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Assessing the impact of long‑term 
exposure to nine outdoor air 
pollutants on COVID‑19 spatial 
spread and related mortality in 107 
Italian provinces
Gaetano Perone

This paper investigates the air quality in 107 Italian provinces in the period 2014–2019 and the 
association between exposure to nine outdoor air pollutants and the COVID-19 spread and related 
mortality in the same areas. The methods used were negative binomial (NB) regression, ordinary least 
squares (OLS) model, and spatial autoregressive (SAR) model. The results showed that (i) common 
air pollutants—nitrogen dioxide (NO2), ozone (O3), and particulate matter (PM2.5 and PM10)—were 
highly and positively correlated with large firms, energy and gas consumption, public transports, and 
livestock sector; (ii) long-term exposure to NO2, PM2.5, PM10, benzene, benzo[a]pyrene (BaP), and 
cadmium (Cd) was positively and significantly correlated with the spread of COVID-19; and (iii) long-
term exposure to NO2, O3, PM2.5, PM10, and arsenic (As) was positively and significantly correlated with 
COVID-19 related mortality.  Specifically, particulate matter and Cd showed the most adverse effect 
on COVID-19 prevalence; while particulate matter and As showed the largest dangerous impact on 
excess mortality rate. The results were confirmed even after controlling for eighteen covariates and 
spatial effects. This outcome seems of interest because benzene, BaP, and heavy metals (As and Cd) 
have not been considered at all in recent literature. It also suggests the need for a national strategy to 
drive down air pollutant concentrations to cope better with potential future pandemics.

The coronavirus disease of 2019 (COVID-19) is a severe acute respiratory syndrome that officially appeared for 
the first time in Wuhan, a city in the Hubei province of China, in December 2019. From the end of February 
2020, the virus was rapidly spreading across the globe, dramatically changing every aspect of people’s lives. As 
of 1 November 2021, the COVID-19 pandemic had affected almost all countries in the world, with about 250 
million confirmed cases and more than 5 million deaths1. At the time of writing, the virus has been mutating by 
generating new forms or variants of itself—the most important of which were first found in the UK, South Africa, 
Brazil, and India2—making the fight against the outbreak even more difficult. In fact, many countries which are 
approaching the third or even fourth wave of infections have had to reintroduce or extend their lockdowns and 
social distancing measures. The worst-hit countries include both advanced and developing ones, such as Brazil, 
France, India, Italy, Russia, Turkey, the UK, and the US.

In these circumstances, it has become crucial to identify the optimal containment and mitigation policies 
to prevent and manage the spread of the outbreak and prepare a plan to tackle the risk of future epidemics and 
pandemics. In the last year, a closer look has been taken at the potential adverse impact of air pollution on the 
spread dynamic and death toll of COVID-19. In fact, it is widely recognized that several air pollutants, such as 
benzo[a]pyrene (BaP), nitrogen dioxide (NO2), ozone (O3), particulate matter (PM), and sulfur dioxide (SO2), 
can cause irritation, inflammation, and serious infections and diseases to the lungs and airways3–5. This is a matter 
of great concern, considering that according to an EEA report [Ref.6, pp. 40, 42], the annual emissions of PM2.5 
and PM10 in 2018 exceeded the limits set by the World Health Organization7 Air Quality Consultant (AQG) at 
70% and 53% of the stations spread across European countries, respectively.
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In particular, the relationship between air pollution exposure and COVID-19 revealed that poor air quality 
may have favored COVID-19 transmissibility around the world8–13 and may have enhanced the risk of severe 
and fatal COVID-1914–19.

This study may be of interest for two main reasons. First, as of 1 November 2021, Italy is one of the most 
affected countries worldwide, with 4,796,929 confirmed cases, that is, about 8% of the whole resident population, 
and 132,263 confirmed deaths. Second, although the literature has already established a positive and significant 
relationship between air pollution and COVID-19 spread/mortality in Italy9,12,19–26, these studies may have suf-
fered from some limitations: (i) they mainly focused on a number of regions and provinces and referred to the 
early phase of the outbreak; (ii) in many cases, they focused on the impact of short-term exposure to common 
air pollutants—NO2, O3, PM, and SO2—on COVID-19 infections and deaths; iii) they did not consider other 
potentially dangerous air pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals; (iv) 
they did not consider other important covariates (except for Refs.12,19), such as demographic characteristics, 
weather conditions, population habits and structure, and industrial centers; and (v) finally, they did not explicitly 
consider the spatial dependency of COVID-19 infections, that is, the possibility that neighboring territories may 
have affected each other through the movement of people.

In this study, I try to fill this gap by jointly considering all these aspects. Thus, the goals of this study are the 
following: (i) I investigate the general air quality in the Italian provinces in the period 2014–2019, trying to assess 
the main sources of outdoor air pollution and identifying the most polluted territories in the country; and (ii) I 
use negative binomial (NB) regression model, an ordinary least squares (OLS) econometric approach, and spatial 
autoregressive (SAR) model to assess the relationship between long-term exposure to nine air pollutants in the 
period 2014–2019—NO2, O3, PM2.5, PM10, benzene, BaP, arsenic (As), cadmium (Cd), and nickel (Ni)—and 
COVID-19 spread and related mortality at the second peak of the outbreak. [Note 1: This is an important task 
because the risk of multiple COVID-19 waves is real27–29.

The rest of the paper is organized as follows. “Environmental pollution in the Italian provinces” discusses the 
air quality in the Italian provinces; “Literature review” discusses the related literature; “Data” presents the data 
used in the empirical analysis; “Empirical strategy” discusses the empirical strategy; “Results and discussion” 
presents and discusses the results; "Limitations" discusses the main study limitations; and finally, “Conclusions” 
provides some conclusive considerations.

Environmental pollution in the Italian provinces
In this section, the main sources of nine air pollutants and the general quality of air in the 107 Italian provinces 
are investigated. According to European Environment Agency30, industry processes, road transport, agricul-
tural activities, waste management, energy production and distribution (especially from fossil sources), natural 
phenomena (i.e., volcanic eruptions, sandstorms, etc.), public buildings, and households are the main causes of 
outdoor air pollution. For instance, exhaust emissions from vehicles and the abrasion of pneumatics and brakes 
can release benzene, Cd, carbon monoxide (CO2), lead (Pb), mercury (Me), NO2, PM2.5, PM10, and sulfur oxides 
(SOx) into the atmosphere31,32 and favor chemical reactions that increase the likelihood of O3 formation. Busi-
ness activities, livestock buildings, and households are the major factors responsible for production of PM2.5

33. 
Industrial activities burning fuels (coal, petroleum, wood, etc.), components of smoke cigarettes, forest fires, and 
vehicle exhaust emissions are the main causes of benzene and BaP34,35.

Thus, in Table 1, I report the Spearman’s rank correlation coefficient between the nine investigated air pol-
lutants (described in Table B1, Appendix B) and six potential sources of environmental pollution in the period 
2014–2019: big firms with over 250 employees per square kilometer in the period 2014–2019; final consumption 

Table 1.   Spearman’s rank correlation coefficients between nine air pollutants and six potential sources of 
environmental pollution. p-value < 0.01***; p-value < 0.05**; p-value < 0.1*.

Air pollutants
Large firms per 
km2

Energy and gas 
consumption per 
km2 Vehicles per km2 Public transport

Cattle fodder per 
km2

Livestock per 
km2

Common air pollutants

NO2 0.6754*** 0.7167*** 0.625*** 0.4171*** 0.3244*** 0.3762***

O3 (>120) 0.5833*** 0.5494*** 0.3064*** 0.268*** 0.5395*** 0.6381***

O3 (>180) 0.6322*** 0.5834*** 0.3729*** 0.3675*** 0.5073*** 0.7044***

PM2.5 0.6126*** 0.5831*** 0.385*** 0.2672*** 0.446*** 0.6897***

PM10 0.5838*** 0.5117*** 0.42*** 0.2179** 0.3963*** 0.5688***

PM10 (>50) 0.5957*** 0.5639*** 0.4139*** 0.2177** 0.4899*** 0.708***

PAHs

Benzene 0.3925*** 0.3989*** 0.4618*** 0.272** 0.0829 0.1291

BaP 0.2047* 0.3689*** 0.2026* 0.0904 0.359*** 0.2456**

Heavy metals

As 0.2726** 0.2627** 0.1493 − 0.0204 0.2322* 0.3931***

Cd 0.341*** 0.3432** 0.2723** 0.2307* 0.0931 0.0975

Ni 0.1285 0.2702** 0.2439* 0.131 0.1609 − 0.0641
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of energy and natural gas expressed as tons of oil equivalent per square kilometer in the period 2014–2019; 
number of vehicles used to transport goods and passengers (cars, motorcycles, and other vehicles) per square 
kilometer in the period 2014–2019; overall supply of local public transport expressed as number of seats per 
inhabitants in the period 2014–2019; the production of cattle fodder from permanent grassland expressed as 
quintal per square kilometer in the period 2014–2019; and the number of livestock (bovines, buffalos, and pigs) 
per square kilometer in the period 2014–2019. [Note 2: Data on energy and gas consumption, vehicles density, 
and public transports refer to the provincial capital; while data on big firms and production of cattle fodder are at 
provincial level. Only data on livestock density are at regional level]. Data were extracted from I.Stat database36, 
except for energy and gas consumption37,38, supply of local public transport39, and number of vehicles used to 
transport goods and passengers38,40. The results show that common air pollutants are positively and significantly 
correlated with big firms, energy and gas consumption, density of vehicles, public transport, cattle fodder, and 
livestock density. Big firms, energy and gas consumption, and livestock density had the highest rank correlation 
coefficients.Notably, NO2, O3 (>120), O3 (>180), PM2.5, and PM10 (>50) showed rank correlation coefficients ranging 
from 0.58 to 0.68 for large firms, from 0.51 to 0.72 for energy and gas consumption, and from 0.38 to 0.71 for 
livestock density. This may have been partially caused by the ammonia (NH3) generated in the urine and feces 
of cattle41,42, which contributes to the formation of two relevant (secondary) components of particulate matter, 
ammonium nitrate and ammonium sulphate43. In fact, according to Greenpeace and the Italian Institute for 
Environmental Protection and Research (ISPRA)44, animal husbandry was the second leading cause of air pol-
lution in Italy in the period 1990–2018, accounting for 17% of all PM2.5 formation.

Among PAHs, benzene is positively correlated with big firms, energy and gas consumption, and vehicle den-
sity at 1% level of significance, and with public transport at 5% level of significance. BaP is positively associated 
with energy and gas consumption and cattle fodder production at 1% level of significance, and with livestock 
density at 5% level of significance. Heavy metals are significantly and positively correlated especially with large 
firms and energy and gas consumption. Notably, the Spearman’s rank correlation coefficients for PAHs and 
heavy metals are lower than those for common air pollutants. Although these correlations do not imply causa-
tion, they warn of the potentially dangerous effects of large firms, vehicles, energy and gas consumption, and 
livestock sector.

This is particularly worrying because according to the Air Quality Standards established by the European 
Commission45, the legal threshold for key air pollutants was violated multiple times by most of the Italian prov-
inces in the period 2014–2019 (Table 2). Specifically, almost all provinces (106 out of 107) violated the PM10 
limit of 50 µg/m3 both in the short- and long-term, resulting in a national average of 25.15 violations per year. 
Notably, the legal thresholds for both measures of O3 were also violated several times both in the short- and 
long-term, with a maximum of 95 provinces involved. Regarding the average concentrations of NO2, PM2.5, and 
PM10, the violations were fewer, respectively involving 15, 17, and five provinces in the short-term and 11, four, 
and no provinces in the long-term. Among the PAHs, the legal limit for BaP was violated by 13 provinces in the 
short-term and seven provinces in the long-term, while the legal threshold for benzene was never exceeded. No 
provinces registered violations for heavy metals, except Aosta and Terni, which exceeded the legal limit of Ni 
in the short-term.

The situation becomes even worse when we consider the most restrictive legal thresholds set by the World 
Health Organization46. In this case, the legal threshold for PM2.5 and PM10 was violated respectively by 88 and 
93 provinces in the short-term and by 85 and 86 provinces in the long-term (Table 3). Unlike EU law, the WHO 
has not established safe limits for the PAHs (benzene and BaP) and heavy metals (As and Ni) considered, except 
for Cd, which remains unchanged. This is not very surprising because according to the EEA47, Italian and Polish 
cities were the ones with the highest levels of PM2.5 in the period 2019–2020, among 323 investigated localities. 
In fact, among Europe’s 53 worst cities for PM2.5 levels, 20 were in Italy.

In Table 4, I also calculate a synthetic environmental pollution index for the Italian provinces in the period 
2014–2019, using data on NO2, O3 (>120), PM2.5, and PM10, for which there are sufficient observations. Specifically, 
the index is compiled by switching the data on each of the four air pollutants considered to fixed-base indexes 

Table 2.   Provinces that exceeded the EU legal threshold in the period 2014–2019. Source: European 
Commission45.

Air pollutants EU legal threshold National averages Provinces with long-term violations
Provinces with at least 1-year 
violation

NO2 40 µg/m3 26.3279 11 15

O3 > 120 µg/m3 28.2256 95 95

O3 > 180 µg/m3 8.9064 58 58

PM2.5 25 µg/m3 15.3609 4 17

PM10 40 µg/m3 24.952 0 5

PM10 > 50 µg/m3 25.1509 106 106

Benzene 5 µg/m3 1.2069 0 0

BaP 1 ng/m3 0.4363 7 13

As 6 ng/m3 0.9559 0 0

Cd 5 ng/m3 0.343 0 0

Ni 20 ng/m3 3.6301 0 2
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(with average = 1), from whose arithmetic mean I achieve the final standardized index. Provinces are ranked 
from the most polluted to the cleanest.

The output shows that the top positions are all in Northern Italy. In particular, the 29 most polluted Italian 
provinces are all concentrated in the eight northern regions of Italy. Among them, the top six positions are held 
by provinces within Lombardy, that is, the Italian region which has been most severely hit by the COVID-19 
outbreak.

On the contrary, the southern provinces hold the lowest positions in the ranking. In the bottom 20 positions 
of the ranking, 16 are southern provinces, only four provinces are in Central Italy (Fermo, Macerata, Pistoia, and 
Viterbo), and none are in Northern Italy.

While the most polluted southern provinces are Naples and Chieti, they are in 29th and 41st place, respec-
tively. The results reflect the deep historical gap in industrialization and development between the north and 
south of Italy48,49.

An air pollution map for the average long-term concentrations or violations of each air pollutant in the Ital-
ian provinces is given in Fig. 1.

Literature review
It is well-established that air pollution exposure can adversely affect lung function. NO2, O3, PM2.5, and PM10 can 
be risk factors for several respiratory diseases, such as asthma50, bronchiectasis51, chronic obstructive pulmonary 
disease (COPD)52, invasive pneumococcal disease (IPD)53, lung cancer54, and general respiratory infections55. 
Meanwhile, exposure to airborne PAHs can worsen respiratory infections and increase the risk of several non-
malignant respiratory diseases associated with exposure to other air pollution, such as particulate matter56. 
Exposure to heavy metals, such as As, Cd, chromium (Cr), mercury (Hg), Ni, and Zinc (Zn), may induce airway 
inflammation, lung irritation, and pulmonary oedema57–60, contributing to oxidative stress in lung tissue61–63. E.g., 
Cd and Ni exposure may lead to emphysema and asthma, respectively57, while arsenic exposure may increase 
the risk of developing pulmonary fibrosis64.

Therefore, in the last year and a half, a large body of literature has focused its attention on the relationship 
between air quality and the COVID-19 pandemic propagation pattern and mortality. Bashir et al.8 used two 
non-parametric statistical techniques—Kendal and Spearman rank-order correlation coefficients—to investigate 
the association between seven air pollutants and COVID-19 cases and deaths in California. Specifically, they 
analyzed the concentrations of CO, NO2, Pb, PM2.5, PM10, SO2, and volatile organic compounds (VOC) from 
4 March 2020 to 24 April 2020. They found that short-term exposure to CO, NO2, PM2.5, PM10, and SO2 was 
significantly and positively correlated with COVID-19 cases and deaths, and the highest correlation coefficients 
were shown by NO2 and PM2.5.

Becchetti et al.19 used several statistical techniques, such as the difference-in-difference (DID) approach, 
ordinary least square (OLS) panel regression, and cross-sectional and panel fixed-effect spatial autoregressive 
combined models (SAC), to investigate the role of three major air pollutants in the spread of COVID-19 in 96 
Italian provinces from 24 February 2020 to 15 April 2020. They found that average concentrations of NO2, PM2.5, 
and PM10 (registered in 2018) were highly significant and positively associated both with COVID-19 mortality 
and infections. The results were also confirmed after controlling for a number of demographic, environmental, 
economic, and healthcare covariates.

By using a mixed linear multiple regression approach, Hendryx and Luo15 analyzed the effect of long-term 
exposure (in the period 2014–2019) to diesel particulate matter (DPM), O3, and PM2.5 in relation to COVID-19 
susceptibility or outcomes in the US. Specifically, they investigated the cumulative confirmed cases as of 31 May 
2020, finding that DPM alone was significantly and positively associated with COVID-19 prevalence, and robust 
enough against changes in the specifications. Although positive, the coefficient of PM2.5 was not robust enough.

Cole et al.14 examined the link between confirmed COVID-19 cases, deaths, hospitalizations, and long-term 
exposure (in the period 2010–2019) to three major air pollutants (O3, PM2.5, and SO2) in 355 municipalities in 
The Netherlands. By using instrumental variable (IV) regressions, NB approaches, and spatial autoregressive 

Table 3.   Provinces that exceeded the WHO AQG threshold in the period 2014–2019. Source: WHO46. a Due 
to a lack of data, these violations referred to the legal threshold limit of 120 µg/m3.

Air pollutants WHO AQG threshold National averages
Provinces with long-term 
violations

Province with at least 1-year 
violation

NO2 40 µg/m3 26.3279 11 15

O3 (8 h) > 100 µg/m3 28.2256a 95a 95a

PM2.5 10 µg/m3 15.3609 85 88

PM10 20 µg/m3 24.952 86 93

PM10 > 50 µg/m3 25.1509 106 106

Benzene No safe level 1.2069 – –

BaP No safe level 0.4363 – –

As No safe level 0.9559 – –

Cd 5 ng/m3 0.343 0 0

Ni No safe level 3.6301 – –
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Table 4.   A synthetic environmental pollution index for the Italian provinces in the period 2014–2019. The 
provinces are ranked from the most polluted to the cleanest. The 10 most polluted provinces are bold, while the 
10 cleanest provinces are italics.

Province Index Province Index

1-Monza and Brianza 1.7639 55-Ascoli Piceno 0.8696

2-Brescia 1.6969 56-Rieti 0.8675

3-Milan 1.6681 57-Avellino 0.8572

4-Bergamo 1.6278 58-Caserta 0.8464

5-Lodi 1.6175 59-Bari 0.8408

6-Cremona 1.6097 60-Foggia 0.8315

7-Turin 1.5723 61-Livorno 0.8237

8-Pavia 1.5631 62-Pescara 0.8195

9-Mantua 1.5302 63-Perugia 0.8118

10-Alessandria 1.5261 64-Syracuse 0.8086

11-Piacenza 1.5229 65-Aosta 0.8058

12-Vicenza 1.512 66-Isernia 0.8012

13-Como 1.4881 67-Crotone 0.7981

14-Varese 1.4826 68-Teramo 0.7977

15-Genoa 1.4759 69-Pisa 0.7955

16-Venice 1.4727 70-Ancona 0.7936

17-Padua 1.451 71-Grosseto 0.7822

18-Modena 1.4293 72-Campobasso 0.7798

19-Verona 1.4267 73-Massa-Carrara 0.7749

20-Parma 1.4176 74-Benevento 0.7702

21-Treviso 1.3975 75-La Spezia 0.7599

22-Lecco 1.3836 76-Cosenza 0.7556

23-Reggio Emilia 1.3724 77-Siena 0.7352

24-Vercelli 1.30156 78-Cagliari 0.7232

25-Rovigo 1.2989 79-Latina 0.7228

26-Rimini 1.2815 80-Taranto 0.7076

27-Novara 1.2781 81-Savona 0.6869

28-Bologna 1.2741 82-Brindisi 0.6868

29-Ferrara 1.2291 83-Vibo Valentia 0.6826

30-Naples 1.2182 84-L’Aquila 0.6815

31-Frosinone 1.2172 85-Enna 0.6806

32-Trento 1.2082 86-Imperia 0.6743

33-Florence 1.2056 87-Salerno 0.6518

34-Terni 1.1402 88-Macerata 0.6335

35-Prato 1.0913 89-Barletta-Andria-Trani 0.6168

36-Forlì-Cesena 1.0686 90-Viterbo 0.6166

37-Pordenone 1.0526 91-Catania 0.6118

38-Asti 1.0452 92-Lecce 0.574

39-Udine 1.0426 93-Pistoia 0.5671

40-Ravenna 1.0379 94-Potenza 0.5539

41-Chieti 1.0297 95-Reggio Calabria 0.5467

42-Cuneo 1.024 96-Ragusa 0.5457

43-Sondrio 0.988 97-Catanzaro 0.5352

44-Palermo 0.9861 98-Oristano 0.5269

45-Gorizia 0.9729 99-Caltanissetta 0.5237

46-Rome 0.9632 101-Messina 0.5131

47-Biella 0.9541 102-Agrigento 0.5065

48-Lucca 0.9168 103-Fermo 0.4961

49-Verbano-Cusio-Ossola 0.91 104-Sassari 0.496

50-Arezzo 0.9034 105-South Sardinia 0.4654

51-Pesaro and Urbino 0.892 105-Trapani 0.3985

52-Trieste 0.8747 106-Matera 0.3825

53-Belluno 0.8729 107-Nuoro 0.3741

54-Bolzano 0.8729
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models with autoregressive disturbances (SARAR), they found that only the PM2.5 coefficient was significant 
and robust against changes in the specifications. Specifically, for every 1 µg/m3 increase in PM2.5 concentrations, 
there was an increase of 9.4 cases, 2.3 deaths, and three hospitalizations.

Liang et al.65 used zero-inflated negative binomial (ZINB) models to analyze the association between long-
term exposure (in the period 2010–2016) to NO2, O3, and PM2.5, and COVID-19 case-fatality and mortality rates 
in 3,076 US counties. They found that only NO2 had a significant and positive association with both COVID-19 
case-fatality rate and mortality rate from 22 January 2020 to 17 July 2020.

By using a generalized additive model (GAM), Zhu et al.11 investigated the short-term relationship between 
several air pollutants and daily confirmed COVID-19 cases in 120 Chinese cities from 23 January 2020 to 29 
February 2020. They found that 1-unit µg/m3 increases in NO2, O3, PM2.5, and PM10 were associated with 0.69%, 
0.48%, 0.22%, and 0.18% increases respectively in daily confirmed COVID-19 cases. On the contrary, a 1-unit µg/
m3 increase in SO2 was linked with a 0.78% decrease in daily confirmed COVID-19 cases.

Dales et al.66 analyzed the relationship between short-term exposure to CO, NO2, and PM2.5 and COVID-19 
related mortality in Santiago (Chile). They used a two-stage random effects model for count data in the period 16 
March 2020–31 August 2020. In particular, they found that daily deaths from COVID-19 related mortality grew 
by 6% for an interquartile range (IQR) increase in CO, NO2, and PM2.5. No significant effects were detected for O3.

Solimini et al.13 used negative binomial mixed–effect models (NBMM) to investigate the association between 
long-term exposure (in the period 2015–2018) to PM10 and PM2.5 and COVID-19 cases in a large sample of 
countries. The data came from 63 countries, 730 regions, and five continents, and was updated on 30 May 2020. 
After adjusting the models for several regional and country covariates and spatial correlation, they found that 

Figure 1.   Average long-term outdoor concentrations (or violations) of NO2, O3, PM2.5, PM10, benzene, BaP, As, 
Cd, and Ni, in the 107 Italian provinces. When no data are available, the province is grey colored. The map was 
generated using Microsoft Excel software 2021. All the sources used to collect the data are reported in detail in 
the Appendix B.
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1-unit µg/m3 increases in the PM2.5 and PM10 concentrations were significantly correlated with increases of 0.81% 
and 1.15% respectively in the total number of confirmed COVID-19 cases in a 14-day window.

Table 5 summarizes 25 international studies on the relationship between environmental pollution and the 
spread of COVID-19 infections.

Data
In this section, I report the variables used in the empirical analysis. First, to avoid spurious correlations and 
mitigate the problem of omitted variables, I implement 18 covariates to account for geographical proximity, 
demographic characteristics, population habits and structure, industrial centers, and weather conditions:

•	 four dummy variables to identify the provinces that border Austria, France, Slovenia, and Switzerland respec-
tively;

•	 a dummy variable to identify the provinces that are also the regional capital;
•	 the size of each province expressed in square kilometers;
•	 the distance between the provincial capital’s center and the nearest airport with at least 50,000 passengers in 

the period from January to November 2020;
•	 the foreign-born population as a percentage of total resident population in each province, in 2020;
•	 the share of population aged 0–19 in each province, in 2020;
•	 the share of male population in each province, in 2020;
•	 the degree of urbanization of the population in each province;
•	 the average share of obese individuals at regional level, in the period 2016–2019;
•	 the average share of smokers at regional level, in the period 2016–2019;

Table 5.   25 Selected studies on the relationship between exposure to air pollution and COVID-19 spread 
and related mortality across the world. AIQ air quality index, DID difference-in-difference, EMAC global 
atmospheric chemistry general circulation, FE fixed effect, GAM generalized additive model, IV instrumental 
variables, N/a not available, NB negative binomial, NBMM negative binomial mixed–effect model, OLS 
ordinary least square, RCS restricted cubic spline, SAC spatial autoregressive combined models, ZINB zero-
inflated negative binomial. Only significant associations are reported.

Author Area Method COVID-19 cases COVID-19 deaths

8 California Kendall and Spearman correlation CO (+), NO2 (+), PM2.5, (+), PM10 (+), 
SO2 (+) N/a

67 10 big cities from Latin America and the 
Caribbean Spearman correlation

NO2, PM2.5, and PM10 (+) in São Paulo, 
Santiago, San Juan, and Buenos Aires, and 
(−) in Bogotá and Mexico City

NO2 , PM2.5,, and PM10 (+) in São Paulo, 
Santiago, and Buenos Aires, and (−) in 
Mexico City

21 55 Italian provinces OLS, quadratic model O3 (+), PM10 (+) N/a
14 355 Dutch municipalities IV, NB, SARAR​ PM2.5 (+), NO2 (+) PM2.5 (+), NO2 (+)
68 Modena and Ravenna (Italy) Granger causality PM2.5 (+), PM10 (+) N/a
23 71 Italian provinces Pearson correlation NO2 (+), O3 (+), PM2.5 (+), PM10 (+) N/a
9 28 Italian provinces Multivariable RCS regression NO2 (+) N/a
15 3143 US counties Mixed linear multiple regression DPM (+), PM2.5 (+) DPM (+), PM2.5 (+)
69 23 Viennese districts (Austria) Cox regression NO2 (+), PM10 (+) NO2 (+)
65 3,076 US counties ZINB N/a NO2 ( +)
70 Wuhan and XiaoGan (China) Pearson correlation AQI (+), PM2.5 (+), and NO2 (+) N/a
71 29 China provinces Pearson/Spearman correlation CO (+), NO2 (−) N/a
24 Florence, Milan, Trento (Italy) Spearman/Kendall correlation PM2.5 (+) N/a
16 World EMAC N/a PM2.5 (+)
72 24 Districts of Metropolitan Lima (Peru) Pearson correlation PM2.5 (+) PM2.5 (+)

11 120 Chinese cities GAM NO2 (+), O3 (+), PM2.5 (+), PM10 (+), 
SO2 (−) N/a

10 2,019 Chinese cities Spearman/Kendall correlation, OLS AQI (+) N/a
25 Milan (Italy) Pearson correlation AQI (+), PM2.5 (+), PM10 (+) N/a
66 Santiago (Chile) Two-stage random effects N/a CO (+), NO2 (+), PM2.5 (+)
12 1439 municipalities of Lombardy (Italy) NBMM NO2 (−), PM2.5 (+), PM10 (+), NO2 (−), PM2.5 (+)
73 Mexico City Probit regression N/a PM2.5 (+)
17 Italian regions (20) and provinces (107) OLS N/a NO2 (+), O3 (+), PM2.5 (+), PM10 (+)
13 730 regions (in 63 countries) NBMM PM2.5 (+), PM10 (+) N/a

18 England (regional, sub-regional and 
individual data) NB

Regional: NOx (−), NO2 (+)
Sub-regional: NOx (+), NO2 (+), O3 (−) 
PM2.5 (−), PM10 (−)
Individual: NOx (+), NO2 (+), PM2.5 (+), 
PM10 (+)

Regional: NOx (−), NO2 (+) O3 (+)
Sub-regional: NOx (+), NO2 (+), O3 (−)

19 96 Italian provinces DID, OLS, SAC NO2 (+), PM2.5, (+), PM10 (+) NO2 (+), PM2.5, (+), PM10 (+)
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•	 the average deaths from chronic lower respiratory tract disease (per 100,000 inhabitants) in each province, 
in the period 2014–2019;

•	 the number of firms with 250 or more employees per 100 square kilometers in each province, in the period 
2014–2019;

•	 the average altitude of the capital of the province;
•	 the average annual days of rain in each province, in the period 2007–2018;
•	 the average annual temperature in each province, in the period 2008–2018.

[Note 3: In Table A1 (Appendix A), I considered the pairwise correlation between the main control variables. 
The reported correlation coefficients for each pair of variables were always lower than the typical cutoff of 0.8074, 
and only 4 (out of 72) correlations were greater than the most restrictive cutoff of 0.575, ranging from 0.51 to 0.61 
(in absolute value). In Table A2 (Appendix A), I considered the pairwise correlation between control variables 
and air pollutants. Only 6 (out of 117) correlations were greater than the restrictive cutoff of 0.575, ranging from 
0.55 to 0.62 (in absolute value). This allows to strongly advocate the simultaneous inclusion of the covariates 
and single air pollutants].

What follow is a brief literature summary of the relationship between the main control variables and the 
spread and mortality of COVID-19. First, sex and age composition of population may be an important parameter 
in explaining the current outbreak. Some studies found that male population was more susceptible to contract 
COVID-19 infection76, and to have fatal outcomes than female population77,78. Young people and children are 
less likely to have severe and mild symptoms of COVID-19—such as fever and respiratory symptoms—than 
adults. Since they usually escape detection by health surveillance system, they could act as silent vectors of 
COVID-19 transmission79,80.

Population distribution may also affect transmission patterns of COVID-19 because in most densely popu-
lated and urban areas the spatial proximity means that people are more likely to contact other individuals81. 
This may contribute to spreading the contagion and exacerbate COVID-19 related mortality, such as observed 
in Brazil82, India83, and Italy84.

A number of studies found that the presence of at least one comorbidity, such as chronic lung disease and 
obesity, may have an adverse impact on patients with COVID-1985,86. In particular, comorbid respiratory and 
lung disease were found to be associated with higher COVID-19 prevalence87, and with higher risk for severe 
disease and mortality in COVID-1987,88. Similarly, higher prevalence of obesity may have increased the risk of 
severe COVID-19 outcomes for hospitalized patients in Milan, Italy89, in the UK90 and in New York City, US91.

The smoking habit in the population may have also played a role in the spread of COVID-19. In fact, even 
if the relationship between smoking and COVID-19 disease remain substantially unclear92,93, several studies 
found a partially unexpected protective effect of smoking/nicotine against COVID-1994–96. Active smokers were 
less likely to be infected with COVID-19 than non-smokers, by suggesting the existence of a smokers’ paradox 
in COVID-1996.

Predictive meteorological and geographical factors were also widely investigated. A number of studies found 
that higher altitude can mitigate the adverse effect of COVID-19 (transmission and related deaths) in Colombia97, 
Peru98, and the US99. Huamaní et al.100 suggested that, in Peruvian districts, this may be caused by the combi-
nation of low population density and smaller population. The results of the impact of average temperature on 
COVID-19 cases were mixed. If some studies found that temperature may increase the spread of COVID-198,101, 
other research found a negative statistical association between the two variables102,103.While, there is a sub-
stantial consensus in the literature that warmer climate conditions may reduce COVID-19 mortality103–105 and 
case-fatality rate17. Even if rainfall was not found to be an important predictive factor in COVID-19 spread and 
mortality in the most literature106, a recent paper pointed out that rainfall may lead to higher social distancing 
and help to mitigate the adverse effects of the outbreak107. The provinces with international borders, the share of 
foreign population, the province capital’s distance from the nearest airport, and the size of the province are used 
to control the effect of the movement of people. Finally, the large firms can be seen as a proxy for greenhouse 
gases, such as CO2 and methane.

Regarding the explanatory variables, I chose the following nine air pollutants, calculated—when data are 
available—for each Italian province:

•	 the average concentrations of NO2, expressed in micrograms per cubic meter of air (µg/m3), in the period 
2014–2019;

•	 the average number of days in which Ozone exceeded the limit of 120 µg/m3, in the period 2014–2019;
•	 the average number of hours in which Ozone exceeded the limit of 180 µg/m3, in the period 2014–2018;
•	 the average concentrations of PM2.5, expressed in µg/m3, in the period 2014–2019;
•	 the average concentrations of PM10, expressed in µg/m3, in the period 2014–2019;
•	 average number of days in which PM10 exceeded the limit of 50 µg/m3 in the period 2014–2018;
•	 the average concentrations of benzene, expressed in µg/m3, in the period 2014–2016;
•	 the average concentrations of BaP, expressed in nanogram per cubic meter of air (ng/m3), in the period 

2014–2018;
•	 the average concentrations of As, expressed in ng/m3, in the period 2014–2016;
•	 the average concentrations of Cd, expressed in ng/m3, in the period 2014–2016;
•	 the average concentrations of Ni, expressed in ng/m3, in the period 2014–2016.

As dependent variables, I use (i) the number of cumulative confirmed COVID-19 cases on 30 November 2020, 
in each province; (ii) the proportion of the total resident population infected by COVID-19 on 30 November 
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2020, in each province; and (iii) the difference, absolute and standardized for population size, between the num-
ber of deaths from all causes from March 2020 to November 2020, and the number of deaths from all causes in 
the March-November five-year average (from 2015 to 2019). [Note 4: Data on COVID-19 prevalence and excess 
mortality rate (on 30 November 2020) are graphically represented in Fig. 2].

Since the national number of excess deaths from all causes was exceptionally high in the period 1 March 
2020–30 November 2020 (91,416), and equal to 11,427 excess deaths per month, many of them may be reason-
able attributed to COVID-19108. The detailed definitions and the sources of all the independent and dependent 
variables used in this paper are reported in Table B1 (Appendix B). A summary of the main descriptive statistics 
is also provided in Table C1 (Appendix C).

Empirical strategy
The main goal of this paper is to estimate the relationship between long-term exposure to nine air pollutants and 
COVID-19 transmissibility and mortality across 107 Italian provinces, using different econometric techniques. 
To measure the spread of COVID-19, I use both the absolute confirmed cases of the disease and its prevalence, 
expressed as a percentage of the population, as of 30 November 2020. This date was chosen by looking at the 
peak of the use of daily nasal swabs for testing COVID-19 at the second peak of the epidemic, which can be 
dated to the end of November 2020. In fact, at that time, more than 200,000 swabs were used daily110, and it is 
possible to hypothesize that they presented a reliable snapshot of reality. Although the number of daily swabs 
was even higher during the third wave of the COVID-19 epidemic, I preferred not to use these data. In fact, the 
third peak of the epidemic occurred around 8 April 2021, when more than 14% of the Italian population had 
received at least one dose of a COVID-19 vaccine111. Moreover, in a cross-section analysis the differences across 
units are more important than the number of infections. This choice may mitigate the inevitable bias in detect-
ing infected people, which was also probably raised in early 2021 due to the start of the nationwide COVID-19 
vaccination campaign.

Regarding the empirical strategy, I used a negative binomial regression that fits well when the dependent 
variable is a count variable, such as the COVID-19 cumulative confirmed cases and related deaths. [Note 5: In 
fact, the standard deviation exceeds the mean both for COVID-19 confirmed cases and related deaths (Table C1, 
Appendix C). In particular, the coefficient of variation, which is the ratio of the standard deviation to the mean, is 
1.43 for COVID-19 cases and 1.54 for excess deaths, by suggesting a certain degree of variability in the depend-
ent variables]. The choice of a negative binomial approach instead of a standard Poisson regression is based on 
the evaluation of the likelihood-ratio (LR) test on the overdispersion parameter alpha and is consistent with 
earlier similar studies on the same matter14,18. The negative binomial regression can be considered a generaliza-
tion of Poisson regression that allows the conditional variance to exceed the conditional mean. To do this, the 
negative binomial approach considers an extra parameter that corrects the effects of the larger variance on the 
p-values112. To avoid biased results, I also include the size of the provincial population as an exposure variable. 
This is a pivotal point, because it allows to standardize the cumulative confirmed cases and excess deaths, that 
is, convert each observation from a count variable into a rate. As result, I estimate the following basic equation:

where i identifies each province, β0 is a constant, Di is a vector of dummy variables for identifying Italian prov-
inces with international borders, DEi is a vector of demographic and economic factors, Ei is a vector of epidemio-
logical features, Mi is a vector of meteorological conditions, Pollutanti refers to the concentrations or violations 
of nine selected air pollutants (NO2, O3, PM2.5, PM10, benzene, BaP, As, Cd, and Ni), and εi is the error term.

(1)Covidi = β0 + β1Di + β2DEi + β3Ei + β4Mi + β5Pollutanti + εi ,

Figure 2.   COVID-19 prevalence and related mortality in 107 Italian provinces (on 30 November 2020). Source: 
own elaborations on data from Italian Ministry of Health109, I.Stat36, and Istat108. The map was generated using 
Microsoft Excel software 2021.
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As sensitivity checks, I modeled the cases and deaths of COVID-19, using a standard ordinary least squares 
(OLS) approach and a spatial-autoregressive (SAR) framework. OLS can be considered the most widely used 
econometric technique for linear statistical models. It takes the same form of Eq. (1), with the only exception of 
the dependent variables, which are the prevalence and the excess mortality at the provincial level.

However, this procedure is not immune from issues, because from a theoretical point of view it is unlikely 
that neighboring provinces did not affect each other. In fact, the transmission within neighbor territories may 
have been affected by the movement of people, which is easier and faster across provinces’ borders. The pres-
ence of spatial dependence in the dependent variable may lead to substantial bias in OLS models113, resulting in 
inconsistent outcomes. Thus, I controlled for possible spatial effects in the dependent variable by following two 
sequential steps: (i) I investigated the map of COVID-19 prevalence on 30 November 2020 to make sure that an 
eventual spatial pattern was visible; and (ii) I calculated a common measure of spatial autocorrelation, the global 
Moran’s I statistic114,115, to verify whether each infection had the same likelihood of occurring at any location. 
Based on the evaluation of these metrics, I implemented a spatial-autoregressive model (SAR). In particular, 
the model was estimated with a maximum likelihood (ML) approach instead of the more common generalized 
spatial two-stage least squares (GS2SLS) approach. This choice is justified by performing Cameron and Trivedi’s116 
decomposition of White’s information matrix (IM) test over the hypothesis of normality and heteroscedasticity 
of the errors, which needs to be met to implement the ML estimator [Ref.117, p. 236].

The equation estimated for the SAR model was eventually obtained by adding a spatially lagged dependent 
variable to the basic Eq. (1), that accounts for the endogenous interaction effects (2). The spatially lagged depend-
ent variable aimed to verify if and how much a given province was influenced by the COVID-19 prevalence and 
excess mortality rate of the neighbor provinces. The final equation takes the following form:

where i identifies each province, β0 is a constant, Di is a vector of dummy variables for identifying Italian prov-
inces with international borders, DEi is a vector of demographic and economic characteristics, Ei is a vector of 
epidemiological features, Mi is a vector of meteorological conditions, Pollutanti refers to the average concentra-
tions (or violations) of nine selected air pollutants (NO2, O3, PM2.5, PM10, Benzene, BaP, As, Cd, and Ni), ρi is 
the spatially lagged dependent variable, wi is an inverse-distance weighted matrix with a 50 km cut-off, 75 km 
cut-off, 100 km cut-off, and no cut-off, and finally εi is the error term. The matrix was row standardized because: 
(i) this allows for comparing spatial parameters that come from different models; and (ii) since all the weights 
summed to 1, the fact that one feature may have two neighbors, and another may have many more does not have 
a large effect on the results.

Finally, as a further sensitivity check, I used the data on COVID-19 prevalence rates and excess mortality on 
28 February 2021, that is approximately one year after the start of the COVID-19 outbreak in Italy. This aimed 
to test whether the relationship between major air pollutants and COVID-19 spread, and related mortality was 
maintained over time.

Results and discussion
Negative binomial regressions.  In Tables 6 and 7, I present the negative binomial model estimations for 
the Italian provinces. All models were significant; in fact, the Fisher-Snedecor distribution assumed values far 
higher than the tabulated critical values at the 1% level of significance. The McFadden’s118 pseudo-R2 is substan-
tially homogenous across specifications and ranges between 0.07 and 0.09 for confirmed cases and from 0.07 
and 0.1 for excess deaths. [Note 6: Although these values are low, it should be noted that pseudo-R2 values are 
usually much lower than those of the classic R-square133. However, OLS and SAR models are used to strengthen 
the results in “OLS regression models” and “Robustness checks: spatial-autoregressive analysis”, respectively.] 
Moreover, the likelihood-ratio (LR) chi-square test allows us to strongly reject the null hypothesis that the dis-
persion parameter alpha is equal to zero. Thus, the negative binomial approach is a better fit for the data than 
the Poisson regression.

Regarding control variables, the results showed that a border with Austria, France, and Switzerland, the 
share of foreigners, population density, and altitude were significantly and positively correlated with cumulative 
confirmed COVID-19 cases on 30 November 2020 (Table 6). [Note 7: The meaning of the relationship between 
control variables and COVID-19 cases and deaths will be explained in the next “OLS regression models”]. 
Conversely, distance from the nearest main airport and average temperature were significantly and negatively 
associated with total confirmed COVID-19 cases. Regarding air pollutants, NO2, O3(>120), PM2.5, PM10, benzene, 
and Cd showed a positive and statistically significant relationship with COVID-19 infections. For the remainder, 
BaP, As, and Ni were not significant at all.

Since coefficients that come from negative binomial models cannot easily be interpreted, I computed the 
marginal effect for the air pollutants that were statistically significant (Table 8). The most significant coefficients 
for COVID-19 cases were NO2, O3(>120), PM2.5 PM10, and Cd, which were verified at 1% level of significance, fol-
lowed by benzene which was verified at 5% level of significance. Regarding primary pollutants, 1 μg/m3 increase 
in PM2.5, PM10, and NO2 concentrations was associated with average increases of 463.2, 405, and 194.2 COVID-19 
infections respectively, while for PAHs and heavy metals, a 0.1 μg/m3 increase in benzene and a 0.1 ng/m3 increase 
in Cd was associated with average increment of 211.6 and 366.7 COVID-19 infections, respectively. [Note 8: I 
chose 0.1 units for benzene and BaP because their legal threshold was comparatively much lower than that for 
common air pollutants]. Thus, among common air pollutants, PM2.5 and PM10 seemed to have the most adverse 
effects on COVID-19 spread, while Cd was the most dangerous among the remaining pollutants.

(2)Covidi = β0 + β1Di + β2DEi + β3Ei + β4Mi + β5Pollutanti + ρwiCovidi + εi ,
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Table 6.   Results from negative binomial regressions on COVID-19 cumulative cases registered on 30 
November 2020. p-value < 0.01***; p-value < 0.05**; p-value < 0.1*. Standard errors in parentheses. All models 
included a constant, a dummy for regional capitals, and controls for the size of the province, smokers, and 
obese individuals.

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Part A

AUT border 0.1157 [0.1928] 0.4794** [0.1946] 0.4919*** [0.1888] 0.5546*** [0.205] 0.4678** [0.1965] 0.5651*** [0.1865]

FRA border 0.2255* [0.1368] 0.5527*** [0.1174] 0.5433*** [0.1032] 0.5997*** [0.1147] 0.4872*** [0.1179] 0.4522*** [0.1153]

SLO border − 0.0624 [0.2013] 0.0058 [0.2215] − 0.1269 [0.2111] − 0.154 [0.247] − 0.0249 [0.2259] 0.0342 [0.2158]

SWI border 0.271** [0.1148] 0.385*** [0.1115] 0.4286*** [0.1015] 0.4212*** [0.1161] 0.3599*** [0.1127] 0.4465*** [0.1055]

Aged 0–19 − 0.0249 [0.0275] − 0.0134 [0.0288] − 0.0191 [0.0268] − 0.0253 [0.0294] 0.0198 [0.0306] 0.0059 [0.0283]

Airport dis-
tance

− 0.0021** 
[0.0009] − 0.0016* [0.0009] − 0.0008 [0.0009] − 0.0015 [0.001] − 0.0009 [0.0009] − 0.0015* [0.0009]

Foreigners 0.0443*** [0.0108] 0.0467*** [0.0113] 0.0414*** [0.0132] 0.0568*** [0.0145] 0.0439*** [0.0117] 0.0486*** [0.0109]

Male 0.0653 [0.0817] 0.1037 [0.0844] 0.0386 [0.0833] 0.1127 [0.0924] − 0.0344 [0.0927] 0.0034 [0.085]

Pop. Density 0.0003*** [0.0001] 0.0001** [0.0001] 0.0002*** [0.0001] 0.0002*** [0.0001] 0.0002*** [0.0001] 0.0002*** [0.0001]

Urbanization − 0.0396 [0.0523] − 0.0841 [0.0579] − 0.0686 [0.0535] − 0.0127 [0.0688] − 0.0488 [0.0571] − 0.0835 [0.0549]

LRT disease 0.0014 [0.0041] 0.0056 [0.0439] − 0.0029 [0.0039] − 0.0003 [0.0044] − 0.0002 [0.0045] 0.0028 [0.0042]

Large firms − 0.0086 [0.0076] − 0.0018 [0.0079] − 0.0033 [0.0081] − 0.0041 [0.0095] − 0.0088 [0.0083] − 0.0051 [0.0075]

Altitude 0.0001 [0.0002] 0.0004** [0.0002] 0.0003* [0.0002] 0.0003* [0.0002] 0.0006*** [0.0002] 0.0007*** [0.0002]

Rainy days − 0.002 [0.003] 0.0025 [0.0029] 0.0004 [0.0027] 0.0032 [0.003] 0.0032 [0.0029] 0.0029 [0.0027]

Temperature − 0.0873*** 
[0.0179]

NO2 0.0132*** [0.0042]

O3 (>120) 0.0071*** [0.0014]

O3 (>180) − 0.0002 [0.0017]

PM2.5 0.0298*** [0.0069]

PM10 0.0275*** [0.0058]

Pseudo R2 0.0737 0.0682 0.0823 0.0701 0.0711 0.0732

N 107 107 98 95 97 107

LR test 
(p.value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Variables Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

Part B

AUT border 0.5187*** [0.1928] 0.4071 [0.2737] 0.3981** [0.1892] 0.1653 [0.2591] 0.1134 [0.2355] 0.1039 [0.2449]

FRA border 0.449*** [0.1208] 0.7805*** [0.1358] 0.5101*** [0.1421] 0.6889*** [0.1384] 0.6866*** [0.1302] 0.6991*** [0.1396]

SLO border 0.0095 [0.2205] − 0.1138 [0.2961] − 0.1284 [0.2264] 0.008 [0.2671] 0.0392 [0.258] 0.063 [0.2539]

SWI border 0.4273*** [0.1086] 0.3844** [0.1584] 0.3427*** [0.1292] 0.3811*** [0.1265] 0.445*** [0.1189] 0.3963*** [0.1253]

Aged 0–19 0.0193 [0.0296] 0.0171 [0.0338] − 0.087 [0.036] − 0.0088 [0.0335] 0.0015 [0.0317] − 0.001 [0.0338]

Airport dis-
tance − 0.0015 [0.0009] − 0.0008 [0.0011] − 0.0007 [0.001] 0.0009 [0.0011] 0.0004 [0.001] 0.0013 [0.0011]

Foreigners 0.0479*** [0.0111] 0.0499*** [0.0129] 0.0497*** [0.0128] 0.0272 [0.0168] 0.0226 [0.0157] 0.0269 [0.0166]

Male − 0.0158 [0.0879] 0.022 [0.0994] 0.0837 [0.1044] − 0.122 [0.1061] − 0.1235 [0.0986] − 0.0924 [0.1032]

Pop. Density 0.0002*** [0.0001] 0.0002** [0.0001] 0.0001 [0.0001] 0.0000 [0.0001] 0.0000 [0.0001] 0.0000 [0.0001]

Urbanization − 0.0839 [0.0563] − 0.0997 [0.0653] 0.0556 [0.0622] − 0.0102 [0.064] − 0.0179 [0.0604] 0.0023 [0.0648]

LRT disease 0.0011 [0.0042] − 0.0026 [0.0046] − 0.0044 [0.0049] − 0.0005 [0.0056] 0.0026 [0.0053] − 0.0004 [0.0055]

Large firms − 0.0089 [0.0079] 0.0009 [0.0089] 0.0198** [0.01] 0.0275** [0.0129] 0.0358*** [0.0124] 0.0269** [0.0129]

Altitude 0.0005*** [0.0002] 0.0002 [0.0002] 0.0006*** [0.0002] 0.0001 [0.0002] 0.0001 [0.0002] 0.0001 [0.0002]

Rainy days 0.0029 [0.0027] 0.0053 [0.0032] − 0.0019 [0.0034] 0.0000 [0.0037] 0.0005 [0.0035] − 0.0009 [0.0037]

PM10 (>50) 0.0058*** [0.0014]

Benzene 0.1317** [0.0641]

BaP 0.0832 [0.0881]

As 0.0504 [0.0525]

Cd 0.197*** [0.0694]

Ni − 0.0154 [0.0174]

Pseudo R2 0.0709 0.0682 0.0847 0.0847 0.0898 0.0846

N 107 88 73 60 60 60

LR test 
(p.value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Part A

AUT border − 0.6471 [0.3953] 0.2168 [0.3946] 0.3104 [0.3556] 0.2357 [0.3916] 0.124 [0.385] 0.29 [0.4045]

FRA border − 0.4053 [0.2539] 0.2524 [0.2215] 0.3561** [0.1802] 0.5923*** [0.182] 0.1483 [0.2061] 0.2821 [0.2207]

SLO border − 0.4116 [0.4021] − 0.192 [0.4207] − 0.386 [0.3888] − 0.1852 [0.4642] − 0.1785 [0.4114] − 0.1389 [0.4293]

SWI border − 0.3048 [0.2139] − 0.1652 [0.2109] − 0.0103 [0.1714] 0.1914 [0.1821] − 0.2937 [0.2005] − 0.01 [0.2088]

Aged 0–19 − 0.0614 [0.0516] − 0.0528 [0.0534] − 0.0373 [0.049] − 0.0606 [0.05] 0.0244 [0.0535] − 0.0276 [0.0552]

Airport distance − 0.0019 [0.0017] − 0.0005 [0.0017] 0.0012 [0.0015] 0.001 [0.0016] 0.0007 [0.0017] − 0.0003 [0.0018]

Foreigners 0.0185 [0.0201] 0.0216 [0.0219] 0.0138 [0.0236] 0.0387 [0.0251] 0.0082 [0.0223] 0.0234 [0.0225]

Male 0.7309*** [0.1432] 0.791*** [0.1468] 0.5838*** [0.1429] 0.5059*** [0.1494] 0.553*** [0.1512] 0.6632*** [0.1525]

Pop. Density 0.0001 [0.0001] − 0.0003** [0.0001] − 0.0001 [0.0001] − 0.0000 [0.0001] − 0.0003** [0.0001] − 0.0002 [0.0001]

Urbanization 0.2173** [0.0905] 0.1714* [0.0985] 0.1775** [0.0875] − 0.0165 [0.1073] 0.2939*** [0.0952] 0.2056** [0.0999]

LRT disease 0.0285*** [0.0073] 0.0252*** [0.0079] 0.0179*** [0.0066] 0.0234*** [0.0067] 0.033*** [0.0081] 0.0241*** [0.008]

Large firms 0.0073 [0.0145] 0.0282* [0.0161] 0.0156 [0.0145] 0.0279 [0.0172] 0.0217 [0.0162] 0.0289* [0.0162]

Altitude − 0.0001 [0.0003] 0.0005* [0.0003] 0.0001 [0.0003] − 0.0002 [0.0003] 0.0006** [0.0003] 0.0006* [0.0003]

Rainy days − 0.0208*** [0.0057] − 0.102* [0.0054] − 0.0107** [0.0048] − 0.0112** [0.0054] − 0.0076 [0.0055] − 0.0088 [0.0055]

Temperature − 0.1857*** [0.0339]

NO2 0.0244*** [0.0077]

O3 (>120) 0.0175*** [0.0024]

O3 (>180) 0.0152*** [0.0024]

PM2.5 0.0319** [0.0125]

PM10 0.0274** [0.0108]

Pseudo R2 0.0793 0.0697 0.0964 0.0922 0.0744 0.0675

N 107 107 98 95 97 107

LR test (p.value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Variables Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

Part B

AUT border 0.2207 [0.4127] 0.1848 [0.5306] 0.062 [0.4212] 0.1716 [0.4615] − 0.2905 [0.4983] − 0.2925 [0.5004]

FRA border 0.3053 [0.2263] 0.3774 [0.2403] 0.4083 [0.2579] 0.1052 [0.2254] 0.0089 [0.2341] 0.0139 [0.2375]

SLO border − 0.1984 [0.4318] − 0.0988 [0.5383] − 0.073 [0.4645] − 0.0211 [0.4808] 0.1759 [0.4796] 0.1627 [0.4724]

SWI border − 0.0275 [0.2122] − 0.2048 [0.2742] − 0.048 [0.2338] − 0.5093** 
[0.1987]

− 0.4634** 
[0.2239] − 0.4672** [0.2218]

Aged 0–19 − 0.0153 [0.0562] − 0.0359 [0.0621] − 0.14** [0.0667] − 0.0818 [0.0571] − 0.0347 [0.0598] − 0.0344 [0.0602]

Airport dis-
tance − 0.0002 [0.0018] − 0.001 [0.0021] 0.0011 [0.0017] 0.0004 [0.0018] 0.0005 [0.0021] 0.0007 [0.0022]

Foreigners 0.0299 [0.0226] 0.0393 [0.0241] 0.0125 [0.0247] 0.0337 [0.0306] 0.0274 [0.0329] 0.0291 [0.0334]

Male 0.6392*** [0.1551] 0.7007*** [0.1701] 0.7442*** [0.1771] 0.4656*** [0.1594] 0.6479*** [0.1661] 0.6556*** [0.1695]

Pop. Density − 0.0002 [0.0001] − 0.0003* [0.0001] − 0.0007*** 
[0.0002]

− 0.0005*** 
[0.0002]

− 0.0004*** 
[0.0002]

− 0.0004*** 
[0.0002]

Urbanization 0.2083** [0.1007] 0.2136** [0.1082] 0.4001*** [0.1054] 0.3728*** [0.1062] 0.3635*** [0.1148] 0.3705*** [0.1202]

LRT disease 0.0224*** [0.008] 0.0201** [0.0082] 0.0038 [0.0098] 0.0216** [0.0093] 0.024** [0.0101] 0.0236** [0.0099]

Large firms 0.0266 [0.0167] 0.0314* [0.0174] 0.0742*** [0.0186] 0.0472** [0.0204] 0.0449** [0.0227] 0.0432* [0.0221]

Altitude 0.0004 [0.0003] 0.0007* [0.0004] 0.0006* [0.0003] 0.0012*** [0.0004] 0.0013*** [0.0004] 0.0013*** [0.0004]

Rainy days − 0.0084 [0.0055] − 0.0107* [0.0061] − 0.0162** 
[0.0064]

− 0.0175*** 
[0.0065]

− 0.0223*** 
[0.007]

− 0.0226*** 
[0.0073]

PM10 (>50) 0.0051* [0.0026]

Benzene 0.1152 [0.1218]

BaP − 0.5869*** 
[0.1785]

As 0.3309*** [0.0841]

Cd 0.0256 [0.1484]

Ni − 0.0045 [0.0325]

Pseudo R2 0.066 0.0722 0.0876 0.1006 0.0876 0.0875

N 107 88 73 60 60 60

LR test 
(p. value) 0.000 0.0000 0.0000 0.0000 0.000 0.000

Table 7.   Results from negative binomial regressions on COVID-19 cumulative excess deaths registered on 30 
November 2020. p-value < 0.01***; p-value < 0.05**; p-value < 0.1*. Standard errors in parentheses. All models 
included a constant, a dummy for regional capitals, and controls for the size of the province, smokers, and 
obese individuals.
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With regards to COVID-19 related deaths, male population, urbanization, large firms, LRT disease, and alti-
tude (although barely) were positively and significantly correlated with the excess deaths. Conversely, population 
density, rainy days, and temperature were negatively and significantly correlated with the excess deaths (Table 7).

The most significant air pollutants were NO2, O3(>120), O3(>180), Bap, and As, which were verified at 1% level 
of significance, followed by PM2.5 and PM10, which were verified at 5% level of significance. Marginal effects (in 
Table 8) showed that a 1 μg/m3 increase in PM2.5, PM10, and NO2 concentrations was correlated with an average 
increase of 29.3, 23.4, and 20.8 COVID-19 related deaths, respectively. For the remaining, a 0.1 ng/m3 in As 
was associated with an average increment of 37.7 COVID-19 related deaths, while a 0.1 ng/m3 increase in BaP 
was correlated with an average decrease of 57 COVID-19 related deaths. Thus, As, PM2.5, and PM10 showed the 
largest positive effect on COVID-19 related deaths.

OLS regression models.  To strengthen the results, in Tables  9 and 10, I estimated an OLS regression 
model for COVID-19 prevalence and excess mortality in the Italian provinces. Since standard errors are usually 
biased in small samples, I corrected them for heteroscedasticity by applying the HC2 estimator proposed by 
MacKinnon and White119, which performs well even when sample size is not large [Ref.120, p. 533]. The Fisher–
Snedecor distribution was highly significant and verified at a 1% level of significance for all the OLS models; 
therefore, the choice of the independent variables can be justified. In Tables D1 and D2 (Appendix D), I also 
report the Cameron and Trivedi’s116 decomposition of IM-test for heteroscedasticity, skewness, and kurtosis. The 
tests show that the null hypothesis can be safely accepted in all models, i.e., the residuals were homoscedastic and 
normally distributed. [Note 9: It is necessary to stress that in model 5 (excess mortality), the null hypothesis of 
residuals normality was rejected (Table D2, Appendix D). However, it does not seem matter of concern because 
the histogram of the residuals suggests that distribution of residuals was not skewed (Fig. D3, Appendix D)]. 
Moreover, the R-square ranged from 0.73 to 0.81 for prevalence, and from 0.39 to 0.62 for excess mortality. Thus, 
the models were a good fit and explained a large and moderate fraction of the variability of COVID-19 preva-
lence and related mortality, respectively. The variance inflation factors (VIF) were always less than the threshold 
of 5, suggesting that there were no severe multicollinearity issues121. The only exception was the coefficient of the 
temperature in model 1, which was carefully excluded by the other models.

The results are similar to those obtained from the negative binomial regression models. Concerning the 
control variables, a border with Austria, France, and Switzerland, foreign population, population density, deaths 
from respiratory disease, and altitude were significantly and positively correlated with COVID-19 prevalence; 
meanwhile, distance from the nearest airport, and temperature were significantly and negatively associated with 
infection rates (Table 9). [Note 10: Obesity had an unexpected negative and significant association with COVID-
19 prevalence, while smokers were not significant at all]. Notably, the coefficient of border with Switzerland was 
more significant and larger than those for border with Austria and Slovenia. This may be due to the flow of the 
65,000 cross-border workers who reside in Italy and work in Switzerland, and who account for a total of 63.73% 
of all Italian cross-border commuters [Ref.122, pp. 184–185]. The significance of foreign population could be 
explained by foreigners’ greater propensity to travel to their native countries, which could have increased the 
probability of meeting infected people.

The direction of the correlation between population density and COVID-19 cases is consistent with recent 
literature123,124, suggesting the importance of keeping a safe physical distance from others to limit the spread of the 
outbreak. The positive significance of altitude, conversely, is in contrast with most of the recent literature97,125–127. 
However, these studies mainly focused on Latin American countries, such as Colombia, Peru, and Brazil, which 
have cities with altitude differences of up to more than 3000 m. As shown by Table C1 (Appendix C), the dif-
ference between the most low-altitude city (Venice) and the most high-altitude city (L’Aquila) is just 1167.3 m, 
suggesting a lower isolation of the population. Moreover, the size of the regression coefficient of altitude is 
extremely low. The positive effect of the prevalence of deaths from respiratory diseases in the period 2014–2019 
seems to stress the greatest vulnerability of people with comorbidities, who are more likely to get infected87,128.

On the contrary, higher temperatures may have favored a reduction of COVID-19 transmission, and this 
result appears consistent with several recent studies102,103,129–131. The negative relationship between transmission 
and distance from the nearest airport seems to advocate the beneficial effect of travel restrictions.

Regarding air pollutants, NO2, O3(>120), PM2.5, PM10, PM10 (>50), and benzene were statistically significant at 
the 1% level, while Cd showed a significance level of 10% (Table 9). Among common air pollutants, 10 μg/m3 
increases in the concentrations of NO2, PM2.5, and PM10 were associated respectively with average increments of 

Table 8.   The average marginal effects got from negative binomial regressions. CI confidence interval. 
p-value < 0.01***; p-value < 0.05**. Standards errors in parentheses.

Cases

NO2 O3 PM2.5 PM10 Benzene Cd

1 µg/m3  > 120 µg/m3 1 µg/m3 1 µg/m3 0.1 µg/m3 0.1 ng/m3

Marginal effects 194.18*** [61.84] 108.26*** [21.49] 463.23*** [107.2] 405.01*** [85.54] 211.6** [103.2] 366.72*** [129.44]

95% CI 72.98–315.38 66.14–150.36 253.13–673.34 237.35–572.66 9.33–413.86 113.03–620.42

Deaths
NO2
1 µg/m3

O3
 > 120 µg/m3

PM2.5
1 µg/m3

PM10
1 µg/m3

BaP
0.1 ng/m3

As
0.1 ng/m3

Marginal effects 20.8*** [6.62] 15.69*** [2.22] 29.27** [11.52] 23.44** [9.25] − 56.99*** [17.49] 37.7*** [9.7]

95% CI 7.82–33.79 11.34–20.03 6.7–51.85 5.32–41.56 − 91.27 to − 22.71 18.69–56.72
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Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Part A

AUT border 0.5526 [0.5076] 1.0847** [0.4834] 1.2464** [0.5222] 1.2347*** [0.4552] 0.9257* [0.4847] 1.2091*** [0.4476]

FRA border 0.2765 [0.3859] 0.8118** [0.3512] 0.8716** [0.3854] 0.8567* [0.4638] 0.6882* [0.3879] 0.7548** [0.3382]

SLO border − 0.3496 [0.2308] − 0.1202 [0.2803] − 0.3594 [0.3505] − 0.5464 [0.3983] − 0.0606 [0.3331] − 0.0073 [0.3379]

SWI border 0.6864* [0.4074] 1.1821*** [0.2398] 1.2889*** [0.2571] 1.3146*** [0.2488] 1.0829*** 
[0.2346] 1.3433*** [0.2171]

Aged 0–19 − 0.046 [0.0545] − 0.0457 [0.0611] − 0.0558 [0.0486] − 0.0669 [0.0543] 0.0133 [0.0657] − 0.0434 [0.0557]

Airport distance − 0.0041** 
[0.0018] − 0.0033* [0.0019] − 0.0032* [0.0017] − 0.0038** 

[0.0017] − 0.0021 [0.0018] − 0.003 [0.0018]

Foreigners 0.1027*** [0.0238] 0.1033*** [0.0223] 0.1008*** [0.03] 0.1194*** [0.0303] 0.0936*** [0.024] 0.1051*** [0.0227]

Male 0.2845* [0.1706] 0.3136 [0.1941] 0.2192 [0.1616] 0.29 [0.1833] 0.1054 [0.2097] 0.168 [0.1699]

Pop. density 0.001*** [0.0002] 0.0006*** [0.0002] 0.0007*** [0.0002] 0.0007*** [0.0002] 0.0006*** 
[0.0002] 0.0007*** [0.0002]

Urbanization 0.099 [0.1119] 0.0043 [0.1209] 0.038 [0.1268] 0.0286 [0.1353] 0.0642 [0.1256] 0.0448 [0.1079]

LRT disease 0.0177* [0.0093] 0.0173* [0.0094] 0.0116 [0.0096] 0.0144 [0.0097] 0.018 [0.0126] 0.0169* [0.0101]

Large firms 0.0079 [0.0216] 0.0425** [0.0211] 0.0345  [0.0224] 0.0587* [0.0301] 0.0284 [0.0224] 0.0267 [0.0191]

Altitude 0.0006** [0.0003] 0.0012*** [0.0003] 0.001*** [0.0003] 0.001*** [0.0003] 0.0013*** 
[0.0003] 0.0014*** [0.0003]

Rainy days − 0.009 [0.0073] − 0.0025 [0.0069] − 0.0032 [0.0053] − 0.0003 [0.0057] 0.0001 [0.0064] 0.0008 [0.006]

Temperature − 0.1781*** 
[0.0533]

NO2 0.0265*** [0.0095]

O3 (>120) 0.0114*** [0.0042]

O3 (>180) 0.0008 [0.0068]

PM2.5
0.0438*** 
[0.0141]

PM10 0.0537*** [0.0111]

Adjusted R2 0.7436 0.7268 0.7832 0.7554 0.727 0.7491

N 107 107 98 95 97 107

F-test 21.02*** 20.03*** 24.63*** 20.75*** 24.93*** 28.96***

VIF (range) 1.38–5.55 1.32–2.51 1.34–3.02 1.36–2.92 1.38–2.58 1.33–2.6

OLS 30 Nov 
prevalence Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

Part B

AUT border 1.2309** [0.4721] 0.4444 [0.3607] 1.2065*** [0.3113] 0.2496 [0.4786] 0.2034 [0.403] 0.1013  [0.4998]

FRA border 0.7619** [0.3329] 1.3877*** [0.269] 1.1103*** [0.2097] 1.4495*** [0.2571] 1.4075*** 
[0.2719] 1.4799*** [0.3018]

SLO border − 0.1375 [0.3255] − 0.1433 [0.3059] − 0.5125* [0.2911] − 0.0032 [0.3415] 0.0569 [0.3355] 0.0737 [0.3872]

SWI border 1.2652*** [0.227] 1.2806*** [0.2154] 0.9622*** [0.3138] 1.2868*** [0.2741] 1.4586*** 
[0.2396] 1.3364*** [0.2599]

Aged 0–19 − 0.0228 [0.0578] 0.0273 [0.0578] − 0.1473** 
[0.0588] 0.0206 [0.064] 0.0176 [0.0608] 0.045 [0.0665]

Airport distance − 0.0027 [0.0019] − 0.0022 [0.0021] − 0.0019 [0.0017] 0.0018 [0.0021] 0.0005 [0.0021] 0.0026 [0.0024]

Foreigners 0.1038*** [0.0233] 0.1071*** [0.0258] 0.1074*** [0.0224] 0.0699** [0.0317] 0.0637** [0.0311] 0.0732** [0.0349]

Male 0.137 [0.1769] 0.0886 [0.1838] 0.3569 [0.2285] − 0.2063 [0.2269] − 0.1369 [0.2097] − 0.2248 [0.2252]

Pop. density 0.0007*** [0.0002] 0.0006*** [0.0002] 0.0008* [0.0004] 0.0006 [0.0004] 0.0007* [0.0004] 0.0007* [0.0004]

Urbanization 0.0586 [0.1131] − 0.1302 [0.1246] 0.1479 [0.1455] − 0.0106 [0.1632] − 0.0775 [0.1569] − 0.0182 [0.1538]

LRT disease 0.0144 [0.0103] 0.0108 [0.0095] 0.0139 [0.0123] 0.0124 [0.0124] 0.0172 [0.0118] 0.0104 [0.012]

Large firms 0.0231 [0.0205] 0.056** [0.0241] 0.066** [0.0258] 0.079** [0.0347] 0.0939*** 
[0.0348] 0.0712* [0.0359]

Altitude 0.0013*** [0.0003] 0.0008** [0.0004] 0.0015*** [0.0003] 0.0005 [0.0004] 0.0006 [0.0004] 0.0005 [0.0004]

Rainy days − 0.0001 [0.0059] 0.0029 [0.0069] − 0.0079 [0.0059] − 0.0031 [0.0065] − 0.0026 [0.0064] − 0.0044 [0.0066]

PM10 (>50) 0.0121*** [0.0028]

Benzene 0.3023*** [0.1118]

BaP 0.2352 [0.1893]

As 0.0984 [0.1565]

Cd 0.4211* [0.232]

Ni − 0.0205 [0.0252]

Adjusted R2 0.7409 0.7404 0.8055 0.7926 0.8099 0.7913

N 107 88 73 60 60 60

Continued
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0.27% (95% CI 0.08–0.45), 0.44% (95% CI 0.16–0.72), and 0.54% (95% CI 0.32–0.76) of COVID-19 prevalence. 
Among significant PAHs and heavy metals, a 1-unit µg/m3 increase in benzene and a 1-unit ng/m3 increase in 
Cd was associated respectively with increments of 0.3% (95% CI 0.08–0.53) and 0.42% (95% CI − 0.05 to 0.89) in 
nationwide COVID-19 prevalence [Note 11: 95% CI stands per 95% confidence interval]. Thus, PM10 exhibited 
the largest dangerous effect on COVID-19 spread.

For the model 1–12 (Table 10), the results showed that, among control variables male population, LRT disease, 
and big firms were significantly and positively correlated with COVID-19 excess mortality. By the contrary, rainy 
days and temperature were significantly and negatively associated with COVID-19 excess mortality. [Note 12: 
Obesity and smokers had a negative and significant association with excess mortality rate. The virtuous impact 
of smoking seems to confirm the existence of a smokers’ paradox in COVID-1996. However, since data on obesity 
and smokers are available only at regional level, these outcomes should be treated with caution]. The adverse 
impact of COVID-19 disease on male population is large and consistent with other studies77,78. [Note 13: In fact, 
a 1-unit % increase in male population was associated with an increase up to 96 excess deaths per 100,000 peo-
ple]. The positive effect of LRT deaths on COVID-19 excess mortality stresses the importance of comorbidities 
on COVID-19 patients outcomes85–88. The positive relationship between big firms and excess mortality due to 
COVID-19 seems to reinforce the idea that ambient air pollution can increase the severity of the disease. While 
the virtuous effect of historical rainy days can be explained considering the arguments put forward by Shenoy 
et al.107, which argued that rainfall may lead to higher social distancing. This could have mitigated the negative 
impact of the outbreak. The beneficial impact of higher temperatures is consistent with the literature18,103–105.

Regarding the air pollutants, NO2, O3(>120), O3(>180), PM10, and PM10 (>50) were statistically significant at the 
1% level of significance, while PM2.5 and As were verified at the 5% level of significance (Table 10). In particular, 
a 10 μg/m3 increase in the concentrations of NO2, PM2.5, and PM10 was associated with an average increment of 
40.2 (95% CI 14.8–65.5), 63.7 (95% CI 14–113.4), and 81.6 (95% CI 36–127.1) excess deaths per 100,000 people, 
respectively. Among the remaining air pollutants, a 1-unit ng/m3 increase in As concentration was correlated with 
an average increment of 47.1 (95% CI 10.8–83.4) excess deaths per 100,000 people. Notwithstanding the BaP had 
an unexpected negative impact on COVID-19 excess mortality, it was only verified at 10% level of significance. 
Thus, the results confirm the adverse impact of outdoor air pollution on COVID-19 spread and mortality.

Robustness checks: Spatial‑autoregressive analysis.  Tables 11 and 12 I presented the results of the 
SAR models on COVID-19 prevalence and excess mortality, on 30 November 2020, respectively. The use of the 
SAR approach is  justified by the global Moran’s I, which allowed to reject the null hypothesis that data were 
randomly distributed both for the dependent and main independent variables. It ranges from − 1 (dispersion) 
to 1 (clustering). Specifically, the global Moran’s I was always positive and statistically significant at 1% level of 
confidence. Since the prevalence and excess mortality on November 2020 showed a Moran’s I of 0.341 and 0.362, 
they both were positively spatially correlated. That means that the high (HH) or low (LL) values of prevalence 
and excess mortality tended to be clustered spatially (Table E1, Appendix E).

Moreover, since spatially lagged dependent variable ( ρ ) was highly significant in almost all the specifications 
(Tables 11 and 12), the SAR approach is more appropriate than the classical OLS econometric technique. [Note 
14: The use of an ML estimator was also justified by the Cameron and Trivedi’s116 decomposition of IM-test over 
the OLS models, reported in Tables D1 and D2 (Appendix D). All the tests confirmed the hypothesis that OLS 
errors were homoscedastic and close to a normal distribution, definitively advocating the ML approach [Ref.117, 
p. 236].

Specifically, the outcomes showed that the scalar parameter ρ was large, positive, and verified at a 1% level of 
significance when a weight matrix with no cut-off is used, suggesting that neighboring provinces tended to display 
similar patterns in terms of the spread of COVID-19 and excess mortality. [Note 15: Since the scalar parameter ρ 
always ranged from − 1 to 1 (a sufficient condition for row-standardized weights matrix), the covariance matrix is 
symmetric positive-definite. Thus, the covariance matrix is correct132].

By supposing that other variables remained unchanged, the increase of 1% in the local prevalence resulted 
in an average increment of 0.87% of COVID-19 prevalence in the adjacent provinces. Similarly, an increase of 
1% in the local excess mortality rate resulted in an average increment of 0.92% of excess mortality rate in the 
neighboring provinces. Notably, when weight matrices with different cut-offs were used (50 km, 75 km, and 
100 km), the scalar parameter ρ for excess mortality rate was larger and in some cases more significant than that 
for prevalence rate.

The high significance of spatially lagged dependent variable may largely be due to the fact that people usually 
move more easily to neighboring provinces, increasing the likelihood of meeting someone with COVID-19 and 
spreading the infection.

OLS 30 Nov 
prevalence Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

F-test 24.5*** 33.63*** 49.79*** 46.12*** 35.91*** 27.47***

VIF (range) 1.33–2.6 1.44–2.69 1.53–3.45 1.65–3.94 1.56–4.17 1.65–4.2

Table 9.   Results from OLS models on COVID-19 prevalence rate registered on 30 November 2020. 
p-value < 0.01***; p-value < 0.05**; p-value < 0.1*. Standard errors in parentheses. All models included 
a constant, a dummy for regional capitals, and controls for the size of the province, smokers, and obese 
individuals.
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OLS excess rate Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Part A

AUT border − 111.3462 
[69.768]

− 38.4385 
[61.3748]

− 9.3204 
[43.8549]

− 15.6083 
[42.4402]

− 55.1127 
[53.2371]

− 19.5649 
[46.0168]

FRA border − 45.6631 
[41.0405] 26.8474 [35.9419] 47.4902 [33.4588] 64.6251 [41.1535] − 2.286 [43.7756] 18.1862 [35.2973]

SLO border − 79.3963 
[65.4272]

− 45.0156 
[60.1806]

− 80.4848 
[51.529]

− 31.6575 
[32.3944]

− 49.1281 
[54.2077]

− 27.8524 
[43.8128]

SWI border − 56.7891 
[45.1511] 9.4731 [44.7109] 13.866 [43.8135] 19.9458 [53.9563] − 15.4593 

[45.5373] 33.9219 [44.2952]

Aged 0–19 − 7.58 [6.7072] − 7.6384 [7.5525] − 5.073 [6.1898] − 5.2 [6.3734] 0.3553 [8.5625] − 7.2876 [6.9699]

Airport distance − 0.0527 [0.277] 0.0449 [0.2803] 0.1069 [0.2436] 0.0838 [0.2467] 0.1661 [0.2876] 0.104 [0.259]

Foreigners 1.3476 [4.7519] 1.2801 [4.5556] − 1.3764 [4.799] 2.7003 [5.1123] − 0.1322 [5.0285] 1.5438 [4.482]

Male 91.5918*** 
[29.4946]

96.1261*** 
[31.5021]

65.9252** 
[25.159] 47.8864* [24.557] 74.2964** 

[35.3288]
74.0357*** 
[27.2692]

Pop. Density 0.0196 [0.0253] − 0.0317 [0.0341] − 0.0175 [0.0216] − 0.0258 [0.0435] − 0.033 [0.0358] − 0.0203 [0.0314]

Urbanization 31.3395 [20.9488] 17.3113 [22.1948] 22.6372 [19.86] − 5.2991 
[19.6849] 36.7292 [22.3791] 23.4627 [19.7158]

LRT disease 3.832** [1.7428] 3.8436** [1.7539] 2.6396 [1.7071] 3.3762** [1.5664] 5.1043** [2.1938] 3.7884** [1.8443]

Large firms 5.3308 [3.9811] 9.8938** [3.93] 4.1161 [4.4703] 6.8305 [5.4828] 7.3365* [4.1307] 7.4993* [3.8212]

Altitude − 0.0252 [0.0585] 0.068 [0.0532] 0.0187 [0.0594] 0.0039 [0.0658] 0.0858 [0.0645] 0.1001* [0.0554]

Rainy days − 2.6834*** 
[0.935] − 1.8395** [0.851] − 1.654** [0.8126] − 1.5147* 

[0.7698] − 1.3094 [0.8903] − 1.3396 [0.8428]

Temperature − 24.3919*** 
[6.5761]

NO2 4.0154*** [1.2736]

O3 (>120)
3.1558*** 
[0.5553]

O3 (>180)
3.5981*** 
[0.9437]

PM2.5 6.3702** [2.4974]

PM10 8.156*** [2.2918]

Adjusted R2 0.3796 0.3625 0.5026 0.5373 0.3929 0.4062

N 107 107 98 95 97 107

F-test 9.31*** 4.69*** 8.23*** 6.55*** 5.15*** 6.52***

VIF (range) 1.38–5.55 1.32–2.51 1.34–3.02 1.36–2.92 1.38–2.58 1.33–2.6

Variables Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

Part B

AUT border − 15.8608 
[50.4814]

− 56.0389 
[101.7693]

− 49.776 
[50.8219]

− 26.1457 
[92.9584]

− 107.7308 
[123.5102]

− 109.6417 
[124.8275]

FRA border 18.9963 [35.7498] 24.1802 [59.726] 45.4798 [65.2261] 26.2888 [56.8109] 6.6584 [62.4633] 7.8836 [71.0215]

SLO border − 47.1256 
[46.9817]

− 34.7954 
[92.4303]

− 29.0193 
[53.5155]

− 29.3902 
[68.7289] 5.9243 [113.0937] 6.2294 [114.5465]

SWI border 22.0068 [43.639] 4.676 [52.935] 21.8521 [40.8342] − 54.4474 
[50.3919]

− 33.5368 
[49.7223] − 35.793 [49.4532]

Aged 0–19 − 4.1086 [7.0644] − 4.4544 [8.1073] − 16.3419* 
[9.0792]

− 11.5499 
[9.2091] − 4.4723 [10.7455] − 3.9838 [11.0619]

Airport distance 0.1385 [0.2597] − 0.1583 [0.4105] 0.0023 [0.3188] 0.1203 [0.4447] 0.2281 [0.4866] 0.2658 [0.5351]

Foreigners 1.3276 [4.7086] 5.9286 [5.8527] − 0.3243 [3.7839] 3.21 [5.5548] 2.578 [5.8346] 2.7449 [6.17]

Male 68.9701** 
[27.2019]

85.6356** 
[34.9703]

89.0109** 
[43.7239] 52.7107 [41.7637] 48.8835 [44.0597] 47.2827 [47.217]

Pop. density − 0.024 [0.0347] − 0.0221 [0.0442] − 0.0757 [0.0481] − 0.0754 [0.052] − 0.0533 [0.0489] − 0.0532 [0.0517]

Urbanization 25.501 [19.7826] 14.6159 [26.3163] 40.5965 [31.5119] 45.4256 [33.1442] 37.8147 [36.0698] 38.8936 [34.0508]

LRT disease 3.4059* [1.8105] 3.6085* [2.0042] 1.4266 [1.8781] 2.964 [2.1372] 2.3063 [2.1887] 2.1827 [2.0975]

Large firms 6.8713* [4.0807] 9.2882* [4.8828] 15.1763*** 
[3.616]

12.7669** 
[5.1743] 11.9376** [5.2257] 11.5296** [5.5128]

Altitude 0.0738 [0.0553] 0.1017 [0.0751] 0.0993 [0.0631] 0.1472* [0.0801] 0.1516* [0.0842] 0.1506* [0.0835]

Rainy days − 1.4729* [0.8333] − 1.5213 [1.0526] − 1.6786* 
[0.9471]

− 2.2064** 
[0.9851]

− 2.4453** 
[1.0466]

− 2.4768** 
[1.0894]

PM10 (>50) 1.8645*** [0.5762]

Benzene 25.8048 [21.4386]

BaP − 59.3584* 
[32.9484]

Continued
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Moreover, the pseudo R2 ranged from 0.78 to 0.91 for COVID-19 prevalence and from 0.45 to 0.68 for excess 
mortality rate. Since they were significantly higher than 0.2, the models represent an excellent fit [Ref.133, p. 35].

For the prevalence rate, NO2, PM2.5, PM10, benzene, and Cd remained positive and statistically significant 
despite the inclusion of the spillover effect. Notably, the coefficients of Cd increased in statistical significance 
from 10 to 5% level, while O3 switched from 1 to 10% level of significance when a cut-off larger than 50 km was 
applied (Table 11).

For the excess mortality rate, none of the ambient air pollutants lost its statistical significance. NO2, O3, PM2.5, 
PM10, and As remained positive and highly significant in most cases. BaP increased its level of significance from 
10 to 5% (Table 12).

Tables 13 and 14 reported the direct, indirect, and total effect of each air pollutant on prevalence rate and 
excess mortality rate. The direct effect was almost always significant, while the indirect and total effect were 
significant especially when weight matrices with different distance cut-offs (50 km, 75 km, and 100 km) were 
implemented. In other words, air pollutants concentrations in a given province had a significant and positive 
spillover indirect effect on COVID-19 spread and related mortality in the nearby provinces. For example, as 
concerns COVID-19 prevalence, PM10 had a direct effect ranging from 0.035 and 0.048, an indirect effect rang-
ing from 0.023 to 0.026, and a total effect ranging from 0.052 to 0.062 (Table 13). [Note 16: Only statistically 
significant coefficients are considered]. Thus, a 1 μg/m3 increase in PM10 concentrations caused an increment 
of COVID-19 prevalence ranging from 0.05 to 0.06%. [Note 17: Similarly, for excess mortality, As had a direct 
effect ranging from 33.4 and 44.9, an indirect effect ranging from 15.1 to 34, and a total effect ranging from 45.3 
to 67.8 (Table 14). Consequently, a 1 ng/m3 increase in As concentrations caused an increment of excess mor-
tality rate ranging from 45.3 and 67.8 deaths per 100,000 inhabitants]. Generally, the direct effects were greater 
than spillover effects, suggesting that air pollution concentrations in a province had a larger adverse effect on the 
same province than in the neighboring provinces. [Note 18: The statistical significance of the spillover indirect 
effect of air pollutants may also indicate a certain degree of industrial clustering]. Moreover, among common 
air pollutants, PM10 and PM2.5 showed the highest total positive effect both for prevalence and excess mortality 
rate. While, among PAHs and heavy metals, Cd and As showed the total highest effect for prevalence and excess 
mortality rate, respectively.

Finally, as a further sensitivity check, in Tables 15 and 16, I computed the SAR models for the prevalence and 
excess mortality rate registered approximately 1 year after the start of the outbreak, that is, on 28 February 2021. 
[Note 19: The formula used for calculating the excess mortality rate on 28 February 2021 was: 
Excessmortality = 100, 000×

(

deaths2020−2021

pop2020−2021
−

deaths2015−2019

pop2015−2019

)

 . Where deaths2020−2021 refers to the cumulative deaths 
from all causes registered from 1 March 2020 to 28 February 2021, deaths2015−2019 is the five-year average 
deaths (2015—2019) from all causes (from 1 January to 31 December), pop2020−2021 means the average popula-
tion in the two-year period 2020–2021, and pop2015−2019 is the average population in the 5-year period 
2015–2019].

The results confirmed the statistical significance of the spatially lagged dependent variable (ρ), that was 
almost always large and positive. Moreover, outdoor air pollutants substantially maintained a high statistical 
significance, although the latter had changed in some cases. Regarding to COVID-19 prevalence, benzene became 
not significant at all, and BaP increased in statistical significance from 5 to 1% (Table 15). [Note 20: Notably, the 
coefficient of Ni becomes statistically significant, even if the association with COVID-19 prevalence was nega-
tive]. Table 16 showed that just the impact of BaP on excess mortality was not confirmed. In fact, its coefficient, 
although still negative, became not significant.

Thus, the results are robust to changes in the specifications and show the persistence of the link between envi-
ronmental pollution and the transmission and mortality of COVID-19, also suggesting the potentially dangerous 
effect of PAHs and heavy metals, such as benzene, BaP, As, and Cd.

Limitations
This study has three main limitations: (1) first, the sample size is not large, ranging from 60 to 107 observations, 
that is the Italian provinces; (2) since pollution monitors are sparsely located in some specific provincials’ areas, 
such as specific traffic and industrial provincial capitals’ areas, the study may suffer from exposure measurement 

Variables Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

As 47.0851** 
[17.971]

Cd 7.7207 [29.8248]

Ni − 0.346 [5.9456]

Adjusted R2 0.393 0.3421 0.376 0.4043 0.3284 0.3277

N 107 88 73 60 60 60

F-test 6.27*** 4.28*** 5.66*** 7.53*** 8.72*** 7.86***

VIF (range) 1.33–2.6 1.44–2.69 1.53–3.45 1.65–3.94 1.56–4.17 1.65–4.2

Table 10.   Results from OLS models on COVID-19 excess mortality registered on 30 November 2020. 
p-value < 0.01***; p-value < 0.05**; p-value < 0.1*. Standard errors in parentheses. All models included 
a constant, a dummy for regional capitals, and controls for the size of the province, smokers, and obese 
individuals.
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errors, that is the discrepancy between outdoor air pollutants concentration and personal air pollution exposure; 
(3) notwithstanding the study considers a wide range of potential covariates, it is not possible to grasp and include 
all the aspects that may affect COVID-19 spread and related mortality.

Conclusions
In this article, I investigated the common sources of outdoor air pollution and the global air quality in the 107 
Italian provinces in the period 2014–2019, and the link between long-term exposure to nine air pollutants in the 
same period and COVID-19 spread and related mortality. The major strengths of this study are the implementa-
tion of nine air pollutants, 18 potential covariates, and three different statistical methodologies (NB, OLS, and 
SAR) to address the robustness of the associations.

Table 11.   Results from SAR models on COVID-19 prevalence rate registered on 30 November 2020. 
p-value < 0.01***; p-value < 0.05**; p-value < 0.1*. Standard errors in parentheses. All models included a 
constant and the following controls: dummies for regional capitals and national borders, size of the province, 
population aged 0–19, distance from nearest airport, share of foreigners, share of male population, population 
density, degree of urbanization, deaths due to LRT disease, smokers, obese individuals, large firms, altitude, 
and rainy days.

Prevalence NO2 O3 PM2.5 PM10 Benzene BaP As Cd Ni

50 km cut-off

Coefficient 0.024*** [0.008] 0.0112*** [0.0036] 0.035** [0.0141] 0.0487*** [0.012] 0.2546** [0.1264] 0.2188 [0.1693] 0.0681 [0.1087] 0.3928** [0.1719] − 0.0289 [0.029]

Spatial (ρ) 0.1197** [0.0534] 0.0067 [0.0494] 0.1032* [0.0571] 0.0867 [0.0534] 0.1203** [0.0506] 0.0843* [0.0508] 0.0567 [0.0568] 0.0337 [0.0546] 0.078 [0.0554]

Pseudo R2 0.7785 0.8254 0.782 0.7935 0.7959 0.8624 0.859 0.8711 0.8595

75 km cut-off

Coefficient 0.0117 [0.0076] 0.0058* [0.0033] 0.0284** [0.0123] 0.0354*** [0.0109] 0.1978* [0.1171] 0.2444 [0.156] 0.0476 [0.1087] 0.3836** [0.1656] − 0.0187 [0.0282]

Spatial (ρ) 0.451*** [0.0838] 0.3986*** [0.0872] 0.3882*** [0.0806] 0.4212*** [0.0814] 0.3273*** [0.0724] 0.2837*** [0.0755] 0.1083 [0.073] 0.0938 [0.0677] 0.1167* [0.0691]

Pseudo R2 0.8007 0.8406 0.7896 0.813 0.8056 0.8694 0.8592 0.8714 0.8595

100 km cut-off

Coefficient 0.0108 [0.0078] 0.0054 [0.0034] 0.0282** [0.0124] 0.0348*** [0.0112] 0.1919* [0.1124] 0.2434 [0.1621] 0.0294 [0.1096] 0.383** [0.163] − 0.0058 [0.0291]

Spatial (ρ) 0.4825*** [0.0946] 0.4108*** [0.0999] 0.435*** [0.0924] 0.4429*** [0.0921] 0.4728*** [0.0881] 0.2804*** [0.097] 0.1926* [0.1106] 0.1749* [0.1008] 0.1974* [0.1072]

Pseudo R2 0.8058 0.8444 0.7971 0.8173 0.8242 0.8679 0.8628 0.876 0.8626

No cut-off

Coefficient 0.0141** [0.0072] 0.0054* [0.0031] 0.0304** [0.0118] 0.0371*** [0.0104] 0.2116** [0.1072] 0.2602* [0.1568] 0.0128 [0.0912] 0.3181** [0.1446] 0.0044 [0.025]

Spatial (ρ) 0.9135*** [0.0819] 0.8723*** [0.113] 0.901*** [0.0925] 0.9034*** [0.0896] 0.9173*** [0.0777] 0.7917*** [0.1653] 0.8506*** [0.1303] 0.8292*** [0.141] 0.8565*** [0.1266]

Pseudo R2 0.8272 0.8633 0.8274 0.8397 0.8554 0.8841 0.8973 0.9055 0.8972

Table 12.   Results from SAR models on COVID-19 excess mortality registered on 30 November 2020. 
p-value < 0.01***; p-value < 0.05**; p-value < 0.1*. Standard errors in parentheses. All models included a 
constant and the following controls: dummies for regional capitals and national borders, size of the province, 
population aged 0–19, distance from nearest airport, share of foreigners, share of male population, population 
density, degree of urbanization, deaths due to LRT disease, smokers, obese individuals, large firms, altitude, 
and rainy days.

Mortality NO2 O3 PM2.5 PM10 Benzene BaP As Cd Ni

50 km cut-off

Coefficient 2.0769* [1.1194] 1.952*** [0.5006] 2.3346 [1.8237] 4.1311** [1.7441] 6.3458 [17.888] − 50.619** [25.16] 40.429** [16.589] 7.9292 [28.04] − 1.6402 [4.6789]

Spatial (ρ) 0.4526*** [0.0647] 0.4022*** [0.0641] 0.4708 [0.067] 0.4265*** [0.0677] 0.4831*** [0.0646] 0.3312*** [0.0732] 0.1879** [0.0905] 0.2265** [0.0917] 0.2301** [0.0922]

Pseudo R2 0.4627 0.5893 0.5056 0.4793 0.4549 0.5932 0.5872 0.531 0.5346

75 km cut-off

Coefficient 1.2783 [0.8548] 1.6234*** [0.4018] 3.5298** [1.4526] 3.3544*** [1.2838] 7.0207 [14.5079] − 53.418** [22.992] 31.219** [15.356] 7.236 [25.018] 1.8917 [4.1721]

Spatial (ρ) 0.7666*** [0.0561] 0.6862*** [0.0639] 0.6991*** [0.0621] 0.7508*** [0.0576] 0.7228*** [0.0608] 0.5168*** [0.0858] 0.3856*** [0.099] 0.4308*** [0.096] 0.4364*** [0.0964]

Pseudo R2 0.5426 0.6481 0.5712 0.5723 0.5396 0.6274 0.6066 0.5469 0.5361

100 km cut-off

Coefficient 1.22 [0.8517] 1.374*** [0.4147] 3.5687** [1.3771] 3.2526** [1.276] 4.5796 [14.451] − 46.009** [21.952] 29.464** [13.999] 6.4719 [23.031] 4.776 [3.8245]

Spatial (ρ) 0.8354*** [0.0538] 0.7642*** [0.0675] 0.8015*** [0.0581] 0.8219*** [0.0561] 0.806*** [0.0604] 0.6598*** [0.0906] 0.5737*** [0.1063] 0.6111*** [0.1017] 0.6422*** [0.0998]

Pseudo R2 0.505 0.6293 0.5416 0.5509 0.5505 0.596 0.5892 0.5183 0.4758

No cut-off

Coefficient 2.5727** [1.1238] 2.3281*** [0.4793] 5.0255*** [1.7987] 5.9237*** [1.6317] 14.632 [18.989] − 50.39** [25.21] 39.621*** [14.658] 3.6048 [25.536] 2.251 [4.2351]

Spatial (ρ) 0.9495*** [0.0501] 0.9335*** [0.0653] 0.9475*** [0.0521] 0.9483*** [0.0513] 0.9442*** [0.0553] 0.8972*** [0.0999] 0.8847*** [0.1113] 0.8894*** [0.1075] 0.8942*** [0.1035]

Pseudo R2 0.5841 0.6753 0.6162 0.6129 0.603 0.6195 0.6701 0.6206 0.6198
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The results showed that: (i) common air pollutants (NO2, O3, PM2.5, and PM10) and PAHs (benzene and BaP) 
exhibited a positive and significant correlation with the presence of large firms, energy and gas consumption, 
vehicles density, public transport, cattle fodder, and livestock density; (ii) the provinces located in the north of 
Italy were generally much more polluted than the southern ones;  (iii) long-term exposure to NO2, PM2.5, and 
PM10, benzene, BaP, and Cd was positively correlated with the spread of COVID-19 infections across the Italian 
provinces; and (iv) long-term exposure to NO2, O3, PM2.5, PM10, and As was positively associated with excess 
mortality due to COVID-19.

The dangerous effect of the common air pollutants NO2, O3, PM2.5 and PM10 was consistent with recent 
literature11,13,14,17,19,66,67,72. Moreover, this study found that as well as the common air pollutants, PAHs and heavy 
metals may also have played a key role in explaining the variability of COVID-19 spread and related mortality. 
This outcome seems interesting and of relevance, given that these air pollutants have not been considered at all 
by recent scientific literature. Finally, the results suggest the need for national strategies and economic policies 
that aim at reducing air pollutant concentrations to improve air quality levels (especially in Northern Italy) and 
to cope more effectively with similar unexpected pandemics in the future.

Table 13.   Direct, indirect, and total effects of air pollutants after fitting SAR models on COVID-19 prevalence 
(on 30 November 2020). p-value < 0.01***; p-value < 0.05**; p-value < 0.1*.

Prevalence NO2 O3 PM2.5 PM10 Benzene BaP As Cd Ni

50 km cut-off

Direct 0.0242*** 0.0112*** 0.0352** 0.0489*** 0.2563** 0.2194 0.0682 0.393** − 0.0289

Indirect 0.0024* 0.0005 0.0028* 0.0035 0.0216 0.0115 0.002 0.0069 − 0.0012

Total 0.0266*** 0.0113*** 0.0379** 0.0523*** 0.2779** 0.2309 0.0702 0.3999** − 0.0301

75 km cut-off

Direct 0.0126 0.0061* 0.0301** 0.0376*** 0.2057* 0.2521 0.0478 0.385** − 0.0188

Indirect 0.0087 0.0035* 0.016** 0.0233*** 0.084 0.0811 0.0049 0.0337 − 0.0021

Total 0.0213 0.0096* 0.046** 0.0609*** 0.2897* 0.3332 0.0527 0.4187** − 0.0209

100 km cut-off

Direct 0.0114 0.0056 0.0296** 0.0364*** 0.2045* 0.2486 0.0298 0.3866** − 0.0058

Indirect 0.0095 0.0035* 0.0203** 0.026** 0.1595 0.0871 0.0064 0.0748 − 0.0013

Total 0.0209 0.0092* 0.0499** 0.0624*** 0.364* 0.3357 0.0362 0.4615** − 0.0071

No cut-off

Direct 0.0156** 0.0058* 0.0333** 0.0405*** 0.2392* 0.2737* 0.014 0.3448** 0.0049

Indirect 0.1479 0.0367 0.2732 0.3438 2.3178 0.9755 0.0713 1.5178 0.0259

Total 0.1634 0.0426 0.3065 0.3843 2.5571 1.2492 0.0853 1.8627 0.0308

Table 14.   Direct, indirect, and total effects of air pollutants after fitting SAR models on COVID-19 related 
mortality (on 30 November 2020). p-value < 0.01***; p-value < 0.05**; p-value < 0.1*.

Mortality NO2 O3 PM2.5 PM10 Benzene BaP As Cd Ni

50 km cut-off

Direct 2.3269* 2.1134*** 2.6286 4.5615** 7.2183 − 53.23** 40.967** 8.0853 − 1.6735

Indirect 1.0979* 0.7499*** 1.2263 1.9812** 3.1039 − 12.499* 4.295 1.0438 − 0.2199

Total 3.4248* 2.8633*** 3.8549 6.5428** 10.3222 − 65.73** 45.262** 9.1291 − 1.8934

75 km cut-off

Direct 1.7172 2.0314*** 4.5455** 4.4158*** 9.2222 − 60.233** 33.386** 7.887 2.0672

Indirect 3.7215 3.1054*** 7.0176** 8.9492** 15.269 − 45.629* 15.144* 4.187 1.1182

Total 5.4387 5.1368*** 11.5631** 13.365** 24.491 − 105.86** 48.529** 12.074 3.1854

100 km cut-off

Direct 1.6667 1.736*** 4.8023*** 4.3457*** 6.2353 − 54.388** 33.805** 7.6199 5.7642

Indirect 5.747 4.0897*** 13.174** 13.92** 17.376 − 78.399* 33.985* 8.6825 7.2964

Total 7.4138 5.8258*** 17.977** 18.266** 23.611 − 132.79* 67.79** 16.302 13.061

No cut-off

Direct 3.0365** 2.6732*** 5.9807** 6.9644*** 17.531 − 56.517* 44.895*** 4.1072 2.5805

Indirect 47.926 32.356 89.77 107.51 244.88 − 433.78 298.83 28.476 18.689

Total 50.962 35.029 95.75 114.47 262.41 − 490.302 343.72 32.584 21.27
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Table 15.   Results from SAR models on COVID-19 prevalence registered on 28 February 2021. 
p-value < 0.01***; p-value < 0.05**; p-value < 0.1*. Standard errors in parentheses. All models included a 
constant and the following controls: dummies for regional capitals and national borders, size of the province, 
population aged 0–19, distance from nearest airport, share of foreigners, share of male population, population 
density, degree of urbanization, deaths due to LRT disease, smokers, obese individuals, large firms, altitude, 
and rainy days.

Prevalence NO2 O3 PM2.5 PM10 Benzene BaP As Cd Ni

50 km cut-off

Coefficient 0.0353** [0.0139] 0.0105 [0.0066] 0.0704*** [0.0252] 0.0612*** [0.0214] 0.2008 [0.229] 0.844** [0.3434] 0.0513 [0.2312] 0.8236** [0.3754] − 0.167*** [0.0602]

Spatial (ρ) 0.104** [0.0529] 0.0664 [0.0496] 0.0577 [0.0581] 0.0666 [0.0544] 0.0696 [0.0514] 0.1242** [0.0547] 0.0642 [0.0636] 0.0269 [0.0628] 0.111* [0.0607]

Pseudo R2 0.6943 0.7309 0.7099 0.7065 0.7017 0.7534 0.6926 0.7202 0.7224

75 km cut-off

Coefficient 0.0247** [0.0119] 0.0066 [0.0057] 0.0509** [0.0216] 0.0429** [0.0182] 0.1924 [0.2141] 0.7672** [0.3157] 0.0588 [0.234] 0.8426** [0.3659] − 0.137** [0.0595]
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Pseudo R2 0.7181 0.7498 0.7199 0.7332 0.7074 0.7572 0.6907 0.7187 0.7145

100 km cut-off
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No cut-off
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Table 16.   Results from SAR models on COVID-19 excess mortality registered on 28 February 2021. 
p-value < 0.01***; p-value < 0.05**; p-value < 0.1*. Standard errors in parentheses. All models included a 
constant and the following controls: dummies for regional capitals and national borders, size of the province, 
population aged 0–19, distance from nearest airport, share of foreigners, share of male population, population 
density, degree of urbanization, deaths due to LRT disease, smokers, obese individuals, large firms, altitude, 
and rainy days.

Mortality NO2 O3 PM2.5 PM10 Benzene BaP As Cd Ni

50 km cut-off

Coefficient 2.8423** [1.2349] 2.3784*** [0.5507] 4.1476** [2.0834] 5.6872*** [1.9499] 10.38 [19.832] − 38.399 [26.303] 50.115*** [16.627] 41.041 [28.385] − 5.5223 [4.7558]

Spatial (ρ) 0.3673*** [0.0673] 0.2922*** [0.0654] 0.344*** [0.0728] 0.3239*** [0.0715] 0.3846*** [0.0679] 0.3055*** [0.0693] 0.0811 [0.082] 0.1193 [0.0841] 0.1396 [0.0848]

Pseudo R2 0.4508 0.5951 0.4968 0.4856 0.4495 0.6148 0.6254 0.5701 0.5682

75 km cut-off

Coefficient 1.8571** [0.939] 1.8935*** [0.452] 4.9649*** [1.6038] 4.4859*** [1.4086] 13.183 [15.512] − 38.6085 [23.5874] 36.909** [15.436] 38.082 [24.76] − 2.2329 [4.2121]

Spatial (ρ) 0.7302*** [0.0611] 0.6185*** [0.0725] 0.6337*** [0.0694] 0.7091*** [0.0629] 0.6829*** [0.0654] 0.5075*** [0.0807] 0.3208*** [0.0907] 0.3741*** [0.0871] 0.3724*** [0.089]

Pseudo R2 0.5398 0.6508 0.5584 0.5762 0.5343 0.655 0.6399 0.5834 0.5791

100 km cut-off

Coefficient 1.7917* [0.9222] 1.658*** [0.4583] 4.9938*** [1.4777] 4.302*** [1.381] 15.061 [15.806] − 39.121* [23.595] 36.757** [14.264] 37.408 [23.304] 1.263 [4.087]
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Pseudo R2 0.5236 0.6454 0.5451 0.5747 0.5543 0.5888 0.6332 0.5569 0.5264

No cut-off

Coefficient 2.8712** [1.1623] 2.4814*** [0.4884] 6.2957*** [1.8227] 6.7678*** [1.6727] 19.24 [19.078] − 36.032 [26.203] 46.58*** [14.277] 37.734 [25.042] − 1.6729 [4.2456]

Spatial (ρ) 0.9495*** [0.0502] 0.9313*** [0.0675] 0.9436*** [0.0559] 0.9479*** [0.0517] 0.9441*** [0.0554] 0.8979*** [0.0993] 0.8791*** [0.116] 0.8807*** [0.1151] 0.878*** [0.118]

Pseudo R2 0.5882 0.6845 0.6242 0.6264 0.6143 0.6327 0.7009 0.6426 0.6346
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