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Systems of axon‑like 
circuits for self‑assembled 
and self‑controlled growth 
of bioelectric networks
Russell Deaton1*, Max Garzon2 & Rojoba Yasmin1

By guiding cell and chemical migration and coupling with genetic mechanisms, bioelectric networks of 
potentials influence biological pattern formation and are known to have profound effects on growth 
processes. An abstract model that is amenable to exact analysis has been proposed in the circuit tile 
assembly model (cTAM) to understand self-assembled and self-controlled growth as an emergent 
phenomenon that is capable of complex behaviors, like self-replication. In the cTAM, a voltage source 
represents a finite supply of energy that drives growth until it is unable to overcome randomizing 
factors in the environment, represented by a threshold. Here, the cTAM is extended to the axon or 
alternating cTAM model (acTAM) to include a circuit similar to signal propagation in axons, exhibiting 
time-varying electric signals and a dependence on frequency of the input voltage. The acTAM produces 
systems of circuits whose electrical properties are coupled to their length as growth proceeds through 
self-assembly. The exact response is derived for increasingly complex circuit systems as the assembly 
proceeds. The model exhibits complicated behaviors that elucidate the interactive role of energy, 
environment, and noise with electric signals in axon-like circuits during biological growth of complex 
patterns and function.

Electric phenomena are essential in the development of complex biological structures and their function. By 
guiding cell migration1, electric fields and potentials influence wound healing and tissue regeneration2, and direct 
pattern formation (like left or right, up or down3) in processes such as early neuronal development4 or growth 
of plant roots5 and pollen tubes6. The aggregate effect of potential differences across membranes, gap junctions, 
action potentials in axons, and other bioelectric phenomena forms networks of electric potentials that com-
municate among cells to influence gene expression and thus, formation of biological structure and function in 
embryogenesis and morphogenesis7–9. Changes in physical structure are communicated electrically throughout 
the network, resulting in coordination of distant growth processes to produce spatially differentiated target 
structures10. The flow of information from the environment to biological structure and function through electric 
potentials represents computation without neurons and is postulated to be a primitive and ancient mechanism11.

Self-assembly models are inspired by autonomous interactions among component parts that build complex 
structures, including examples such as biomolecules (DNA and proteins), living organisms, social networks, 
and even galaxies. Theoretically, self-assembly is an algorithmic process, resulting in complex and powerful 
behavior that is capable of Turing universal computation12,13, and has produced new methods for building 
nanostructures14.

Originally motivated by DNA-based self-assembly14, the circuit tile assembly model (cTAM) was introduced 
to demonstrate how self-controlled growth15 and self-replication16 can be achieved as emergent properties with-
out explicit programming. Rather, they are made possible by a finite resource (e.g., an electric potential ν0 ) that is 
consumed as tiles with simple circuits bind to a growing circuit assembly15, as illustrated in Fig. 2. In the cTAM, 
tiles attach if a constant voltage (Direct Current or DC) at the terminus is greater than or equal to a threshold 
τ . This assembly process produces a family of circuits whose electrical properties change as the circuit grows, 
which in turn, modulates electric signals that are communicated throughout, as illustrated in Fig. 2. In contrast 
to models based on differential equations, the cTAM is abstract and discrete, with the potential to reveal the 
essence of electrical effects in biological phenomena. As an abstract model, the cTAM is amenable to analysis for 
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exact prediction of its maximum circuit size through self-controlled growth and thus, of its electrical properties, 
as a function of the voltage source ν0 or threshold τ15,17,18, and their effects on growth of the assembled circuit 
(such as self-replication16). Figure 1 shows examples of phenomena to which this model could be applied to gain 
quantitative insights into their dynamical properties at the macrolevel.

The goal of this paper is to further elucidate the role of electric signals in the growth of biological structures 
by adding a capacitor to the attaching tile in the cTAM model and extending the analysis to the frequency 
and time domains. The specific example biosystem that the cTAM represents can be regarded as an axon, and 
its electrically-driven growth as thresholded signal communication with its environment. Thus, this cTAM is 
termed the axonal cTAM (or just acTAM), which also denotes the time-varying nature of the model (‘ac’ for 
alternating current, or AC). The acTAM circuits approximate equivalent circuits for the propagation of action 
potentials in cable theory23 and the Hodgkin-Huxley model24. Propagation of electric signals along axons are 
the physical basis for communication from sensory to information-processing neurons and are fundamental 
to neural information processing. Moreover, axonal networks are capable of information processing25,26 and 
computation27 without neurons.

Figure 1.   Examples of biological phenomena that could potentially be analyzed by the acTAM models and its 
variants to gain quantitative insights into their dynamical properties at the macrolevel (Galvanic Phenomena19, 
DNA–Protein Interactions20, Cellular Membranes21, Axonal Networks22) .

Figure 2.   An cTAM ladder circuit is assembled as ladder tiles attach to a seed with a DC voltage source ν0 and 
subsequently, each other as long as the voltage across the resistor R at the terminus is at least τ . In addition, 
Watson–Crick complementary DNA glues at the top (a–a′  ) and bottom (b–b ′  ) bind the assembly together.
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Capable of modeling both spiked and graded signals, acTAMs inherit a unique property of the cTAM models 
in that they produce a dynamically changing family of circuits in which both structure and electrical properties 
vary as growth proceeds. The acTAM captures the coupled effects of growth and electric potential in an axon-like 
circuit. In early neural circuit assembly, spontaneous electrical activity is important in development, which is 
followed by network refinement by signals evoked from sensory input4,28. Electrical activity also promotes neural 
repair29. Thus, the cTAM could also serve as a tool to understand the effect of electrical activity on the growth of 
axonal networks, as well as its role in the electric potential distributions that arise in bioelectric networks8 that 
lead to observable properties of form and function in biological organisms.

In what follows, the acTAM is defined, and the expressions for the node potentials as a function of the 
parameters and size of the circuit are derived Nodal analysis of acTAM systems and applied to the analysis of 
steady-state behavior. The transient and complete solutions are derived. The product of the acTAM is a system 
of ladder circuits, and their mature size is characterized. Finally, a discussion of the significance of the acTAM 
for development and function of structures in biological systems is presented.

The axonal circuit tile assembly model (acTAM)
This section presents definitions of the cTAM (to make the paper self-contained) and its extension to the acTAM.

Definition 1  (acTAM Circuit) An axonal circuit is a tuple

on a graph (N, E), where N denotes the set of nodes corresponding to electrical nodes in the circuit, E denotes the 
set of edges, C is a set of circuit components (chosen from resistors, capacitors, and voltage sources) assigned to 
edges e(i,j) ∈ E where {i, j} ∈ N , and g maps some subset of nodes ∂N to some subset of glues labeled from a finite 
alphabet � , i.e. g : ∂N → � . ∂N = Nin ∪ Nout consists of two finite subsets of nodes, input nodes Nin and output 
nodes Nout of the circuit, and are the points at which glues bind tiles together on the boundary of the circuit. The 
size of the circuit is the number of tiles in it. (A cTAM is an acTAM with only resistor tiles, without capacitors.)

Definition 2  (acTAM) An axonal tile assembly system (acTAM) is a tuple C = (Ŵ, S, ν0, ζ , τ) , where Ŵ 
is a finite nonempty alphabet of tiles, S ⊂ Ŵ is a subset of seed tiles, ν0 is the potential at the power source, 
ζ : Ŵ(Nin)× Ŵ(Nout) → {0, 1} is a glue indicator function that determines whether glues on input nodes of a 
tile match or bind to glues on output nodes of acTAM circuits, and τ ∈ R+ is the threshold voltage that sets one 
of the criteria for further tile attachments.

The simplest acTAM consists of two circuit tiles, a seed tile (Fig. 3) and an unlimited number of copies of 
one ladder tile (Fig. 4). The circuit in the tiles consists of a resistor αR in series with a parallel combination of a 
capacitor C and a resistor R. The ladder circuit is equivalent to that used in cable theory23 to model signal propa-
gation down axons, with αR being the longitudinal resistance, R the membrane resistance, and C the membrane 
capacitance. Growth of the ladder is determined by the electric potential difference across the RC pair, or between 
the nodes joining the αR resistors and the RC pair and the common ground (bottom of the circuit). Ladder tiles 
attach to the seed and subsequently, to other ladder tiles, if and only if the node potential at the output nodes 
of last tile in the assembly is at least τ (Fig. 5). The electric potential at node k in a given acTAM circuit of size 
n tiles at time t will be denoted νnk (t) (Or just νk(t) if a certain size n is assumed), where k = 0, . . . , n , including 
the source potential νn0 (t) (or just ν0 ) at the seed.

In the simplest model, ladder tiles bind to form assemblies in the shape of growing ladders. In a reaction-
rate limited regime, ladder tiles are present in saturation and always bind whenever the tip potential is at least 
τ , whereas in a diffusion-limited regime, ladder tiles only arrive and attach at set time intervals. The specific 

� = (N ,E,C, g , ∂N)

Figure 3.   The seed tile for the acTAM consists of a voltage source ν0(t) , two resistors, R and αR , and a capacitor 
C. The top node has glue a, and bottom node has glue b.
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mechanism by which tiles attach can be left unspecified under either assumption. One specific implementation 
would follow the well known aTAM model of DNA self-assembly12,13, in which a tile has a pair of oligonucleo-
tides a, b on the output nodes of a DNA molecular tile that may bind to their corresponding Watson-Crick 
complements a′, b′ on input nodes of the attaching ladder tile. Other models can use protein-protein interactions 
resulting from electric potentials forming across ion channels11. In this paper, assembly processes are monotonic, 
i.e., once a tile is attached, the attachment will never dissolve. The behavior of the family of acTAM circuits is 
characterized below in general, for both DC and AC.

Dynamics of network potentials in acTAM systems
Kirchoff ’s Current Law (KCL) is about conservation of charge and states that the sum of the currents entering and 
exiting any node in a circuit must be 0. In particular, the seed (Fig. 3) has a distribution of potentials at its three 
nodes (source ν0 , ground ν−1 , and node potential ν1 at the tip of the tile (between αR and the parallel C–R pair). 
Attachment of successive ladder tiles causes a (speed of light, nearly instantaneous for relatively small circuits) 
propagation of the signals to the other tiles, which reconfigures the node potentials at the previous nodes into a 
new steady state after a brief transient, as illustrated in Fig. 6. Over time, the self-assembly process in an acTAM 
model generates a family of circuits of increasing size (number of tiles) with a dynamic potential distribution 
νnk  at nodes k in a ladder of size n ( k ∈ {1, . . . , n} ). Because of the series-parallel resistance of the circuits in the 
family, the tip potentials νnn are a decreasing function of time or size, so they eventually become unable to support 
new attachments, as shown in the DC case in15,17. Thus an acTAM really defines a dynamical system of growing 
circuits of increasing size that exhibit emergent characteristic behavior.

For the analysis of the acTAM, the differential equations for a system of circuits are derived using nodal analy-
sis (KCL). First, the system is solved for a non-time-varying (DC) case, which makes the capacitor an open circuit 
and the circuit purely resistive (“Nodal analysis of acTAM systems”). Then, in “Steady-state phasor analysis”, 
the steady-state response in the frequency domain is derived from the DC equations with complex impedances. 
Thus, the steady-state time response is derived for a sinusoidal input voltage. The transient response (“Transient 
response”) was determined from results in30 and initial conditions, which are set by the node potentials when a 
new ladder tile attaches. The complete response is steady-state plus transient (“Complete solution”). The dynamic 
behavior is shown in Fig. 7.

Nodal analysis of acTAM systems.  The temporal dynamics of the circuit system assembled in the acTAM 
model can be characterized in general using the equations for the node voltages νnk  obtained from Kirchoff ’s Cur-
rent Law (KCL). (We will drop the superindex n when the context is not ambiguous.) Given the circuit in Fig. 5, 
for an arbitrary intermediate node k, where the current in the capacitor is Cdνk/dt , the node equation is

Figure 4.   The ladder tile for the acTAM consists of resistors R and αR , and a capacitor C. The input nodes have 
glues a′ and b′ on top and bottom and the output nodes have glues a and b on top and bottom, both respectively.

Figure 5.   An acTAM ladder circuit is assembled as ladder tiles attach to a seed with a voltage source ν0(t) and 
subsequently, each other as long as the voltage across the RC pair at the terminus is at least τ . In addition, the 
hybridized glues at the top (a–a′  ) and bottom (b–b ′  ) bind the assembly together. Nodes are labeled k and the 
terminal (last) node n.
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where νk is the electric potential at node k. Rearranging and using the shorthand ν′k = dνk/dt , the differential 
equation for νk is

For the first node k = 1 , the equation is

and for the last node k = n,

In matrix form, the system of differential equations thus becomes

(1)(2+ α)νk − νk−1 − νk+1 + αRC
dνk

dt
= 0,

(2)ν′k =
νk−1

αRC
−

2+ α

αRC
νk +

νk+1

αRC
.

(3)ν′1 =
ν0(t)

αRC
−

2+ α

αRC
ν1 +

ν2

αRC
,

(4)ν′n =
νn−1(t)

αRC
−

1+ α

αRC
νn.

Figure 6.   Response of first node potential in the seed tile for α = 1, R = 1�, C = 10−3 F , and |ν0| = 50 V . 
The second tile attaches to the seed at t = 0.003 s, causing the node potential at node 1 ( ν1 ) to undergo a 
transient. The steady-state (ss) DC value 25 V (top line) for the seed alone is shown for reference.

Figure 7.   Response of node potentials for parameters α = 1, R = 1�, C = 10−3 F , and |ν0| = 50 V . Tiles 
attach every t = 0.003 s, causing the node potentials to undergo transients before returning toward steady-state 
values. With a threshold of τ = 3 V , no further attachments occur past node k = 4.
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Under direct current (DC, time invariant supply), the capacitor C is an open circuit and can be ignored, and 
thus, the general form of the node equations for node k of n is

The set of equations then becomes

where the matrix of coefficients is

and the source vector is

with ν0 the DC source potential. According to Cramer’s rule, the node potentials are then given by

where A(k)
n  is the matrix with the k-th column of An (Eq. 8) replaced with the vector bn from Eq. (9), and | · | or 

a corresponding capital letter denotes the determinant of the corresponding matrix. Since An is a tridiagonal 
matrix for n ≥ 2 , the determinants An = |An| satisfy a recurrence relation

with A1 = 1+ α , and A0 = 0 . Equation (11) is a linear recurrence, and has a solution similar to that derived 
in31 for equivalent resistance. Therefore, the general solution for a circuit ladder of size n is a linear combination

where a1 and a2 are constants, and ρ1 and ρ2 are the roots of the characteristic equation of the recursion,

Solving Eq. (13) yields two solutions,

Using the the initial conditions from Eq. (11) with k = 1 and k = 2,

yields the following two equations,

Solving for a1 and a2 gives
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The recurrence for A(k)
n = |Ak

n| is

where

with a1 and a2 given by Eq. (15). Therefore, according to Cramer’s rule (Eq. 10), the node potentials at node k are

and for the last (terminal) node ( k = n ) in the ladder, the node potential is

where ν0 is the source voltage.
Since |ρ2| < 1 , as n becomes large, the node potential at the terminus of the ladder in the last tile is bounded by

Steady‑state phasor analysis.  With a sinusoidal time-varying source ν0(t) , phasor analysis can be used 
to derive the steady state response of the circuit in Fig. 5. Phasor analysis represents circuit components with 
complex impedances, allowing the steady state behavior of the circuit to be solved using nodal analysis, as in the 
DC case. The impedances are Z1 = R/(1+ jωRC) for the parallel combination of R and C and Z2 = αR for the 
series resistor. For an intermediate node k other than 1 or n, the node equation is

with ω the angular frequency. If we let α′ = α(1+ jωRC) , then, the system of equations from nodal analysis is 
identical to those for DC (Eq. 7), except the node potentials are now in the phasor or frequency domain. There-
fore, with that substitution, the solution for node potentials is the same as Eq. (17),

with complex

and

in which α′ has been substituted for α . The node potential at the terminus of the ladder is bounded by Eq. (20) 
with α′ substituted for α,

where the source voltage is now a function of frequency ω . Converting from frequency back to the time domain, 
the steady state node voltages are

(15)
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where |νk| is the magnitude and ∠νk is the phase of the complex node potentials νk(ω) . Like axons, the acTAM 
ladder is a low-pass filter. The magnitude of the frequency response (Eq. 22) and phase are shown in Figs. 8 and 
9, respectively.

Transient response.  According to30, the eigenvalue for node k of n for the matrix in Eq. (8) with α′ substi-
tuted for α is

and the ith value in the kth eigenvector χi,k for �k is

The transient response for node k of n is thus

where the bi ’s are determined from initial conditions.

Complete solution.  With a sinusoidal time-varying source ν0(t) , the complete solution for a node 
k ∈ {1, . . . , n} is the sum of the transient (Eq. 29) and steady-state (Eq. 26) responses,

for a ladder of length n. The constants bi in Eq. (29) are determined by initial conditions, which are the node 
potentials when a new tile attaches or are the values of the potentials νn−1

k (t) for nodes k ∈ {1, . . . , n− 1} in a 

(27)�k =
−(2+ α + jωαRC)

RC(α + jωαRC)
+

2 cos
(

(2k−1)π
2n+1

)

RC(α + jωαRC)
,

(28)χi,k = sin

(

i(2k − 1)π

2n+ 1

)

.

(29)νtrk (t) =

n
∑

i=0

biχi,k exp(�it),

(30)νnk (t) = νtrk (t)+ νssk (t),

Figure 8.   Magnitude of the frequency response for parameters that approximate an axon 
( α = 10−6, R = 1012 �, C = 10−8 F , and |ν0| = 100 mV).

Figure 9.   Phase of the frequency response for parameters that approximate an axon 
( α = 10−6, R = 1012 �, C = 10−8 F , and |ν0| = 100 mV).
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ladder of length n− 1 , i.e. the node potentials ( νn−1
k (t) ) in the ladder of length n− 1 are the initial conditions 

for the node potentials ( νnk (t) ) in a ladder of length n. For an attaching tile, since it is disconnected from a 
source, the initial condition is νnn (0) = 0 . If attachments to a growing ladder only occur after it has practically 
reached steady state, then, the initial conditions for attachment to a ladder of size n are the DC values for the 
node potentials, or νnk  (Eq. 18).

Equation (30) for different nodes k is plotted for a couple of binding regimes. The first binding regime is an 
approximation for diffusion-limited growth in which tiles are available for binding at a fixed time interval T. 
Every T seconds, a new tile arrives at a growing ladder and attaches if the terminal potential is at least τ . In Fig. 10, 
with circuit parameters that approximate those for axons, a DC voltage source is applied at t = 0 and tiles arrive 
every T = 0.3 s. There is relatively little attenuation as growth proceeds because the value of α is small compared 
to R. The same circuit parameters and T = 0.2 s are used in Fig. 11 with ν0(t) = 0.1 sin(ωt + φ) and ω = 20π 
(rad/s). An exponential decrease in amplitude is observed, as well as shifts in the phase of the sinusoid. The 
other regime approximates reaction-rate limited growth in which tiles are available in saturation and is shown 
in Fig. 12. As soon as the terminal potential νn ≥ τ , a new tile will attach. Because the time to reach τ is shorter 
than the time to reach steady-state, the response at each node is attenuated to a transient value at the attachment 
and changes to new time behavior with νn−1

k (t) as the initial condition, where for the last tile νnn (0) = 0 and for 
the next to last tile νnn−1(0) = τ.

Figure 10.   Complete response for parameters that approximate an axon ( α = 10−6, R = 1012 �, C = 10−8 F , 
and |ν0| = 100 mV ) under a binding regime that approximates diffusion-limited growth with a time between 
attachments of T = 0.3 s.

Figure 11.   Complete response for parameters that approximate an axon ( α = 10−6, R = 1012 �, C = 10−8 F , 
and ν0(t) = 100 sin(ωt + φ)mV with ω = 20π (rad/s)) under binding regime that approximates diffusion-
limited growth with a time between attachments of T = 0.2 s.
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Bounds
Using the expressions derived in previous sections, bounds on the length of the ladder can be derived. Given the 
biological connection of the acTAM ladder circuit and growth/signal propagation in axons, the length provides 
a measure of both the driving potential ν0 and the threshold τ . In our model, ν0 represents the source of energy 
for the growth or the strength of the signal from a sensor, and the threshold τ represents those randomizing 
forces in the environment that oppose either growth or signal propagation. Thus, the length of the ladder is a 
measure of both.

To determine bounds on the length n of the ladder, the terminal voltage has to be less than the threshold, i.e.,

where the expression for νn is from Eq. (19). Rearranging, it is found that An > ν0/τ , which has no ready solution 
for n. Nevertheless, by using Eq. (20) for n large, it is found that the condition for growth to cease is bounded by

Thus, the growth is bounded and the length given ν0 and τ can be estimated. Moreover, for complex α′ , length 
is not only modulated by input potential and threshold, but also by the frequency of the input. The dependence 
of length n on frequency is shown in Fig. 13.

Likewise, the input potential ν0 and threshold τ that generate a given length can be determined from Eq. (31) 
as

For α′ = 1 in Eq. (18), An becomes

By using relations for the golden ratio φ in Eq. (34), Eq. (33) becomes

where F2n+1 are the odd Fibonacci numbers, which is similar to a result for the equivalent resistance of long 
resistive ladders32. The golden ratio and Fibonacci numbers appear frequently in nature, mathematics, and 
human designs. Thus, the relationship of driving force ν0 and environment τ that produce a given length ladder 
to the golden ratio and the Fibonacci sequence provide further evidence of the connection of the acTAM to 
biological systems.

In addition, using the equation for the node potential (Eq. 18) and recurrence for the determinant (Eq. 11),

(31)νn = ν0
1

An
< τ ,

(32)n >
log ν0

2τ (4+ α′ −
√
α′(4+ α′))

log ρ1
.

(33)
νo

τ
< An.

(34)
(−5+

√
5)(3+

√
5)n + 2(3−

√
5)n(−5+ 2

√
5)

2n(5(−3+
√
5))

.

(35)
νo

τ
< F2n+1,

(36)
ν0

τ
< (2+ α′)An−1 − An−2,

Figure 12.   Complete response for parameters that approximate an axon ( α = 10−6, R = 1012 �, C = 10−8 F , 
and ν0(t) = 100 mV ) under binding regime that approximates reaction-rate limited growth with tiles in 
saturation and a threshold of τ = 50 mV.
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it is seen that this ratio is bound by a Lucas sequence U(P, Q) with P = 2+ α′ , Q = 1 , U1(P,Q) = 1 , and 
U0(P,Q) = 0 . Comparing ν0/τ to generate lengths n and n− 1 as n becomes large gives

which is one of the solutions, ρ1 , to the characteristic (Eq. 14), the limit of the ratio of two numbers in the Lucas 
sequence, and for α′ = 1 is equal to 1+ φ , where φ is the well-known golden ratio.

Consequences of the acTAM for biological systems
As mentioned earlier, ν0 represents a signal or energetic driving force for ladder elongation, τ represents rand-
omizing forces or noise in the environment, and the length of the ladder for which the signal is ≥ τ is an artifact 
produced by the ratio ν0/τ , a kind of signal-to-noise ratio for the acTAM. Thus, the ladder is produced by an 
interaction between its own internal assembly process and its environment. Therefore, it is natural to ask, what 
is the sensitivity of the structure of the ladder, i.e. length, to changes in the environment, i.e ν0/τ . For any given 
ν0/τ , a unique ladder length is produced. Nevertheless, there are an infinite number of ν0/τ that can produce a 
ladder of a given length n. Thus, the system itself, the ladders, can only tell us so much about the environment, 
ν0/τ . This is a consequence of the discreteness of the ladder growth in a continuous environment. Using Eq. (19), 
for a ladder of length n− 1 to add one additional tile, νn−1 = ν0/An−1 ≥ τ , and for growth to terminate at length 
n, νn = ν0/An < τ . Solving both for ν0/τ

which represents the continuous interval that will produce a ladder of length n, spanning a voltage range

where ρ1 and ρ2 are given in Eq. (14), the solutions to the characteristic equation. For α′ = 1 , Eq. (39) is equal to

which are the even Fibonacci numbers F2n . The size of this interval grows unboundedly as n becomes large. Thus, 
larger and larger ν0/τ are required to produce longer ladders, and there is a larger spread in its values between 
adjacent lengths.

There are two interpretations of this remark. First, the length of the ladder, which is also a measure of the 
spatial extent over which a signal exceeds the threshold, is the artifact by which the acTAM assembly senses 
its environment. As the length of the ladder increases, the uncertainty about the ν0/τ that produced the ladder 
increases, and alternatively, the length of the ladder becomes less sensitive to changes in ν0/τ . Autopoiesis33 is a 
theory that describes the ability of a system to maintain itself through a constructive relationship with an environ-
ment. In an abstract way, the acTAM captures some of the tradeoffs between a system being able to “know” its 
environment and also, remaining stable in the face of environmental changes. Living organisms have evolved to 
find a middle ground of sensing and responding to changes while maintaining those characteristics that define 
it as a species and have enabled it to survive in a given environment.

(37)An/An−1 =
1

2
(2+ α′ +

√

α′(4+ α′)),
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< An

(39)An − An−1 =
α′(ρn
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2 )

2n
√
α′(α′ + 4)

,

(40)
φ2n − (1− φ)2n

√
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,

Figure 13.   Dependence of length n on ν0/τ at different frequencies for parameters that approximate an axon 
( α = 10−6, R = 1012 �, C = 10−8 F , and ν0(t) = 100 mV).
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Conclusion
Living systems transduce flows of energy and matter from the environment to grow, produce complex biological 
patterns, respond to sensory input, and reproduce. Because of their complexity, it is a challenge to model the 
input-output relationships among the various flows into the system and predict the response, be that a structure 
or a behavior.

In the original cTAM (Fig. 1), simple circuit tiles attach to a growing ladder circuit if the voltage at the ter-
minus is greater than or equal to a threshold. The cTAM enables self-controlled growth driven by a finite source 
of energy (voltage source) in a background environment. This complex and characteristic behavior comes as 
a direct consequence of the interaction among components of the model that are proxies for components in a 
biological network, namely matter (represented by circuit tiles), energy (input voltages), communication (through 
signal propagation and dynamic interaction among components representing somatic computation10,11 without 
a central information processor) and interaction with the environment (dynamic growth to homeostasis) at 
various levels of abstraction.

In this paper, the model has been extended to the acTAM to incorporate other components that are considered 
important for biological circuit models, such as capacitors and time-varying bioelectric signals, while keeping 
the model amenable to quantitative and predictive analysis.

Figures 8, 9, 10, 11, 12 and 13 represent results for the acTAM with circuit parameters approximating an 
axon. After all, the acTAM circuit is highly similar to that of axonal cable theory, which at this stage, is its most 
appropriate benchmark. In these figures, the acTAM produces a response that approximates signaling in axonal 
networks, namely it acts as a low-pass filter.

Levin and collaborators7–9 describe how complicated distributions of electric potentials might influence 
biological pattern formation through interactions with genetic mechanisms. The acTAM is a tool that enables 
exploration of the interaction between electric potentials that depend on the growth of a biological structure, and 
vice versa. Growth itself introduces more complicated time-varying behavior, as seen in Figs. 10, 11 and 12, and 
additional frequency components in the signal. Interestingly, in Figs. 10 and 12, transients from growth by attach-
ment of circuit tiles results in waveforms that are starting to look like action potentials. It has been suggested11 
that bioelectric phenomena are an ancient mechanism to control growth and form, possibly predating cells 
themselves. Transduction of energy to overcome disorder through growth of organized structures would seem 
to be a prerequisite for early life, and at least in its electric signals, the acTAM starts to demonstrate how those 
early growth mechanisms may have contributed to the development of complex biological shape and function.

In this paper, the acTAM is monotonic, i.e. once a tile attaches, it cannot detach. Nevertheless, extensions 
to the acTAM are possible that allow detachment. In order for growth to proceed, the model would have to 
incorporate forward and reverse reaction rates that would determine the extent of the growth, with this cTAM 
representing a kind of abstract non-equilibrium thermodynamics that might lend itself to quantitative analysis. 
Certainly, a series of attachment and detachment events would produce even more complex electric signals and 
growth behavior.

In conclusion, the acTAM abstracts and is equivalent to other other models of bioelectric networks7–9 and 
offers the potential to uncover deep clues on the etiology of biological structure formation (shape and dynam-
ics). For example, what really controls and limits growth is access to environmental resources and the coupling 
between components and the environment. It also captures mechanisms that couple growth and electrical sign-
aling in axon-like networks with predictive capability for both length and electrical response. These models 
also provide full and realistic examples of the well known property of autopoiesis33, in which the structure of an 
organism is determined and preserved by, not in spite of, interaction between components and the environment. 
Furthermore, the model itself (although not the analysis) is relatively simple and so affords the possibility of 
models for more complex and realistic phenomena (proteins and neuronal assemblies) in which the represen-
tation of matter is less abstract than in conventional models and closer to direct electrical phenomena. These 
properties would also allow the possibility of providing a more objective and systematic framework to address 
issues such as homeostasis, self-healing, and other epigenetic biological phenomena as emergent properties34,35 
rather than being explicitly programmed.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request. These include Mathematica programs that were used to generate simulation data for figures.
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