Fig. 4 and Table 3. According to Fig. 6, it can be concluded that the new algorithm gives an
acceptable rate in Unforced dropping packets, which means giving a chance to deliver the packets to the destina-
tion without dropping if the congestion in the network reduces.
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Figure 4. Drop Packets based on the different data loads.

No. of Nodes RED | ARED | GRED |NLRED |RNLGRED | MDPRED
5 160 129 117 160 117 79

50 1262 911 496 1201 496 469

100 4899 1547 848 4281 848 772

150 10679 | 2474 1421 10348 1419 1340

200 17748 | 3869 1979 17571 1859 1975

Table 4. The sample of implementation reading for number of Forced drop packets.
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Figure 5. The force packets drop based on the different data loads.

Conclusion

The MDPRED is tuning the time response of the queue to the congestion by adopting the queue weight w,, which
works as a timely response in a low pass filter. The newly designed algorithm depends on using the Markov pro-
cess by setting the states and actions. The MDPRED has a better minimum drop packet (as a reward) than the
RED, ARED, GRED, NLRED and RNLGRED algorithms. The performance of MDPRED algorithm was tested
when increasing the traffic load by increasing the number of nodes connected in the network from 5 to 200
nodes. The MDPRED has a less percentage of drop packets than the other five algorithms, which means that the

suggested algorithm has higher performance to deal with the drop packets.
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No. of Nodes RED | ARED |GRED |NLRED | RNLGRED | MDPRED
5 2 11 57 1 57 63

50 86 409 937 114 1079 772

100 217 2184 2714 298 2246 2168

150 350 2431 4284 529 3942 3385

200 448 4518 5783 729 5392 5205

Table 5. The sample of implementation reading for number of Unforced drop packets.
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Figure 6. The unforced Packets drop based on the different data loads.

Data Availability

The paper entitled “Improving RED algorithm congestion control by using the Markov Decision Process” has
dataset collected from following hyperlinks:

1. The simulation and result of paper obtained by using NS3 “Network simulator 3” https://www.nsnam.org/

2. In https://www.nsnam.org/doxygen/red-queue-disc_8cc_source.html all five compared algorithms result
(dataset) available.

For example, the line 95 in hyperlink above the Gentle can be either true or false to reflect RED and GRED algo-
rithm respectively, while line code 100 the ARED can be implement by set it to true and the code line 115 repre-
sent the NLRED set to true with Gentle set to false or true to implement the NLRED or RNLGRED respectively.
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