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Remarkable immune and clinical 
value of novel ferroptosis‑related 
genes in glioma
Xiaoyan Gao 1,4, Jiazheng Zhao 2,4, Litao Jia 3 & Qiushi Zhang 1*

Ferroptosis is a neoteric model of regulated cell death that shows great potential for the 
understanding of tumor immunology and as a target for therapy. The present study aimed to identify 
ferroptosis‑related differentially expressed genes (DEGs) in glioma and to explore their value through 
systematic analysis. Ferroptosis‑related DEGs were identified through the Gene Expression Omnibus 
database in combination with the FerrDb database and analyzed in the Genotype‑Tissue Expression 
database and The Cancer Genome Atlas database. Possible signaling pathways involved were explored 
by construction of enrichment analysis and protein–protein interaction of these DEGs. Potential 
regulation of the immune microenvironment, immune checkpoint and chemokine was postulated 
by immune analysis. A prognosis model for glioma was developed using survival analysis, exhibited 
by the nomogram and evaluated by the calibration curve. The prognostic value of the model was 
validated by using an independent cohort. A total of 15 ferroptosis‑related DEGs were identified, 
including 7 down‑regulated and 8 up‑regulated, with ATP6V1G2, GABARAPL1 and GOT1 as hub 
genes. The expression of all 3 hub genes was positively correlated with T follicular helper cells and 
natural killer CD56bright cells. These hub genes were negatively correlated with the macrophage cell 
type as well as B7H3, PDCD1, LAG3 and CXCL16, CXCR4, CCR5. Low expression of all 3 hub genes 
was associated with poor prognosis in glioma cases. ATP6V1G2 might be an independent prognostic 
factor and, as such, a high‑precision prognostic model of glioma was constructed. We identified novel 
ferroptosis‑related genes with clinical value in glioma and revealed their possible tumor immune 
relevance. Furthermore, in glioma, we pinpointed underlying critical elements of the chemokine, 
immune microenvironment and immune checkpoint, and were able to develop a predictive model of 
prognosis.

Ferroptosis is a neoteric model of regulated cell death (RCD) that relies on lipid peroxidation and iron catalysis 
to induce the accumulation of reactive oxygen  species1. Growing evidence suggests that ferroptosis is integrally 
linked to the development, progression and suppression of cancer, as well as exhibiting great potential in tumor 
immunology and  therapy2,3. The genes involved in ferroptosis are considered significant in relation to  glioma4.

Gliomas are the most common primary tumors of the  brain5 which are deemed to originate from progenitor 
cells or neuroglial stem and are classified as grades I-IV depending on the degree of  malignancy6. As a com-
plicated and heterogeneous tumor, the pathogenesis and regulation of glioma encompass multiple pathways 
involving the immune microenvironment, non-coding RNA, and metabolic  reprogramming7,8. Furthermore, 
the prognosis of glioma is not favourable, with age being generally regarded as one of the risk  factors9 and, in 
recent years, IDH mutation and 1p/19q deletion have also been included as prognostic  indicators10. Emerging 
therapeutic strategies are urgently needed, and studies related to ferroptosis provide new insights into the treat-
ment of glioma.

In this study we identified novel ferroptosis-related genes in glioma through the Gene Expression Omnibus 
(GEO) database in combination with the FerrDb database and analyzed them in the Genotype-Tissue Expression 
(GTEx) database and the Cancer Genome Atlas (TCGA) database. Possible signaling pathways involved were 
explored by construction of protein–protein interaction (PPI) and enrichment analysis. Potential regulation 
of the immune microenvironment, immune checkpoint and chemokine in glioma was postulated by immune 
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analysis. A new independent prognostic factor was located by survival analysis and used to develop a highly 
accurate prognostic model. Ultimately, the prognostic value was validated in the Chinese Glioma Genome Atlas 
(CGGA) database.

Materials and methods
Data sources. The flow chart of the present study design is demonstrated in Fig. 1. We downloaded the 
raw probe-level data (CEL files) for the GSE4290 and GSE50161 datasets from the GEO database (https:// www. 
ncbi. nlm. nih. gov/ geo/) with a total of 274 glioma samples and 36 non-tumor samples. The platform for both 
GSE4290 and GSE50161 is GPL570, with GSE4290 comprising 157 glioma samples and 23 non-tumor samples, 
and GSE50161 comprising 117 tumor samples and 13 non-tumor samples. From the TCGA database (https:// 
www. cancer. gov/about-nci/organization/ccg/research/structural-genomics/tcga), we obtained a total of 694 
samples with RNA-seq data and clinical data, including 689 glioma samples and 5 paraneoplastic samples. In 
addition, we collected RNA-seq data from a total of 1152 normal brain tissue samples from the GTEx database 
(https:// www. gtexp ortal. org/). RNA-seq data in FPKM format were converted to TPM format and log2 trans-
formed. FerrDb (http:// www. zhoun an. org/ ferrdb) is the first manually managed ferroptosis database covering 
regulatory factors and molecular markers for ferroptosis and ferroptosis-related  diseases11,12. Ferroptosis-related 
genes are defined as the gene ensemble consisting of Drivers, Suppressors of ferroptosis and Markers of ferrop-
tosis process. We acquired all currently known ferroptosis-related genes from the FerrDb database, totaling 259. 
RNA-seq and survival information from the CGGA database (http:// www. cgga. org. cn) of 313 glioma samples 
were used for validation. All methods were carried out in accordance with relevant guidelines and regulations. 
The above data were all obtained from public databases and did not involve informed consent from patients.

Pretreatment and differential analysis. The raw probe-level data (CEL files) were read using the affy 
package of  R13. The robust multichip averaging (RMA) method was applied for preprocessing, including cor-
rection of background, standardization of data and calculation of expression. Missing values were added by the 
k-Nearest Neighbor (KNN) method. Differentially expressed genes (DEGs) were identified using the limma 
 package14 with the filter that met an adjusted P value (false discovery rate, FDR) < 0.05 and |log fold change 
(logFC)| > 1. Subsequently, ferroptosis-related DEGs were obtained by taking the intersection of DEGs and all 
ferroptosis-related genes. The ComplexHeatmap  package15 and the ggplot2 package were used for visualization.

Functional enrichment analysis and gene regulatory network construction. The clusterProfiler 
package was used for Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway  analysis16 and Gene Set Enrichment Analysis (GSEA), and the org. Hs. eg. dborg.Hs.eg.db pack-
age was used for gene ID conversion. Results were considered statistically significant at FDR < 0.05. Interactions 
in DEGs were predicted using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) data-
base (https:// string- db. org/)17 with a combined score > 0.15. Cytoscape is an open-source software for network 
analysis and  visualization18, which we used to build the PPI network.

Molecular correlation analysis. High and low expression groups were classified according to the upper 
and lower quartiles of hub gene expression, and RNA-seq data of 689 glioma samples from TCGA was used for 

Figure 1.  The flow chart of the present study design.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.cancer
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https://bioconductor.org/packages/org.Hs.eg.db
https://string-db.org/
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immune analysis by ssGSEA algorithm in the GSVA  package19. A total of 7 popular immune checkpoint genes 
(ICGs)20,21, 24 immune cell types which were major components of the tumor microenvironment (TME)22, 30 
primary chemokines and related receptors were integrated into the study. In addition, in the TCGA database of 
glioma samples, DNA methylation correlation of hub gene was evaluated by analyzing the association of gene 
expression and the Beta values corresponding to methylation probes. The statistical method adopted was the 
Spearman correlation analysis and results were considered statistically significant at P < 0.05.

Clinical correlation and survival analysis. RNA-seq data of 694 samples from TCGA and 1152 normal 
samples from the GETx were handled uniformly using the Toil  process23, validated for hub genes expression 
using the wilcoxon rank sum test, analyzed for diagnostic efficacy using the pROC package, and visualized 
using the ggplot2 package. Dunn’s multiple comparison test was performed after retaining samples with World 
Health Organization (WHO) tumor grade information and removing duplicates from the 689 TCGA glioma 
samples, and then visualized with the ggplot2 package. In addition, the median gene expression was used as the 
cut-off value to divide the low and high expression groups, and overall survival (OS) was chosen as the prognos-
tic parameter. After keeping samples with survival information and excluding duplicates from the 689 glioma 
samples, survival  analyses24,25 were carried out using survival package, including log-rank test, univariate Cox 
regression and multivariate Cox regression, and the survminer package was used for visualization. The results of 
all the above statistical analyses were considered statistically significant at P < 0.05.

Prognostic model construction and evaluation. The gene classified as the independent prognos-
tic factor was validated internally and externally using the timeROC package in samples from the TCGA and 
CGGA databases, respectively. Subsequently, the statistically significant results of the multivariate Cox regres-
sion analysis were incorporated into the construction of a  nomogram26, and the model was built by summing 
the prognostic factors for glioma to predict the 1-year, 2-year and 3-year survival probability of patients. Cor-
responding calibration curves were developed to assess the accuracy of the model. Ultimately, relying on an 
independent glioma cohort from the CGGA database, the resulting model was validated by constructing the 
time-dependent receiver operating characteristic (ROC) curve and decision curve analysis (DCA) figure. The 
rms package was used for visualization.

Statistical analysis. The statistical analysis was conducted using R software version 3.6.3, STRING website 
version 11.0 and Cytoscape software version 3.8.2.

Results
Ferroptosis‑related DEGs identification. A total of 1598 DEGs were identified in the GSE4290 dataset, 
of which 305 were up-regulated and 1293 were down-regulated. Furthermore, 4689 DEGs were identified in the 
GSE50161 dataset, of which 3885 were up-regulated and 804 were down-regulated. The volcano plot covered all 
DEGs in each dataset and the heatmap included the top 150 DEGs in each dataset ranked by FDR (Fig. 2A-D). 
The DEGs up-regulated in both datasets were intersected with 259 ferroptosis-related genes, 8 in total, namely 
IDH1, CD44, CAV1, DDIT4, TXNIP, VEGFA, RRM2 and TP53. The DEGs down-regulated in both datasets 
were intersected with 259 ferroptosis-related genes, 7 in total, namely GLS2, GOT1, GABARAPL1, FBXW7, 
ENPP2, ATP6V1G2 and RGS (Fig. 2E). Altogether, 15 ferroptosis-related DEGs of glioma were identified.

GO and KEGG enrichment analyses of DEGs. GO enrichment analysis was performed on the 15 
DEGs, and the top 5 significantly enriched terms were filtered out and visualized in a network (Fig. 3A, B). The 
results revealed that these genes were mainly enriched in the biological process (BP) category and functioned 
in peptidyl-tyrosine phosphorylation, peptidyl-tyrosine modifications and intrinsic apoptotic signaling. These 
15 ferroptosis-related DEGs were analyzed for KEGG enrichment and the top 5 significantly enriched path-
ways were screened for visual network construction (Fig. 3C, D). Corresponding genes were notably associated 
with microRNAs in cancer, central carbon metabolism in cancer, proteoglycans in cancer, 2-Oxocarboxylic acid 
metabolism and arginine biosynthesis.

Hub genes identification and analyses. We predicted interactions among the ferroptosis-related DEGs 
using STRING and subsequently constructed a PPI network containing 15 nodes and 37 edges using Cytoscape 
(Fig. 4A). Three (ATP6V1G2, GABARAPL1 and GOT1) of the 15 genes, which were rarely reported in glioma, 
were identified as hub genes and subjected to further analysis. The expression of the hub genes was verified in 
694 samples from TCGA and 1152 samples from GTEx, and all three genes were significantly under-expressed 
in glioma compared to normal ones (all P < 0.05) (Fig. 4B). Subsequently, 689 tumor samples were divided into 
low and high expression groups based on the median expression of each of the three hub genes, respectively, for 
GSEA (Fig. 4C), which manifested significant differences in the enrichment of MSigDB Collection (FDR < 0.05). 
Significant-enriched gene sets were ranked based on normalized enrichment score (NES) values. For both 
ATP6V1G2 and GABARAPL1, the top-two most significant-enriched gene sets were M phase and neutrophil 
degranulation. The top-two most significant-enriched gene sets for GOT1 were GPCR-ligand binding and neu-
ronal system. Additionally, in terms of ATP6V1G2, the expression relationship between ATP6V1G2 and multi-
ple DNA methylation probes demonstrated significant negative correlations (all P < 0.05, r < − 0.3) in the TCGA 
database of glioma samples (Fig. 4D).
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Association of hub genes expression and immune cells infiltration. Glioma samples (n = 689) 
excluding paraneoplastic ones from 694 samples derived from TCGA were used to explore the potential associa-
tion between hub gene expression and immune cell infiltration. Similarly, the expression of all 3 hub genes were 
positively correlated (all P < 0.05, r > 0.3) with T follicular helper (Tfh) cells and natural killer (NK) CD56bright 
cells, while being negatively correlated (all P < 0.05, r < − 0.3) with macrophages. However, the correlation with 
dendritic cell (DC) and  CD8+ T cell was either absent or slight (Fig. 5A-C).

Figure 2.  Identification of ferroptosis-related DEGs in GEO database. Volcano plots and heatmaps of DEGs in 
GSE4290 dataset (A, B, respectively) and GSE50161 dataset (C, D, respectively). The Venn diagram (E) of the 
intersection among up-regulated DEGs, down-regulated DEGs and ferroptosis-related genes.
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Association of hub genes expression and ICGs. In the TCGA database, co-expression analysis of hub 
genes with ICGs showed a regular pattern, with CD276 (B7H3), PDCD1, LAG3 being negatively correlated (all 
P < 0.05, r < − 0.3) with all 3 hub genes in glioma, while TIGIT was not associated robustly (Fig. 6A). CD276, as 
the most strongly associated ICG, was selected among 313 glioma samples from the CGGA database to verify the 
relationship with the hub genes. The results showed that the expression of ATP6V1G2, GABARAPL1 and GOT1 
was negatively correlated with CD276 expression (all P < 0.05, r < − 0.3) (Fig. 6B). Besides, correlation analysis of 
hub genes with PDCD1 (Fig. 6C) and LAG3 (Fig. 6D) in the CGGA database was consistent with the outcomes 
in the TCGA database.

Association of hub genes expression and chemokines. Chemokine family plays an essential role in 
regulating infiltration degree of immune cell. In the TCGA database, co-expression analysis of hub genes with 
chemokines and related receptors also showed a regular pattern, with CXCL16 as a chemokine as well as CXCR4 
and CCR5 as receptors negatively correlated (all P < 0.05, r < − 0.3) with all hub genes in glioma (Fig. 7A). The 
validation outcomes of CXCL16 (Fig. 7B), CXCR4 (Fig. 7C) and CCR5 (Fig. 7D) in the CGGA database exhib-
ited consistent negative correlation trends, suggesting that CXCL16, CXCR4 and CCR5 might act as potentially 
vital chemokine elements in glioma.

Association of hub gene expression and clinical variables. ROC curve analysis was performed on 
1152 normal samples from GTEx, 689 glioma samples and 5 paraneoplastic samples from TCGA. The AUC 
values of ATP6V1G2, GABARAPL1 and GOT1 were 0.664, 0.697 and 0.705, respectively (all P < 0.05) (Fig. 8A). 
Subsequently, 612 glioma samples remained after excluding samples without tumor grade information and dupli-
cates, and the potential association between hub gene expression and tumor grade was analyzed. Overall, the 

Figure 3.  Enrichment analysis of ferroptosis-related genes. Using the top 5 significant enriched terms (A) to 
construct the GO visualization network (B). Using the top 5 significant enriched pathways (C) to construct the 
KEGG visualization network (D).
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expression of ATP6V1G2, GABARAPL1 and GOT1 was significantly elevated in low-grade glioma compared to 
high-grade glioma (Fig. 8B). Likewise, 669 glioma samples remained after excluding samples with no survival 
information and duplicates, undergoing the log-rank test of hub genes expression and plotting the Kaplan–Meier 

Figure 4.  Hub genes identification and analyses. (A) The PPI network of ferroptosis-related genes. (B) 
Validation of hub genes expression in TCGA database and GTEx database. (C) GSEA of hub genes expression in 
TCGA database. (D) DNA methylation correlation analysis in TCGA database.
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(K–M) curves. The results suggested that high expression of ATP6V1G2, GABARAPL1 and GOT1 was associ-
ated with high survival probability as compared to low expression (Fig. 8C). Also, K–M curves in 313 gliomas 
sample through CGGA database showed that low expression of ATP6V1G2, GABARAPL1 and GOT1 was asso-
ciated with poor prognosis (Fig. 8D), which was consistent with the results from the TCGA database.

ATP6V1G2 was an independent prognostic factor for glioma patients. The expression of 
ATP6V1G2, GABARAPL1, GOT1 along with common glioma characteristics (age, gender, race, tumor grade, 

Figure 5.  Visualization of the immune infiltration analysis in TCGA database. Association of ATP6V1G2 
expression (A), GABARAPL1 expression (B), GOT1 expression (C) with immune cells infiltration, respectively.
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1p/19q status, IDH status) were included in the univariate Cox regression analysis. The results implied that 
advanced age, high-grade tumor, 1p/19q non-codeletion, IDH-non mutation, low expression of ATP6V1G2, 
GABARAPL1 and GOT1 might be poor prognostic factors for glioma patients. The above potential factors were 
further combined into the multivariate Cox regression analysis, and the results indicated that ATP6V1G2 might 
be an independent prognostic factor of glioma. Glioma patients with low ATP6V1G2 expression tended to suffer 
a shorter OS than those with high ATP6V1G2 expression (Table 1). Internal validation of the prognostic value 
for ATP6V1G2 was performed using 669 glioma samples from TCGA, with the time-dependent ROC curve 
showing high predictive efficacy of ATP6V1G2 (Fig. 9A). External validation was achieved using 313 glioma 
samples from CGGA, and the time-dependent ROC curve similarly validated the efficient predictive efficacy of 
ATP6V1G2 on glioma prognosis (Fig. 9B).

Construction and evaluation of the prognostic model for glioma patients. The statistically 
significant results (age, tumor grade, IDH status, ATP6V1G2 expression) of the multivariate Cox regression 
analysis were incorporated into the construction of the nomogram (Fig. 10A). The values of the Points axis 
corresponding to each variable for glioma patients were summed and positioned in the Total Points axis, thus 
anticipating their 1-year, 2-year and 3-year survival probability. All the covariates in the nomogram satisfied 
proportional hazards assumptions and the global Schoenfeld test. The C-index of the model was 0.840 (95% CI 

Figure 6.  Visualization of the ICGs analysis. Association of hub genes with ICGs in TCGA database (A). 
Association of hub genes with CD276 (B), PDCD1 (C) and LAG3 (D) in CGGA database.
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0.829–0.852). Additionally, in the calibration curve (Fig. 10B) the predicted 1-year, 2-year and 3-year survival 
probability matched closely with the ideal line, demonstrating the trend consistency and predictive accuracy 
of the prognostic model. Furthermore, validation using an independent cohort with 313 glioma samples from 
CGGA database showed that the prognostic model was highly effective in predicting the 1- year, 2- year and 
3-year survival probability of patients (Fig. 10C). The predictive efficacy of this prognostic model was stronger 

Figure 7.  Visualization of the chemokines analysis. Association of hub genes with chemokines and related 
receptors in TCGA database (A). Association of hub genes with CXCL16 (B), CXCR4 (C) and CCR5 (D) in 
CGGA database.
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than that of ATP6V1G2 alone. DCA plots likewise confirmed the nomogram combined with various features 
had considerable clinical application value (Fig. 10D).

Figure 8.  Association of hub genes expression and clinical variables. (A) ROC curves of hub genes in TCGA 
and GTEx database. (B) Expression of hub genes at different grades of glioma in TCGA database. (C) K-M 
curves of hub genes in TCGA database. (D) K-M curves of hub genes in CGGA database.
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Discussion
Despite the continued discovery of genes relevant to glioma  prognosis27 and the development of emerging 
therapies, the improvement in patient prognosis has been limited and the treatment outcome for some glioma 
patients has been  suboptimal28. For three decades, most of the clinical strategies have functioned by targeting 
tumor cells to induce  apoptosis29. However, cancer cells may undergo apoptotic escape, allowing them to generate 
resistance, leading to diminished therapeutic sensitivity and poor patient  prognosis30. Distinct from apoptosis, 
ferroptosis as a neoteric form of RCD features unique biological and morphological characteristics and is gain-
ing widespread attention in the treatment of refractory  tumors31. Currently, studies of ferroptosis in glioma are 
sparse, and genetic determinants that play a crucial role need to be discovered urgently.

A total of 310 samples from the GEO database (274 glioma samples and 36 non-tumor samples) were analyzed 
for gene expression differences and intersected with ferroptosis-related genes from the FerrDb database, with 
15 ferroptosis-related DEGs (8 up-regulated and 7 down-regulated) identified in glioma samples. We explored 
the possible biological effects of these DEGs through PPI network construction and enrichment analysis. The 
PPI network constructed covered all 15 DEGs and GO enrichment analysis indicated that they were intimately 
associated with peptidyl-tyrosine phosphorylation and peptidyl-tyrosine modifications. KEGG analysis revealed 
that ferroptosis-related DEGs were significantly enriched in ’microRNAs in cancer’, ’central carbon metabolism 
in cancer’ and ’proteoglycans in cancer’. MicroRNAs work in virtually all aspects of cancer biology, ranging 

Table 1.  Univariate and multivariate Cox regression analysis to identify prognostic factors for glioma patients.

Variables Total (N)

Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age, years
(> 60 vs. <  = 60) 669 4.716 (3.609–6.161)  < 0.001 1.874 (1.382–2.540)  < 0.001

Gender
(Male vs. female) 669 1.230 (0.955–1.585) 0.109

Race
(White vs. others) 657 1.240 (0.757–2.032) 0.393

Tumor grade
(G4&G3 vs. G2) 612 5.893 (4.015–8.648)  < 0.001 2.428 (1.588–3.714)  < 0.001

1p/19q codeletion
(Non vs. codel) 663 4.635 (2.963–7.251)  < 0.001 1.168 (0.663–2.060) 0.591

IDH status
(WT vs. Mut) 660 9.850 (7.428–13.061)  < 0.001 5.350 (3.508–8.158)  < 0.001

ATP6V1G2
(Low vs. high) 669 5.012 (3.730–6.735)  < 0.001 1.810 (1.164–2.816) 0.008

GABARAPL1
(Low vs. high) 669 2.502 (1.930–3.243)  < 0.001 0.710 (0.499–1.011) 0.058

GOT1
(Low vs. high) 669 1.497 (1.166–1.924) 0.002 1.055 (0.771–1.442) 0.739

Figure 9.  Validation of the ATP6V1G2 prognostic value. (A) The time-dependent ROC curve of ATP6V1G2 in 
TCGA database. (B) The time-dependent ROC curve of ATP6V1G2 in CGGA database.
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from proliferation, invasion, metastasis and  more32. Some microRNAs are considered to be particularly linked 
to the initiation, progression and prognosis of specific  tumors33. As for glioma, multiple microRNAs have been 
recognized as regulators and prognostic markers, with miR-145, miR-31, miR-451, miR-143, miR-146a, and 

Figure 10.  Visualization of the glioma prognostic model. Using the nomogram (A) and the calibration curve 
(B) to construct and evaluate the model in TCGA database, respectively. Using the time-dependent ROC curve 
(C) and the DCA figure (D) to validate the model in CGGA database.
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miR-126 being utilized as therapeutic molecules in primary and metastatic  glioma34. In addition, malignant 
transformation of cells necessitates corresponding shifts in cellular metabolism to support growth and maintain 
survival. Transformations in carbon metabolism involving raised glutaminolysis, aerobic glycolysis, dysfunctional 
tricarboxylic acid cycle and pentose phosphate pathway occur within the tumor mass, thereby accelerating tumor 
progression and maintaining  viability35. Proteoglycans serve as essential effector molecules on the cell surface 
and in the pericellular microenvironment, characterised by their polyhedric nature and capacity to interact with 
ligands and receptors which modulate neovascularization and tumor growth, resulting in a variety of roles in 
angiogenesis and  cancer36. The discrete expression of proteoglycans and their interacting partners have been 
distinguished as specific for disease progression in varying types of  tumor37. Besides, the significant negative 
correlations between the expression of ATP6V1G2 and multiple DNA methylation probes in glioma suggested 
that ATP6V1G2 might play an active role in the DNA methylation process. Although we have obtained various 
potential biological functions through 15 ferroptosis-related DEGs, due to the paucity of studies on ferroptosis, 
it is not feasible to confirm whether there is a clear relationship between these functions and ferroptosis to drive 
gene action in glioma, and such uncertain relationships can only be hypothesized and need to be further verified.

Ferroptosis and immunity interplay, with ferroptosis impacting the potency of tumor  immunotherapy38, 
while ferroptosis is in turn mediated by  CD8+ T  cells39. Interestingly, in our study, immunoassay results for 
the hub genes were highly concordant, manifesting prominent positive correlations with NK CD56bright cell 
and Tfh cell types, prominent negative correlations with macrophage as well as B7H3, PDCD1, LAG3 and 
CXCL16, CXCR4, CCR5, which revealed for the first time the possible immunological effects of ATP6V1G2, 
GABARAPL1, and GOT1 in cancer. Given that, we hypothesized that NK CD56bright, Tfh, and macrophage cell 
types might be closely related to immune regulation in TME of glioma, and B7H3, PDCD1, LAG3 and CXCL16, 
CXCR4, CCR5 might be key targets for glioma immunotherapy. Lu et al. confirmed that activated NK cells, Tfh 
cells and macrophages could act as independent predictors of malignant transformation in low-grade  glioma40, 
which validated our hypothesis. It is now generally accepted that immunology and immunotherapy are incred-
ibly promising for therapeutic application in glioma, and ferroptosis is credited with playing a significant role 
in  this41. Yee et al. proposed and proved that neutrophils could mediate ferroptosis and thus promote tumor 
necrosis to slow down the progression of  glioblastoma42. Several studies have revealed the intimate association of 
ferroptosis-related genes with immune cells represented by neutrophils in glioma, but the specific mechanisms 
involved remain to be further  clarified43–45. As for ICGs, B7H3 has been recognized as a biomarker of outstanding 
diagnostic and therapeutic profile in human  glioblastoma46. The corresponding value of PDCD1 and LAG3 has 
also been demonstrated in successive glioma  studies47. In addition, CXCL16 as a chemokine as well as CXCR4 
and CCR5 as chemokine receptors were identified in our study as possible vital immunomodulatory factors in 
glioma. Chemokine family plays an essential role in regulating infiltration degree of immune cell. In summary, 
we aimed to investigate valuable immune elements that had commonality with hub gene expression in glioma 
from various perspectives, including immune infiltrating cells, ICGs and chemokines.

Subsequently, the results of the clinical correlation analysis suggested that the 3 hub genes, which were down-
regulated in glioma samples, possessed certain diagnostic efficacy and were lowly expressed in high-grade tumors, 
as well as low expression accompanied by short OS. Combined with their high expression in non-glioma samples, 
we speculated that ATP6V1G2, GABARAPL1, and GOT1 might be suppressor genes for glioma. Moreover, we 
gradually performed log-rank test, univariate Cox regression analysis, and multivariate Cox regression analysis 
on the survival information, and constructed a prognostic model presented in the nomogram and conducted the 
accuracy test. The C-index (0.840) and the high fit of the calibration curve substantiated the superior latent value 
of the model. And eventually the nomogram was externally validated based on the ROC curves and DCA plots 
generated by an independent glioma cohort. In the construction of the model, we demonstrated that ATP6V1G2 
could act as an independent prognostic factor for glioma patients and incorporated it into the prognostic model. 
ATP6V1G2 is recognized as an up-regulated biomarker of  ferroptosis48, and as far as available studies indicated 
that ATP6V1G2 operated mainly in cardiovascular system diseases such as myocardial  infarction49, adriamycin-
induced  cardiotoxicity50 and dilated  cardiomyopathy51. This is the first study to confirm that ATP6V1G2 is tumor-
related and may affect the prognosis of glioma patients. As for GABARAPL1 and GOT1, both are recognized as 
potential positive regulators of  ferroptosis52,53. Su et al. established that GABARAPL1 inhibited prostate cancer 
metastasis by suppressing the PI3K/Akt  pathway54. Zhang et al. enhanced the sensitivity of melanoma cells to 
ferroptosis inducers by increasing GOT1  expression55. Our study revealed the potential clinical relevance of 
these 3 ferroptosis-related hub genes, which might contribute to the prognosis prediction and precise treatment 
of patients with glioma.

Our study remains some limitations that need to undergo further validation in experiments and clinical 
cohorts. In addition to the present study, we also noticed that Zheng et al. proved the prognostic significance of 
the ferroptosis-related genes in low-grade  glioma56. A growing number of ferroptosis-related genes with clinical 
value in glioma are also successively being  identified4,57. Based on multiple databases, analyses and validation are 
thoroughly carried out in our study, and we believe that our findings are robust and might provide new insights.

Conclusions
In conclusion, we identified novel ferroptosis-related genes with clinical value for glioma and revealed their 
possible tumor immune relevance. Furthermore, in glioma, we pinpointed underlying critical elements of the 
chemokine, immune microenvironment and immune checkpoint, and eventually achieved an efficient predic-
tive model of prognosis.
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Data availability
All data used, including gene expression, sequences and patient clinical information, are available from the GEO 
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