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Novel transport properties 
of the α‑T3 lattice with uniform 
electric and magnetic fields
Fu Li1, Qingtian Zhang1,2* & Kwok Sum Chan3*

We report a theoretical study of electronic transport properties of α‑T3 lattice nanoribbons in the 
presence of uniform electric and magnetic fields. Landau levels with an unexcepted fashion are 
obtained in the system, and unique flat bands are observed due to the crossed electric and magnetic 
fields. We found that the nondispersive flat band of α‑T3 lattice is distorted and split to many 
dispersive energy levels when electric and magnetic fields are applied. A double constriction structure 
of α‑T3 lattice is considered to investigate the quantum transport in the flat band, and novel quantum 
transport properties are obtained, which shows great differences from conventional Dirac electrons. 
Our results show that the flat bands of α‑T3 lattice can also contribute to the quantum transport 
properties and play an important role in the development of novel Dirac electron device.

Graphene has a flat hexagonal lattice of carbon atoms forming a monoatomic  layer1, and the electronic and 
structural characteristics due to the layer structure have attracted widespread attention from engineers and 
 physicists2–8. The interest in graphene has prompted the active and comprehensive research in two-dimensional 
(2D) Dirac  materials9. Recently, the dice lattice also becomes a very popular 2D Dirac material in research studies, 
and its band structure is similar to that of graphene, except for a nondispersive flat band found at zero-energy10–12. 
Besides, there is a new type of 2D Dirac material named α-T3 lattice, which is an interpolation between the dice 
lattice and  graphene13,14. When an atom is added to the center of each hexagon of the honeycomb lattice of gra-
phene, the lattice formed is the α-T3  lattice15. A unit cell of an α-T3 lattice consists of three atoms, the AB atoms 
in the honeycomb lattice of graphene and the C atom at the centre of the hexagon. The additional atom C only 
couples with either A or B atom but not both, and the coupling strength is described by the parameter α. The 
electric properties of the α-T3 lattice changes with the value of the parameter α, and the α-T3 lattice becomes 
graphene at α = 0 and changes to the dice lattice at α = 1. It is demonstrated that α-T3 lattice can be obtained in 
 Hg1−xCdxTe at a critical doping with an intermediate value of the parameter α= 1/

√
316. The optical α-T3 lattice 

has been predicted theoretically, and the value of the parameter α can be varied in these  systems17,18. In experi-
mental studies, the dice lattice has already been realized by growing a three-layer structure of  SrTiO3/SrIrO3/
SrTiO3 along the (111)  direction19,20.

The special lattice structure of the α-T3 lattice leads to many novel properties, and as a result, it has been 
intensively studied  recently21–24. One of the interesting characteristics is the nondispersive flat  band25. Owing 
to the recent discovery of the flat band in twisted bilayer graphene  systems26–28, there is a strong interest in the 
study of flat band in other materials and systems. The following are examples in which a flat band is found: Lieb 
 lattice29, optical lattice  systems30,31, and 1 T-TaS2  material32, α-T3  lattice33. The nondispersive flat band do not 
contribute to the electron transport due to the zero group velocity; however, the flat band in α-T3 lattice leads 
to many peculiar characteristics in quantum  transport34–38. Moreover, some attention has been devoted to the 
investigation of α-T3 lattice with broken flat band. Wang et al.39 study the quantum Hall effect in α-T3 lattice with 
staggered potential and disorder, and they found that the staggered lattice potential and disorder can break the 
flat band so as to break the zero Hall plateau of origin α-T3 lattice. Previous studies show that no zero-energy 
minimal conductivity is found in clean α-T3  lattice40,41, however, the zero-energy minimal conductivity can be 
obtained when staggered potential or disorder is considered.

In this study, we investigate the novel electronic transport properties in α-T3 lattice under the effect of crossed 
magnetic and electric fields. Though the electronic properties of α-T3 lattice nanoribbons under an external 
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magnetic field have been studied analytically and  numerically13,42, the transport properties of α-T3 lattice with 
both magnetic and electric fields are still interesting and important. We found that the zero-energy nondispersive 
flat band of α-T3 lattice is distorted when an in-plane electric field and perpendicular magnetic fields are applied, 
and the nondispersive zero-energy level is split and broadened to many dispersive energy levels. We show how 
the Landau levels are affected by the transverse electric field, and how the magnetic field changes the broadened 
distorted flat band levels. We obtain Landau levels with unexpected fashion, and many unique properties for 
the zero-energy flat band are presented. We also consider a double constriction structure of α-T3 lattice in the 
presence of magnetic field, and it is found that electrons in the broadened zero-energy level have very different 
transport properties. Our findings reveal rich physics of the flat band in α-T3 lattice and show that the flat band 
can also contribute to quantum transport.

Model and methods
The schematic diagram of the device structure considered in this study is shown in Fig. 1a. We propose a device 
with two nanoscale constrictions, and gate electrodes can be fabricated on the top of the α-T3 lattice to produce 
the depletion region underneath to create the nanoscale constrictions. The constrictions can also be realized by 
etching, but it is more convenient to control the size of the constrictions through the gate electrodes. The dimen-
sions of the device used in our numerical calculations are chosen to be L = 120 nm, and W = 30 nm. The sizes 
of the constrictions are denoted by the parameters  W1 and  W2, and they are set to be  W1 =  W2 = 15 nm in our 
study. Here we use a carbon-carbon bond length of 0.142 nm, which is the same as in graphene. The α-T3 lattice 
structure is schematically shown in Fig. 1b. It can be seen that each unit cell contains three atoms A (blue), B 
atom (red) and C (green), and the A and B atoms form a hexagon graphene lattice, while the C atoms are located 
at the centres of the hexagons. The C atom is only coupled to the B atom of the honeycomb lattice. The hopping 
amplitude between the A and B atoms is t, and the hopping amplitude between the B and the C atoms is t ′ = αt . 
The parameter α plays a very important role in the electronic properties of α-T3 lattice, and we can choose a value 
in the interval [0,1] in a theoretical calculation. It is easy to note that we have graphene lattice when α = 0, but 
it is changed to dice lattice when α = 1. We can also see in Fig. 1b that we have zigzag and armchair edges along 
the x and y directions respectively. For a zigzag nanoribbon, we can define a C–A edged nanoribbon if the top 
atom is the C atom and the bottom is the A atom (see the example in Fig. 1b). 

In the tight-binding formulation, the Hamiltonian of an α-T3 lattice in the presence of a perpendicular mag-
netic field and an external transverse electric field can be written as

where ci,j,k(c+i,j,k) are annihilation (creation) operators of electrons on the A B and C sites, which are denoted by 
γ = i, j, k indices. The first term is the onsite energy εγ and the external potential eEyy induced by the transverse 
electric field. The second term is the electron hopping between the A and B sites, while the third term is the 
hopping between the B and C sites. The hopping energy between the A and B sites is t, and the hopping energy 
between B and C is t ′ = αt , where α is the intermediate parameter of α-T3 lattice. The summation of 

〈

ij
〉

 and 
〈

jk
〉

 
runs over the nearest neighbor sites, which correspond to the hoppings between the A and B sites and between 
the B and C sites respectively. The hopping between the A and B sites is prohibited. Owing to a perpendicular 

(1)
H =

∑

γ

(εγ + eEyy)c
+
γ cγ +

∑

�ij�
teiφij c+i cj +

∑

�jk�
t ′eiφjk c+j ck

Figure 1.  (a) Schematic diagram of the proposed device with two nanoscale constrictions, the distances 
between the two split gates on the left is indicated by  W1 and  W2, the width W = 30 nm, the length L = 120 nm. 
The green arrow represents the direction of the electric field, and the magnetic field is applied perpendicularly to 
the plane. (b) The lattice structure of α-T3 model. Three atoms in each unit cell are indicated by different colours, 
ie. A (blue), B atom (red) and C (green).
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magnetic field, a Peierls’ phase φij(jk) = (2π/φ0)
∫ i(j)
j(k)

⇀

A · d
⇀

l  is added to the hopping element, where the vector 
potential is 

⇀

A = (−By, 0, 0) and the quantum of magnetic flux is φ0 = h/e . The strength of the magnetic field can 
be given by the magnetic flux per honeycomb φ = (3

√
3/2)a2B/φ0, and we choose φ=0.0015 in our numerical 

calculations. The intermediate parameter is set to be α = 0.5 in all the numerical calculations. In our numerical 
calculations, t = 3 eV and a = 1.42 Å are used, which is convenient to compare the results with graphene. All 
numerical calculations were performed using the Kwant tight-binding  code43.

Result and discussion
In order to study the quantum transport properties of α-T3 lattice under the effect of a magnetic field and electric 
field, we present the band structures of zigzag ribbons with parameters α = 0.5 for various magnetic and electric 
fields. In Fig. 2a, the band structure for α-T3 lattice with φ = 0 and eEy = 0 is shown, and it is noted that we 
obtain a zero-energy nondispersive flat band, which is a very interesting property of the α-T3 lattice. We have 
two valleys shown in the band structure, and the subbands in the two valleys are the same. In Fig. 2b, the band 
structure for α-T3 lattice ribbon with φ = 0.0015 and eEy = 0 is presented, and we can see that flat energy bands 
are formed, which indicates the formation of Landau levels. Moreover, the magnetic field enlarges the energy 
band gap between conduction and valence bands, and the subbands in the two valleys are different. The magnetic 
field can induce valley polarization in α-T3 lattice ribbon, which is different from the graphene nanoribbon. In 
Fig. 2c, we consider a perpendicular magnetic field and a transverse electric field, and the values for the param-
eters are set to be φ = 0.0015 and eEy = 0.001t/nm . Comparing the Landau levels shown in Fig. 2b with Fig. 2c 
we can note that the transverse electric field modify the Landau levels in an unexpected fashion. It is found that 
the zero-energy nondispersive flat band is broadened to many dispersive energy levels. As we know that the 
group velocity of electrons in a perfect flat band shown in Fig. 2a,b is zero, and the perfect flat bands will not 
contribute to quantum transport. The broadened flat band levels are not perfect flat band anymore, and they are 
distorted by the transverse electric field, which will be further discussed below. According to previous  studies39,44, 
a stagger potential bends the flat band. We believe that the applied transverse electric field also bends the band 
by creating potential differences between the A, B and C atoms in α-T3 lattice, an effect similar to what happens 
under a stagger potential. In Fig. 2d, we also consider both electric and magnetic fields in the ribbon, but we 
consider a stronger electric field. It is noted that the energy range of the broadened flat band levels is enlarged 
when a stronger electric field is considered. The transverse electric field not only modifies the Landau levels in 
an unexpected fashion, but also changes the zero-energy nondispersive flat band to distorted flat bands, which 
are dispersive. We believe that the transverse electric field plays a very important role in the transport properties 
of α-T3 lattice by changing the flat band of α-T3 lattice.

We also considered zigzag ribbon with B–B edge and armchair ribbon. As in C–A edge zigzag ribbon, there is 
a zero energy non-dispersive flat band, which is split under magnetic and electric fields into distorted flat bands, 
which are dispersive. We expect the B–B edge zigzag ribbons and armchair ribbons will have similar transport 
characteristics of the C–A edge zigzag ribbons. Owing to space limitation, we do not show the figures here.

In Fig. 3, we plotted the conductance of our proposed device as a function of energy, and we compare the 
conductances of the device with and without magnetic field. The results with both magnetic and electric fields 
are shown in Fig. 3a, and the case with only the electric field is shown in Fig. 3b. For the case with both mag-
netic and electric fields φ = 0.0015 and eEy = 0.001t/nm , we found that the conductance shows perfect pla-
teaus. When E < −0.045t or E > 0.076t , the conductance shows perfect conductance plateaus with G = e2

/

h , 
which is a typical characteristic of magnetic field. It is interesting to note that the conductance in the range 
0.008t < E < 0.025t also has some conductance plateaus, but there are sudden changes of the conductance in 

Figure 2.  Band structures of zigzag ribbons with various magnetic flux φ and electric field eEy . (a) φ = 0 
and eEy = 0 . (b) φ = 0.0015 and eEy = 0 . (c) φ = 0.0015 and eEy = 0.001t/nm . (d) φ = 0.0015 and 
eEy = 0.002 t/nm.
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this region. To understand the transport properties in the energy range with flat bands, we will focus on the 
band structure and conductance in this range, which will be shown in Fig. 4. In Fig. 3b, it can be noted that the 
conductance for the device with a non-zero electric field and zero magnetic field oscillates significantly, and this 
is caused by the scatterings induced by the two nanoscale constrictions of the system. The transverse electric 
field caused distortion of the flat band levels and spread them in an energy range, and this results in a nonzero 
conductance in the range 0.008t < E < 0.025t. We can see that the conductance in this range also oscillates with 
the energy.

As shown in Fig. 3, the conductance of the device shows some interesting oscillating characteritsics in the 
energy range of the broadened and distorted flat band. In order to understand these interesting characteristics, we 
need to look at the features of the band structure and conductance in a smaller energy range. In Fig. 4, we show 
the band structure and conductance in the small energy range of 0.018t–0.0187t. We also plot the conductance 
of the device without the two nanoscale constrictions in Fig. 4c,d for comparing the effects of with and without 

Figure 3.  Conductance of the device with two nanoscale constrictions plotted as a function of energy. (a) Both 
magnetic and electric fields are considered in the device with the parameters φ = 0.0015 and eEy = 0.001t/nm . 
(b) Only electric field is considered with the parameters φ = 0 and eEy = 0.001t/nm.

Figure 4.  Band structures and conductance for the device in a small energy region. (a) Band structure for 
zigzag ribbon with both magnetic and electric fields. (b) Band structure for zigzag ribbon with only electric field. 
(c) Conductance for the device with and without nanoscale constrictions while both magnetic and electric fields 
are considered. (d) Conductance for the device with and without nanoscale constrictions while only electric 
field is considered.
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the constrictions. In Fig. 4c, where both electric field and magnetic field are considered, we can see that the con-
ductances for the devices with and without constrictions are the same, and the two lines are actually overlapped. 
When there is a magnetic field, no scattering effect is found for the distorted flat bands, so the conductance is 
either a e2

/

h or 2e2
/

h plateau. The two constrictions cannot affect the transport properties. When the energy 
changes, the conductance can be switched between e2

/

h and 2e2
/

h , although the conductance plateau of e2
/

h is 
very narrow in energy in comparison with the plateau of 2e2

/

h . This can be understood in terms of the features 
of the distorted flat bands shown in Fig. 4a. Under both the electric field and magnetic field, there are degenerate 
energy states with different wavevectors. For example, in the energy range between 0.01853 and 0.0186t, you can 
find four energy states with the same energy but with different wavevectors. Among the four states, two have 
positive velocities (positive slopes) and two have negative velocities. Each of the two states with positive velocities 
can contribute a conductance of e2

/

h and thus the total conductance is 2e2
/

h.
In Fig. 4d, we show the conductance for the device with only the electric field, and the blue and red lines 

correspond to the cases with and without constrictions respectively. It is noted that the constrictions change the 
transport properties of the device, and the conductance is no longer an integral of e2

/

h , which is caused by the 
electron scatterings induced by the constrictions. Without the constrictions, the conductance is quantized into 
integral of e2

/

h . Three possible values of conductance can be found in this energy range in the device without 
constrictions, 0, e2

/

h and 2e2
/

h . With the constriction, this quantization effect is destroyed. The quantization 
effect comes from the distorted flat band, which is shown in Fig. 4b. There are energy ranges in which there are 
two states with the same energy but with different wave vectors and each of these states can give a conductance 
of e2

/

h . As a result, the total conductance is 2e2
/

h . For energy range in which only one state is found for an 
energy, the conductance is e2

/

h .There are gaps between the distorted flat bands and as a result, there are energies 
at which the conductance is zero.

To understand the transport properties of the device, we plot the local density of states (LDOS) and currents in 
Fig. 5. In Fig. 5a,d, the LDOS and current of the device for energy E = 0.1t in the conductance plateau are shown, 
and we can see that the electrons are transported in the channels confined at the edges. It is noted in Fig. 5d that 
for E = 0.1t in the conductance plateau, current flows on the top edge when electrons come from the left lead, and 
no current is found inside the device or on the bottom edge. For the electrons coming from the right, the current 
only flows on the bottom edge, but we do not present the results in Fig. 5. This means for this energy the current 
is carried by modes localized at the edges. Next, we consider the transport properties of the broadened distorted 
flat band levels in Fig. 5b,e, where the LDOS and current for E = 0.015t are shown. We can see from Fig. 5b,e that 
the current and LDOS for E = 0.015t localized inside the device at a distance from the edges. We also find that 
the location of the current flow can be changed if we change the energy, which is an interesting feature of the 
distorted flat band. When E = 0, at the lower edge of the band, the electron state is localized near to the lower edge 
of the ribbon. When E increases, the state moves towards the upper edge of the ribbon. When E is at the upper 
edge of the band, the electron state is localized near to the upper edge of the ribbon. Owing to space limitation, 
we do not show all the figures of the current distribution of these states with different energies. Furthermore, it 
is natural for us to examine how the current in the distorted flat band is affected by the constrictions. In Fig. 5c,f, 
the size of the constriction is changed to  W1 = 15 nm and  W2 = 5 nm. We can see that the current cannot flow 
from the left lead to the right lead, when the conduction channel is blocked by the smaller constriction. Which 
is different from an edge state. A constriction or a defect on the edge do not affect the transport characteristics 
of an edge state, and no backscattering is obtained. However, the current carried by the distorted flat band levels 
are totally cut off by the larger constriction shown in Fig. 5c,f.

B–B edge zigzag ribbons and armchair ribbons have similar transport characteristics as the C–A edge zigzag 
ribbons, such as the localization of the distorted states in the ribbon with location dependent on the energy. 

Figure 5.  (a) and (d) show the LDOS and current of the device respectively for E = 0.1t. (b) and (e) show the 
LDOS and current of the device respectively for E = 0.015t, and the shape and the size of the device are the 
same as that in Fig. 1(a). (c) and (f) show the LDOS and current of the device respectively for E = 0.015t, but 
the sizes of the constrictions are changed to  W1 = 15 nm and  W2 = 5 nm. The magnetic flux and electric field are 
φ = 0.0015 and eEy = 0.001t/nm.
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These states are also affected by the constriction as in C–A edge zigzag ribbons. Owing to space limitations we 
do not show the results here.

At last, we consider the effects of transverse electric fields on the flat band. We use a very narrow α-T3 lattice 
nanoribbon as an example, and different strength of electric fields are considered. In Fig. 6a, we show the nar-
row α-T3 lattice nanoribbon considered. To explain the dependence of the number of the flat band levels on the 
width of the nanoribbon, we divide the narrow α-T3 lattice nanoribbon into seven regions, which are marked 
and labelled in Fig. 6a. In each region, there are two zigzag atom chains. The number of regions is the same as 
the number of the flat band levels; for example, we obtain seven flat band levels in Fig. 6d,f, because the ribbon 
under consideration contains seven regions. Figure 6b shows the band structure of the α-T3 lattice nanoribbon 
with no magnetic field and no electric field, and we can only see one zero-energy nondispersive flat band. In 
Fig. 6c, we still consider the band structure of the α-T3 lattice nanoribbon, but with a transverse electric field 
eEy = 0.005t/nm applied to the ribbon. It seems that the difference between Fig. 6b,c can be neglected, but 
significant difference can be found when we enlarge a part of Fig. 6c, which is shown in Fig. 6d. In Fig. 6d, our 
focus is on the changes of the flat band after we add the transverse electric field. We can see that, the zero-energy 
degenerate nondispersive flat band is distorted and split to seven dispersive energy levels. When a stronger 
transverse electric field eEy = 0.01t/nm is applied to the ribbon, and the distorted levels are further split as 
shown in Fig. 6e,f. Comparing Fig. 6f with Fig. 6d, we note that the separations between the split energy levels 
increase when the transverse electric field is increased. In Fig. 6d, the energy width of the distorted flat band is 
0 < E < 0.007t , and the energy width of the distorted flat band in Fig. 6f is 0 < E < 0.014t . It is obvious that 
in some region of the distorted levels the group velocity is not zero, when there is an applied transverse electric 
field. This characteristic provides us a way to control the transport properties of an α-T3 lattice ribbon, which 
can be used to develop novel electronic devices.

Conclusions
In summary, we proposed a double constriction structure to study the electronic transport properties of α-T3 
lattice nanoribbons in the presence of a perpendicular magnetic field and a transverse electric field. It is found 
that we can obtain a nondispersive zero-energy level in the zigzag α-T3 lattice nanoribbons when no external 
fields are considered. Landau levels are obtained in zigzag α-T3 lattice nanoribbons when a perpendicular mag-
netic field is applied, and a transverse electric field can modify the Landau levels in an unexcepted way. More 
interestingly, the transverse electric field can distort the nondispersive zero-energy level, and the flat band is 
broadened to many dispersive energy levels. Though the flat band in α-T3 lattice make no contribution to the 
electron transport due to the zero-group velocity, however, the distorted flat band levels show unique transport 
properties in our proposed double constriction structure. This study reveals the rich physics of α-T3 lattice with 
crossed uniform magnetic and electric fields, and it will contribute to the future theoretical and experimental 
investigations of other dice lattice materials with flat band.

Figure 6.  The changes in the flat band of a narrow zigzag α-T3 lattice nanoribbon with a weaker and a stronger 
transverse electric field. (a) A narrow zigzag α-T3 lattice nanoribbon. (b) Band structure of the narrow α-T3 
lattice ribbon with eEy = 0 . (c) Band structure of the narrow α-T3 lattice ribbon with eEy = 0.005t/nm . (d) 
The enlargement of a part of the flat band of (c). (e) Band structure of the narrow α-T3 lattice ribbon with 
eEy = 0.01t/nm . (f) The enlargement of a part of the flat band of (e).
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Data availability
All data needed to evaluate the conclusions of this study are available in the main text. The data that support the 
findings of this study are available from the corresponding authors upon reasonable request.
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