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Modeling study of divertor particle 
and heat flux asymmetries 
for EAST H‑mode discharges
G. Z. Deng1* & X. D. Lin2,3

The BOUT++ transport code is run to study the effects of plasma drifts on the divertor out-in 
asymmetries (DOIAs) of particle and heat fluxes and their decay widths for EAST lower single null 
H-mode discharges. The diamagnetic drift seems to have no effects on the DOIAs of total particle 
and heat fluxes due to its divergence-free nature. However, it could significantly increase the DOIAs 
of peak particle and heat fluxes and the flux decay widths. The E × B drift is found to induce a large 
plasma flow to the divertor region, enhancing the DOIAs of both total and peak particle and heat 
fluxes and the flux decay widths. Both the radial and poloidal components of the E × B drift are 
necessary in increasing the DOIAs, however, the radial E × B drift seems to play a more important role. 
The effects on the DOIAs caused by both diamagnetic and E × B drifts are reversed with the reverse of 
toroidal magnetic field. The heat flux decay width λq and spreading width Sq are important physical 
and engineering parameters for the divertors and could be obtained by fitting the heat flux profiles 
at divertor targets. The λq at the outer target from the simulation case with all drifts could well match 
with the multi-machine scaling proposed by Eich and the DOIA of λq is in reasonable agreement with 
the scaling proposed by Goldston.

The excessive particle and heat fluxes onto the plasma facing components (PFCs), especially the divertor targets, 
poses a severe threat to the lifespan of the divertor materials and the sustainability of the advanced steady state 
operation for tokamak fusion devices1. The particles and energy from the core plasmas along the magnetic field 
lines in the scrape-off layer (SOL) to the divertor, are usually found to be asymmetrically distributed between 
the outer and inner divertor targets2, which make the divertor particle and heat loads more of an issue to the 
tokamak fusion community. The DOIA is a general concept representing the unbalances of particles and energy 
at the outer and inner divertor targets. The larger DOIAs mean the differences of particles and energy between 
the outer and inner targets are larger. Understanding the DOIAs of particles and energy is of great importance 
to the design and operation of future high-power and long-pulse tokamaks like ITER and China Fusion Engi-
neering Test Reactor (CFETR).

The studies of DOIAs have been carried out worldwide on present tokamaks such as DIII-D3–5, JET6–8, 
ASDEX-Upgrade9,10, LHD11,12, JT-60U13,14 and TCV15. The basic finding is the reversed asymmetric behavior 
with the reverse of toroidal magnetic field. The particle flux to the inner divertor target is usually larger than 
that of the outer divertor target for lower single null (LSN) discharges with normal toroidal magnetic field (ion 
B × ▽B direction towards the lower X-point), while the asymmetry is reversed with reversed toroidal magnetic 
field (ion B × ▽B direction directed away from the lower X-point). The DOIA of heat flux is usually opposite 
to that of particle flux14, resulting in a much larger heat flux to the inner or outer divertor target than the other 
one. A common explanation to the strong DOIAs of particle and heat fluxes is due to the existence of various 
types of plasma drifts, including the diamagnetic and E × B drifts16–20. Presently, the E × B drift has been widely 
recognized as the most important factor in enhancing the DOIAs. However, there is still dispute over which 
component (radial or poloidal) of the E × B drift playing the leading role. Rozhansky et al. presented that the 
poloidal E × B drift was the main factor in enhancing the DOIAs of plasma density and particle flux based on 
the study of sheath boundary condition at targets18,19. However, Chankin found that the radial E × B drift was 
playing the dominant role by analyzing the convective flows caused by the poloidal and radial components of 
the E × B drift based on a series of EDGE2D-EIRENE modeling20. It should be noted that most of the previous 
studies are focused on the DOIA of density or total heat flux without shedding light on the detailed distributions 
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of particle and heat fluxes, especially the peak flux and the flux decay widths which are also of great importance 
to the safety and maintainability of target materials. Besides, although the diamagnetic drift is considered not 
to be important in inducing the DOIAs due to its divergence-free nature21–23, its effects on the DOIAs of target 
parameters have not been widely discussed yet.

EAST is the first superconducting tokamak in China with ITER-like divertor and configuration. Experimen-
tal studies on the DOIA of heat flux for the L-mode discharges24–26 and DOIA of particle flux for the H-mode 
discharges27,28 have been carried out recently. The results also show that the DOIAs could be reversed by reversing 
the toroidal magnetic field. The simulations of EAST discharges with SOLPS also demonstrate similar asymmetric 
behaviors with the experiment29–31. However, these modeling studies are mainly focused on the qualitative agree-
ment between the simulations and the experiment without much analysis on the quantitative level. There is still 
a lack of effort on the effects of different types of drifts on the detailed distributions of particle and heat fluxes 
at the outer and inner divertor targets, especially the peak flux and the flux decay widths (including the particle 
and heat flux decay widths �js and �q , and the particle and heat spreading widths Sjs and Sq ). The understanding 
of these physics will be of special significance to the future high-power and long-pulse operation in EAST, which 
is the main focus of our studies in this paper.

The rest of the paper is organized as follows. Section Simulation setups briefly introduces the simulation set-
ups of the BOUT++ edge plasma transport code. The effects of different types of drifts on the DOIAs of particle 
and heat fluxes and their decay widths will be discussed in detail in section Effects of drifts on the DOIAs of 
particle and heat fluxes and their decay widths. Finally, all the results will be summarized in section Summary 
and conclusions.

Simulation setups
The work in this paper is carried out by the BOUT++ transport code (BTC). BOUT++ is a framework for 
implementing 2D and 3D plasma/fluid simulation in curvilinear geometry32,33, many physical models have been 
developed in this framework and the transport model is one of them34–36. The BTC is a 2D fluid model with 
drifts and neutrals. Starting from the Braginskii equations, the BTC includes evolutions of plasma ion density 
( Ni ), ion and electron temperature ( Ti and Te respectively), parallel ion velocity ( V‖i ), electrostatic potential ( φ ), 
vorticity ( ̟  ) and neutral density ( Nn ). The recycling boundary conditions are applied at the divertor targets and 
wall. The E × B drift velocity VExB = 1

B0
b0 ×∇φ and the ion diamagnetic drift velocity V i

dia =
1

ZieNiB0
b0 ×∇Pi . 

The E × B and diamagnetic drift terms in the model could be switched on/off by the corresponding switches. The 
BTC has been applied to the edge plasma simulations of discharges from tokamaks like DIII-D34, C-mod36 and 
EAST34,35 and so on. The good performance of the code has proved it to be an effective tool for tokamak edge 
plasma simulation. Detailed information about the BTC can be found in35. Note that the grid is simplified in the 
divertor region, which may not be a big issue since benchmarks among BTC, SOLPS and the experiment have 
already been done in previous work34,35.

An EAST H-mode discharge #48,337 is chosen for the simulation. It is a LSN discharge with ion B × ▽B 
direction towards the X-point. The divertor is in a high-recycling regime for the discharge. The plasma current 
and toroidal magnetic field for this discharge are 0.4 MA and 2.2 T respectively. The simulation grid is generated 
based on the magnetic equilibrium of this discharge from the kinetic EFIT37 and is shown in Fig. 1. The plasma 
in the simulation is pure deuterium plasma with no impurities from seeding or sputtering at divertor targets. 
The density and temperature at core–edge interface (CEI) are fixed to be 2.8 × 1019 m−3 and 450 eV respectively. 
The “U” shaped profiles of transport coefficients are set in the simulation as shown in Fig. 2. The coefficients at 
the pedestal region are set to be small due to the existence of the transport barrier there, which is a common 
practice in edge plasma simulations30,38,39. The ion thermal diffusivity is set to be the same as the electron thermal 
diffusivity for simplicity. Note that the transport coefficients are by default poloidally constant in the simulation.

Effects of drifts on the DOIAs of particle and heat fluxes and their decay widths
As aforementioned, the experimental studies of the DOIA of heat flux for L-mode discharges24–26 and the DOIA 
of particle flux for H-mode discharges27,28 have been carried out in EAST in recent years. There is still a lack of 
study on the DOIA of heat flux for EAST H-mode discharges due to the unreliability of heat flux measurement 
from the divertor Langmuir probes. For the H-mode discharges, since the heating power is relatively high, 
resulting in the arcing faults in some of the probe channels, which make the heat flux profiles from the divertor 
Langmuir probes unreliable. For the DOIA of particle flux for EAST H-mode discharges, the main finding is 
the reversed asymmetry behavior with the reverse of toroidal magnetic field27. In this section, we will study the 
effects of diamagnetic and E × B drifts on the DOIAs of particle and heat fluxes through modeling. The effect of 
toroidal magnetic field direction on the DOIAs will also be investigated for the same discharge (EAST #48,337) 
by artificially reversing the direction of toroidal magnetic field.

The first set of simulations is carried out with only diamagnetic drift, and the simulation without drifts is also 
included to make comparison. The heat flux at one of the targets acts as an indicator to check whether a steady-
state solution is achieved. Figure 3 shows the particle and heat fluxes from the simulation. The black squares 
and the red solid triangles represent the data from the case without drifts and with only diamagnetic drift under 
normal toroidal magnetic field respectively. The red hollow triangles represent the data from the case with only 
diamagnetic drift under reversed toroidal magnetic field. The abscissa coordinate is remapped to the outer mid-
plane (OMP). As can be seen, the particle flux at the outer target is a little larger than that of the inner target 
for the case without drifts. The cross-sectional area at the low field side is larger than that of the high field side 
for the magnetic geometry, which may lead to a larger number of diffusion particles to the outer divertor target 
for the case without drifts. The DOIA of heat flux is opposite to that of particle flux. This is reasonable since the 
determination of heat flux relies more on the plasma temperature than the plasma density, and the increase of 
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Figure 1.   The grid image of BTC simulation for EAST shot #48,337 with a resolution of 36 × 64 
(radial × poloidal).

Figure 2.   The radial plasma particle and thermal transport coefficient profiles for the BTC simulations of EAST 
discharge #48,337.
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particle flux could result in the decrease of plasma temperature. Figure 3a,b show that the inclusion of diamag-
netic drift could significantly change the distributions of particle fluxes at both targets. The peak particle flux 
decreases at the inner target while increases at the outer target for the case with normal toroidal magnetic field. 
The change of the particle flux decay width �js seems to be opposite to that of peak particle flux. Both the peak 
heat flux and the heat flux decay width �q in Fig. 3c,d show opposite trends with the counterparts of particle 
flux. The comparison between the case with normal toroidal magnetic field and the case with reversed toroidal 
magnetic field shows that the DOIAs of peak particle and heat fluxes and their flux decay widths are all reversed 
with the reverse of toroidal magnetic field.

Figure 4 shows the plasma densities and temperature for the simulation cases above. The plasma densities 
show similar trends with the particle fluxes in Fig. 3 for the three different cases which seem reasonable since 
more particle flux to the targets usually means larger plasma density at targets. The plasma temperature shown 
in Fig. 4c,d show opposite trends with the plasma densities, which result in the opposite trends of heat fluxes 
with the particle fluxes in Fig. 3. The left figure in Fig. 5 shows the diagram of diamagnetic drift flow direction 
in the SOL and private flux region (PFR) for tokamak plasmas with LSN configuration under normal toroidal 
magnetic field. The diamagnetic drift flows would change directions near the outer and inner targets, thus causing 
no net flows to the divertor surface21–23. In the low field side of the SOL, the diamagnetic drift velocity directs 
towards the outer divertor target, adding to the parallel particle transport from the upstream at the low field of 
the SOL to the outer target. Since the particle flux decay width is determined by the competition between the 
parallel and perpendicular transport, the larger parallel transport induced by diamagnetic drift could lead the 
larger peak particle flux and smaller particle flux width at the outer target as shown in Fig. 3b. On the contrary, 
the diamagnetic drift could lead to the decrease of peak particle flux and increase of particle flux decay width 
at the inner target. The diamagnetic drift flow direction is reversed with the reverse of toroidal magnetic field, 
which may have caused the opposite DOIA behaviors between the two simulation cases with opposite toroidal 
magnetic field directions. Table 1 shows the total particles and energy to inner and outer targets for the three cases 
above. The data show that the inclusion of diamagnetic drift does not change the total particles and energy to the 
targets, which is similar to the result in21 and has confirmed the divergence-free nature of diamagnetic drift. The 

Figure 3.   The divertor particle and heat fluxes at the inner and outer targets for the case without drifts and the 
cases with only diamagnetic drift.
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numbers of particles across separatrix into the SOL induced by diamagnetic drift are also calculated for the two 
cases with diamagnetic drift. The results show that there are 6.37 × 1017 particles across separatrix into the SOL 
for the case with normal toroidal magnetic field. The number is −9.66 × 1017 for the case with reversed toroidal 
magnetic field. The numbers of particles across separatrix by diamagnetic drift for the two cases are more than 
2 magnitudes smaller than the numbers of total particles to the divertor targets. The results above indicate that 
the diamagnetic drift could cause particles to cross flux surfaces and this process should be mainly happened 
in the divertor region. The diamagnetic current should be perpendicular to both the magnetic field lines and 
the pressure gradient. The pressure gradient in the parallel direction in the SOL couldn’t cause a diamagnetic 
current. However, the pressure gradient in the poloidal direction in the SOL should be able to cause a cross-field 
diamagnetic flow. In the upstream SOL, the pressure gradient along the poloidal direction in the SOL is very 
small, meaning that the cross-field particle transport induced by diamagnetic drift is weak, which may explain 
why the total particles and energy across separatrix due to the diamagnetic drift are small. In the downstream 
SOL of the divertor region, there is significant pressure loss in the poloidal direction, which causes a large pres-
sure gradient and a large cross-field diamagnetic flow in the divertor region. This large cross-field flow leads the 
parallel flow induced by diamagnetic drift to change direction near the target, which results in almost no net 
diamagnetic flow to the target. Detailed analyses of this process are presented experimentally21 and numerically22 
in previous literatures. Note that the total particles and energy to the outer boundary (wall) are much smaller 
than those of the targets for all of the three cases as shown in Table 1. In general, the simulation results here 
show that diamagnetic drift has almost no effects on the total particle and heat fluxes to the divertor targets. 
However, it could greatly affect the peak particle and heat flux and the flux decay widths at both divertor targets.

Another set of simulations is done with only E × B drift. Figure 6 shows the particle and heat fluxes at the 
inner and outer divertor targets from cases without drifts and with only E × B drift. As can be seen, the particle 
flux at the inner target increases significantly while it only slightly increases at the outer target for the simula-
tion case with normal toroidal magnetic field when including the E × B drift. The heat flux however, significantly 

Figure 4.   The divertor plasma densities and temperature at the inner and outer targets for case without drifts 
and cases with only diamagnetic drift.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12768  | https://doi.org/10.1038/s41598-022-16668-4

www.nature.com/scientificreports/

increases at the outer target while it only slightly increases at the inner target. The increases of particle and 
heat fluxes at both targets indicate that the E × B drift could induce net plasma flows from the upstream to the 
divertor targets. The right diagram in Fig. 5 shows the directions of E × B drift flows for tokamak plasmas with 
normal toroidal magnetic field. The black arrows represent the direction of poloidal E × B drift flow while the 
blue arrows represent the direction of radial E × B drift flow. The particles and energy are carried by the poloidal 
E × B drift flow from the upstream at low field side to the outer divertor region. Then these particles and energy 
are transferred to the inner divertor region by the radial E × B drift flow and the poloidal E × B drift flow in the 
PFR region. Some of the particles and energy return back to the upstream by the poloidal E × B drift flow at the 
high field side. The larger particle and heat fluxes at both targets after the inclusion of E × B drift indicate that 
the particles and energy across interface ➀ from the upstream at the low field side to the outer divertor region 
should be larger than those across interface ➄ from the inner divertor region to the upstream at high field side. 
The process of the DOIAs caused by E × B drift indicates that both the poloidal and the radial components of 
E × B drift should be necessary in impacting on the DOIAs of particle and heat fluxes. The significant differences 

Figure 5.   The diagrams of the directions of diamagnetic drift flow (left) and E × B drift flow (right) in the SOL 
and PFR regions for tokamak plasmas with normal toroidal magnetic field. In the right figure, the black arrows 
represent the direction of poloidal E × B drift flow while the blue arrows represent the direction of radial E × B 
drift flow. ➀: interface of the low field side upstream and the outer divertor region; ➁: interface of the SOL and 
PFR at the outer divertor region; ➂: interface of the outer and inner PFR region; ➃: interface of the SOL and 
PFR at the inner divertor region; ➄: interface of the high field side upstream and the inner divertor region.

Table 1.   Total particles and energy to the inner and outer divertor targets for case without drifts and cases 
with only diamagnetic drift.

w/o drifts
w/diamagnetic drift, B × ▽B 
↓

w/diamagnetic drift, B × ▽B 
↑

Total particles at inner target 7.13 × 1019 7.25 × 1019 7.09 × 1019

Total particles at outer target 8.47 × 1019 8.44 × 1019 8.39 × 1019

Total particles at targets 1.56 × 1020 1.569 × 1020 1.548 × 1020

Total particles at wall 0.106 × 1020 0.101 × 1020 0.112 × 1020

Total energy at inner target 0.383 MW 0.368 MW 0.387 MW

Total energy at outer target 0.327 MW 0.335 MW 0.311 MW

Total energy at targets 0.71 MW 0.703 MW 0.698 MW

Total energy at wall 0.041 MW 0.055 MW 0.061 MW
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of the increases of particle and heat fluxes between the inner and outer targets have caused strong DOIAs of 
peak and total particle and heat fluxes. The DOIAs of both particle and heat fluxes are reversed with the reverse 
of toroidal magnetic field, which is due to the reverse of the directions of E × B drift flows.

To study in detail on which component of the E × B drift plays the main role in inducing the strong DOIAs of 
particle and heat fluxes, the total particles across the interface ➀ to ➄ by E × B drift are calculated for the two 
simulation cases with different toroidal magnetic field directions and are shown in Table 2. The positive flow 
directions are shown in the right diagram of Fig. 5. For the case with normal toroidal magnetic field, most of the 
particles across interface ➀ into the divertor region return back to the upstream in the high field side by passing 
the interface ➄. However, a large number of particles are transported to the inner divertor region by the radial 
E × B drift and stay there, which eventually reach the inner target and cause the obvious DOIA of particle flux. 
The case with reversed toroidal magnetic field shows an opposite DOIA with respect to the case with normal 
toroidal magnetic field. The data show that both the poloidal and radial components of E × B drift are necessary 
in the determination of the DOIAs. However, the radial E × B drift plays a more important and direct role by 
carrying the particles from the inner/outer target to the other one. The numbers of particles across separatrix 
into the SOL induced by E × B drift are also calculated for the two cases with E × B drift. The results show that 
there are 1.81 × 1020 particles across separatrix into the SOL for the case with normal toroidal magnetic field. 

Figure 6.   The divertor particle and heat fluxes at the inner and outer targets for case without drifts and cases 
with only E × B drift.

Table 2.   Total particles across the interface ➀ to ➄ by E × B drift for the two cases with different toroidal 
magnetic field directions.

Interface →  ➀ ➁ ➂ ➃ ➄

w/ E × B drift, B × ▽B ↓ 4.92 × 1020 4.47 × 1020 4.37 × 1020 4.31 × 1020 3.21 × 1020

w/ E × B drift, B × ▽B ↑ −3.16 × 1020 −4.62 × 1020 −4.76 × 1020 −4.85 × 1020 −5.32 × 1020
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The number is 2.09 × 1020 for the case with reversed toroidal magnetic field. The numbers of particles across 
separatrix by E × B drift for the two cases are much larger than the counterparts that caused by the diamagnetic 
drift in previous simulation cases with diamagnetic drift.

The above simulations are done either with only diamagnetic drift or with only E × B drift. To study the effects 
of all drifts on the DOIAs of particle and heat fluxes, two simulation cases with normal and reversed toroidal 
magnetic field respectively, are done with all drifts switched on. Figure 7 shows the simulated particle and heat 
flux profiles at the inner and outer targets for the two cases along with the counterparts from cases with only 
E × B drift. For cases with normal toroidal magnetic field, the peak particle flux is smaller at the inner target 
while larger at the outer target in case with all drifts compared to that of with only E × B drift. The particle flux 
decay widths �js at both inner and outer targets for the two cases seem to have opposite relationships compared 
with the peak particle flux. Meanwhile, the peak heat flux and the heat flux decay width �q show reversed DOIAs 
with the counterparts of particle fluxes for the two cases. For the cases with reversed toroidal magnetic field, 
both the peak particle and heat flux and the flux decay widths between case with only E × B drift and case with all 
drifts have reversed relationships compared to those of the normal toroidal magnetic field. To study in detail on 
the DOIAs of particles and energy for these cases, the total particles and energy to the inner and outer divertor 
targets are calculated and shown in Table 3. As can be seen, the total particles and energy to both the inner and 
outer targets are larger in cases with only E × B drift than those of without drifts, indicating that the E × B drift 
could bring net particles and energy to the divertor targets, which is different from the diamagnetic drift. The 
total particles and energy to the inner and outer targets for the cases with all drifts are similar to the counterparts 
from the cases with only E × B drift, indicating that diamagnetic drift doesn’t have much effect on the DOIAs 
of total particles and energy, which has also been confirmed in the comparison between cases without drifts 
and with only diamagnetic drift. The data in Table 3 also show that the DOIAs of total particles and energy are 
reversed with the reverse of toroidal magnetic field, and the DOIA of energy is opposite to that of the particles 

Figure 7.   The particle and heat fluxes at the inner and outer targets for cases with only E × B drift and cases 
with all drifts under normal and reversed toroidal magnetic field.
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for all the cases. The total particles and energy to the outer boundary are much smaller than those of the targets, 
which is similar with the results in Table 1.

The above simulations show that the DOIAs of total particles and energy are mainly induced by the E × B 
drift while the diamagnetic drift almost has no effects on them. However, both the diamagnetic and the E × B 
drifts could affect the DOIAs of peak particle and heat flux and the flux decay widths. Figure 8 shows the total 
and peak particle and heat fluxes at the outer target versus the counterparts at the inner target for all of the above 
simulation cases. Figure 8a,b show that the diamagnetic drift has little effects on the DOIAs of total particles and 
energy and the asymmetries are mainly caused by the E × B drift. Figure 8c,d show that both the diamagnetic 
drift and the E × B drift could significantly affect the DOIAs of peak particle and heat flux. However, their effects 
are in the opposite ways. The joint effects from the diamagnetic drift and E × B drift for the cases with all drifts 
have led to the significant reductions of the DOIAs of peak particle and heat flux.

As we mentioned previously, both the diamagnetic and E × B drifts could significantly affect the particle and 
heat flux decay widths from the qualitative point of view. However, it is necessary to study the effects of both 
drifts on the flux decay widths in the quantitative point of view. The particle and heat flux decay widths could 
be obtained by fitting the particle and heat flux profiles at divertor targets using the fitting function proposed 
by Eich et al.40. Equation (9) is the fitting function which is a convolution of Gaussian at the strike point and 
exponential in the SOL region.

S is the spreading width which characterizes the particle or heat dissipation into the PFR. � is the flux decay width 
mapped to the OMP. As particles and power are transported from OMP to the divertor targets, � is broadened 
by the magnetic flux expansion factor fx, which is defined to be the ratio of a specified extent at OMP to the 
extent at divertor target. s = s − s0 , is the distance from a given target coordinate to the strike point s0. qBG is the 
background flux intensity. Figure 9 shows an example of the fitting.

Figure 10 shows the particle and heat flux decay widths �js and �q , and the particle and heat spreading widths 
Sjs and Sq at the outer target, versus the counterparts at the inner target. As can be seen, the DOIAs of � and S 
induced by diamagnetic drift for both particles and heat are much larger than those induced by the E × B drift. 
Both the diamagnetic and E × B drifts could lead to the increase of �js and decrease of Sjs at the inner target 
for cases with normal toroidal magnetic field, while their effects on the �js and Sjs at the outer target are in the 
opposite way. The DOIAs of �q and Sq are exactly opposite to those of �js and Sjs for all the cases. The DOIAs of 
� and S are reversed with the reverse of toroidal magnetic field. The solid and hollow stars in Fig. 10 show that 
the joint effects of diamagnetic and E × B drifts could lead to much larger DOIAs of the � and S than that of with 
diamagnetic drift or E × B drift only.

Since the particle and heat flux profiles measured by divertor Langmuir probes for this discharge on EAST 
are not smooth enough to carry out the fitting for the flux decay widths and spreading widths, it is hard to make 
comparisons of DOIAs of flux decay widths and spreading widths between the experiment and simulation. 
However, Goldston has proposed a drift-based model showing that the ratio of �q at the outer target to �q at the 
inner target is supposed to be (1 + δ)/(1−δ) with δ being the triangularity for double-null (DN) discharges41. Eich 
et al. also proposed a multi-machine scaling law for the �q at the outer divertor target for H-mode discharges42. 
These scaling laws could act as alternatives to compare with the above simulation results. Figure 11a shows the 
ratio of the outer �q to the inner one for the simulation case with all drifts under normal toroidal magnetic field, 
versus the value predicted by Goldston’s model. Since Goldston’s model assumes that radial transport of particles 
and energy are driven solely by drifts, another two simulation cases are run with smaller radial transport coef-
ficients. Case 0, 1 and 2 shown in Fig. 11a represent the simulated results from the original case, the original case 
with 1/10 of the radial transport coefficients and the original case with 1/100 of the radial transport coefficients 

(9)q(s) =
q0

2
exp
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S

2�

)2

−
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−
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Sfx

)

+ qBG

Table 3.   Total particles and energy to the inner and outer divertor targets for cases without drifts, with E × B 
drift and with all drifts.

w/o drifts
w/ E × B drift, B × ▽B 
↓

w/ E × B drift, B × ▽B 
↑ w/ all drifts, B × ▽B ↓

w/ all drifts, B × ▽B 
↑

Total particles at inner 
target 7.13 × 1019 1.97 × 1020 1.06 × 1020 2.02 × 1020 1.07 × 1020

Total particles at outer 
target 8.47 × 1019 1.23 × 1020 2.47 × 1020 1.2 × 1020 2.43 × 1020

Total particles at targets 1.56 × 1020 3.2 × 1020 3.53 × 1020 3.22 × 1020 3.5 × 1020

Total particles at wall 0.106 × 1020 0.186 × 1020 0.163 × 1020 0.191 × 1020 0.168 × 1020

Total energy at inner 
target 0.383 MW 0.624 MW 1.072 MW 0.611 MW 1.102 MW

Total energy at outer 
target 0.327 MW 0.914 MW 0.504 MW 0.921 MW 0.523 MW

Total energy at targets 0.71 MW 1.538 MW 1.576 MW 1.532 MW 1.625 MW

Total energy at wall 0.041 MW 0.089 MW 0.078 MW 0.085 MW 0.081 MW
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respectively. As the background transport gets smaller with smaller radial transport coefficients, the drifts play 
a more important role, which results in a larger DOIA of �q . The simulated result gets closer to Goldston’s model 
with smaller transport coefficients, but there is still discrepancy between the result in case 2 and the model with 
a difference of 12.5%. Note that previous simulation with BTC that reproduced the Goldston’s result didn’t turn 
down the particle diffusivity43. The fact that we reproduce reasonable agreement with Goldston’s result when turn-
ing down both heat and particle diffusivities indicates that drifts may dominate the heat transport compared to 

Figure 8.   The total and peak particle and heat fluxes at the outer target versus the counterparts at the inner 
target for the cases without drifts, with only diamagnetic drift, with only E × B drift and with all drifts under 
normal and reversed toroidal magnetic field.
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diffusion. Figure 11b,c show the �q at the outer target in the simulation case with all drifts under normal toroidal 
magnetic field, versus the �q predicted by Eich’s multi-machine scaling and Goldston’s drift-based model. The 
orange star in Fig. 11b shows that the discrepancy between the simulated �q and the multi-machine scaling is 
about 6.7%. The data in Fig. 11c show that the simulated �q gets closer to Goldston’s model with smaller trans-
port coefficients, which seems reasonable since the model assumes no background transport other than drifts. 
Note that Goldston’s scaling of the ratio of �q at the outer target to that at the inner target in his paper refers 
only to the DN discharges while the discharge studied in this paper is a LSN discharge. We should mention that 
for the predicted values from Goldston’s model both in Fig. 11a,c, the radial transport is assumed to be solely 
contributed by drifts, which means the discrepancies in Fig. 11a,c may mainly be caused by the background 
transport. In general, the simulated results in Fig. 11 are in acceptable agreement with the drift-based model 
and the multi-machine scaling.

Summary and conclusions
A comprehensive study of the effects of plasma drifts on the DOIAs of particle and heat fluxes and their decay 
widths is carried out for EAST H-mode discharges with the BTC. The diamagnetic drift is found to have almost 
no effects on the DOIAs of total particle and heat fluxes due to its divergence-free nature. While the E × B drift 
could significantly affect the total particles and energy to the inner and outer targets, thus changing the DOIAs 
of total particles and energy. For the simulation with normal toroidal magnetic field, the E × B drift could lead 
to much larger particle fluxes to the inner target than the outer one, while the DOIA of energy is opposite to 
that of the particles. Detailed analysis shows that both the poloidal and radial components of the E × B drift are 
necessary in inducing the DOIAs of total particles and energy, however, the radial E × B drift seems to play a 
more important role. Both the diamagnetic and E × B drifts could affect the DOIAs of peak particle and heat 
flux and the flux decay widths. For the simulation with normal toroidal magnetic field, the diamagnetic drift 
could lead to the increase of peak particle flux at the outer target and the decrease of peak particle flux at the 
inner target. �js show opposite trends to the peak particle flux and the DOIAs of �q and heat flux are opposite to 
those of particle flux. The E × B drift could lead to the increase of peak particle flux at the inner target and the 
decrease of peak particle flux at the outer target, which are opposite to the effects of diamagnetic drift. However, 
the DOIAs of �js and �q induced by E × B drift are similar to those of the diamagnetic drift. The DOIAs of total 
and peak particle and heat fluxes and their decay widths are reversed with the reverse of toroidal magnetic field. 
The comparisons between the simulated �q and the Goldston and Eich’s scaling laws show an acceptable agree-
ment with small levels of discrepancy.

In general, the paper focuses on the quantitative studies of the effects of drifts on the DOIAs of particle and 
heat fluxes and their decay widths. The results are in reasonable agreement with the related scaling laws. However, 
more efforts are still needed to figure out the effects of other factors such as ballooning-like transport, plasma 

Figure 9.   The parallel particle flux profile at the divertor target and the corresponding fit using Eq. (9).
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Figure 10.   The particle and heat flux decay widths �js and �q , and the particle and heat spreading widths Sjs and 
Sq at the outer target, versus the counterparts at the inner target.
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geometric effects from the targets themselves and divertor plasma conditions e.g., on the DOIAs of particle and 
heat fluxes, which will be our next-step work.

Data availability
The datasets and analyses details are available from the corresponding author on reasonable request.
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