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Predicting suitable habitats 
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Melia azedarach L. is an important economic tree widely distributed in tropical and subtropical 
regions of China and some other countries. However, it is unclear how the species’ suitable habitat 
will respond to future climate changes. We aimed to select the most accurate one among seven data 
mining models to predict the current and future suitable habitats for M. azedarach in China. These 
models include: maximum entropy (MaxEnt), support vector machine (SVM), generalized linear model 
(GLM), random forest (RF), naive bayesian model (NBM), extreme gradient boosting (XGBoost), 
and gradient boosting machine (GBM). A total of 906 M. azedarach locations were identified, and 
sixteen climate predictors were used for model building. The models’ validity was assessed using 
three measures (Area Under the Curves (AUC), kappa, and overall accuracy (OA)). We found that the 
RF provided the most outstanding performance in prediction power and generalization capacity. The 
top climate factors affecting the species’ suitable habitats were mean coldest month temperature 
(MCMT), followed by the number of frost-free days (NFFD), degree-days above 18 °C (DD > 18), 
temperature difference between MWMT and MCMT, or continentality (TD), mean annual precipitation 
(MAP), and degree-days below 18 °C (DD < 18). We projected that future suitable habitat of this species 
would increase under both the RCP4.5 and RCP8.5 scenarios for the 2011–2040 (2020s), 2041–2070 
(2050s), and 2071–2100 (2080s). Our findings are expected to assist in better understanding the 
impact of climate change on the species and provide scientific basis for its planting and conservation.

Melia azedarach L. (Meliaceae) is a fast-growing species with good timber attributes of multiple-use, such as 
construction and furniture, farm tools, boats, vehicles, and musical instruments manufacturing1. The species 
roots, bark, flowers, and fruits are of high medicinal values2,3. Additionally, its fruit and leaf extracts can control 
numerous agricultural pests and are commonly used as biological pesticides raw materials4. The species is an 
excellent urban greening tree that is resistant to smoke and dust and can absorb many toxic and harmful gases. 
In China, it is widely distributed in mixed forests, fields, and roadsides between 18 and 40° N of China, occupy-
ing about one-third of the country’s land area5. It it is mainly used in plant pesticides, timber, medicinal and 
ecological restoration6. However, uncertain climate factors may reshape their future suitable habitats in China7.

The intensification of global warming, accompanied by the frequent occurrence of extreme natural distur-
bances, such as wind storms, droughts, fires, and floods, will undoubtedly impact the global forest ecosystem8. 
Different tree species respond differently to climate change, with positive and negative effects in different areas. 
For example, climate change is expected to increase the suitable habitats of Mediterranean oaks in the western 
temperate areas9 as well as the total suitable habitat for Cypripedium japonicum10. Conversely, Eucalyptus spe-
cies are expected to face future challenges due to their poor spread capability11, and Persian oak (Quercus mac-
ranthera) will experience a reduction in its contemporary range and is expected to move to higher altitudes12. 
Consequently, assessing the impact of climate change on the potential suitable habitat of species and formulating 
sustainable forest management strategies are critical to maintaining forest ecosystems integrity.

With climate change challenges, species distribution models (SDMs) have become essential tools for project-
ing plants adaptation to a changing climate11. At present, a variety of data mining techniques have been applied to 
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model species distribution data. For example, GLM was used to predict the spread of Emerald Ash Borer (Agrilus 
planipennis) in southern Ontario, Canada13. The NBM predicts the potential distribution areas of Taxus chinensis 
and identifying plant long non-coding RNA and predicting its functions14. Hailu Shiferaw et al. selected the best 
performing algorithm for mapping the coverage of Prosopis juliflora (Swartz DC.) in Afar, Ethiopia by compar-
ing GBM, RF and SVM algorithms15. Maxent models have been widely used in the fields of crop niches, plant 
diseases and insect pests, and species invasion prediction16,17. Therefore, we compared these modeling approaches 
through data mining techniques to identify the most effective modeling approach to predict the suitable habitat 
of M. azedarach species distribution based on the relationship between its occurrence and climate variables.

Understanding the potential impact of climate change on the suitable habitat of M. azedarach is of great sig-
nificance to its cultivation and conservation in China. Studies conducted on M. azedarach were mainly focused 
on tree and stand productivity, extraction of active ingredients, and pest resistance potential3,18. Research on M. 
azedarach potential distribution as affected by climate change is lacking and thus, the present study is aimed at 
exploring the above-mentioned seven data mining techniques to establish climate-based distribution prediction 
models and select the best model in predictions of the species future suitable habitat. Our specific objectives 
were to: (1) compare the prediction accuracy of the seven modeling algorithms and select the one with the best 
performance; (2) determine the key climatic factors related to suitable habitat; (3) develop current and future 
suitable habitat maps for M. azedarach in China and highlighting the areas of change; and (4) assess the potential 
impact of future climate change on the species suitable habitat.

Material and methods
Species location data.  Here, we used the Chinese presence and absence M. azedarach data to establish 
the prediction models. First, we found 1,432 presence data (data source: Global Biodiversity Information Facil-
ity (GBIF), https://​doi.​org/​10.​15468/​dl.​3t8r62, accessed on 17 May 2022, and the Chinese Virtual Herbarium 
(CVH), http://​www.​cvh.​ac.​cn/, accessed on 17 May 2022). All the M. azedarach distribution data have been 
licensed. To avoid redundant sampling, we deleted those sample points with similar longitude and latitude19. 
Then a 0.01° mesh thinning was performed, and the actual distance corresponding to 0.01° was about 1 km and 
only one distribution point was reserved in each grid so that the distance between sample points was more than 
1 km20. A total of 906 samples were included for model building. Finally, we used ArcMap 10.2 to overlay the asc 
result file generated by the model with the map of China to generate the final result map (Fig. 1). In addition, all 
maps in our study were created in ArcMap 10.2.

Environment variables.  We used M. azedarach presence-absence data as the dependent variable and 16 
climatic factors derived from ClimateAP_v221 software (http://​Clima​teAP.​net) as predictors to build the model 
(Table S1)21. We used the following tests to avoid the effect of multicollinearity among the climate variables. First, 
the variance inflation factor (VIF) was calculated for each of the 16 variables (Table S2). Second, the correlation 
analysis was conducted for each pair of the 16 variable (Figure S1). Finally, we used stepwise regression analysis 
to eliminate the variables that led to an observed multicollinearity22.

Model development and prediction.  We used seven models (Generalize Linear Model (GLM), Gradient 
Boosting Machine (GBM), Random Forest (RF), Support Vector Machine (SVM), Maximum Entropy (Max-
Ent), Extreme Gradient Boosting (XGBoost), and Naive Bayesian Model (NBM)) to associate the distribution 
of M. azedarach with climate variables. We used a data-driven approach to select the number of pseudo-existent 
points, and started with 1000, 2000, 10,000, 30,000, and 100,000 pseudo-nonexistent points. It was found that 

Figure 1.   Distributions of the 906 M. azedarach occurrence records. The map was created in ArcMap 10.2 of 
the Environmental System Resource Institute, Icn. (https://​www.​esri.​com/​zh-​cn/​arcgis/​produ​cts/​arcgis-​deskt​op/​
resou​rces).

https://doi.org/10.15468/dl.3t8r62
http://www.cvh.ac.cn/
http://ClimateAP.net
https://www.esri.com/zh-cn/arcgis/products/arcgis-desktop/resources
https://www.esri.com/zh-cn/arcgis/products/arcgis-desktop/resources


3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12617  | https://doi.org/10.1038/s41598-022-16571-y

www.nature.com/scientificreports/

the most models had the highest prediction accuracy with 2000 pseudo-nonexistent points. Therefore, we used 
the “dismo” package in R to randomly generate 2000 “pseudo-nonexistent” records in the study area. Models 
were established with species presence-absence data as the dependent variable and climate variable as the inde-
pendent variables. In order to evaluate the models’ prediction accuracy, we randomly selected 70% data for 
training and the remaining 30% data for testing (validation). We used the “caret” package to train and adjust the 
parameters for all the seven models except Maxent, since it facilitates the process of building, evaluating, as well 
as selecting features. Then, ten cross-verifications were carried out, and each model was repeated 10 times. At 
the same time, the Maxent model was executed using the Maxent version 3.4.4 software in R-package (Fig. 2).

Model validation.  To assess the performance of the seven predictive models, we compared their area under 
receiver operating character curve (AUC), Kappa, and overall accuracy (OA). The AUC is the probability value, 
with evaluation criteria were: 0.5–0.6 = fails, 0.6–0.7 = poor, 0.7–0.8 = fair, 0.8–0.9 = good, 0.9–1.0 = excellent23. 
Kappa coefficient is an index to measure classification accuracy. The calculation result of kappa is − 1 to 1, but 
usually, kappa falls between 0 and 1, which can be divided into five groups: 0.0–0.2 means very low consistency, 
0.21–0.40 means general consistency, 0.41–0.60 means moderate consistency, 0.61–0.80 means high consistency, 
0.81–1 means almost perfect24. Both Kappa and AUC consider the true positive rate and true negative rate to 
avoid an overestimation or underestimation error (Sahin 2020).

Habitat classification.  Appropriate habitat evaluation index values were determined as follows: predicted 
values of 0–0.2, 0.2–0.4, 0.4–0.6, and > 0.06 were deemed unsuitable, low-, medium-, and high-suitable habitat, 
respectively25 (All methods were performed in accordance with the relevant guidelines and regulations).

Results
Models performance evaluation.  Through the cross-validation evaluation of the tested models, Kappa, 
AUC, and OA values were obtained for the testing portions of the dataset (Fig. 3). All models performed well 
(AUC > 0.8, Kappa > 0.5, and OA > 0.7). The AUC values of the seven models varied from 0.85 (NBM) to 0.90 
(RF), Kappa values varied from 0.53 (SVM) to 0.59 (MaxEnt), and Overall accuracy values ranged from 0.77 
(NBM) to 0.81 (XGBoost). Overall, the three evaluation metrices all indicated that the Random Forest (RF) 
model provided the best predictive performance and while the Naive Bayesian Model (NBM) was the worst, 
thus, we selected the RF model to establish M. azedarach distribution patterns.

Important climate variables and their response curves in random forest (RF).  Through multi-
collinearity analysis of the variables, we finally identified ten key climate variables. The top three climate vari-
ables contributing to the RF model include MCMT (189.24), NFFD (180.69), and DD > 18 (104.77), followed 
by TD (72.82), MAP (69.43), DD < 18 (64.12), DD > 5 (56.27), and AHM (54.88); and finally DD < 0 (44.01) and 
PAS (28.54) also played some roles in the determining the potential distribution of M. azedarach (Table 1).

Figure 4 displayed the relationships between the top six climate variables and M. azedarach suitability accord-
ing to the predictions of RF algorithms. The habitat suitable range was between − 10 and − 28 °C for MCMT 

Figure 2.   Flowchart for modeling of M. azedarach.
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(Fig. 4a), between 0 and 175 days for NFFD (Fig. 4b), between 0 and 250 for DD > 18 (Fig. 4c), between 5 and 
21℃ for TD (Fig. 4d), between 0 and 480 mm for MAP (Fig. 4e), and between 0 and 1750 for DD < 18 (Fig. 4f).

RF model prediction of M. azedarach contemporary habitats distribution.  The spatial distribu-
tions of M. azedarach and areas of suitable habitats under current climatic conditions as predicted by the RF 
algorithm are shown Fig. 5. The overall suitable habitat was mainly distributed between 18 and 40° N (Fig. 5a). 
These habitats were classified as: (1) high-suitable habitats (mainly scattered in Shandon (SD), Jiangsu (JS), 
Shanghai (SH), Zhejiang (ZJ), Guangdong (GD), Hunan (HN), Hainan (HI), South Jiangxi (JX), the junction of 
the three provinces of Hubei (HB), Anhui (AH), Jiangxi (JX), and the junction of Chongqing (CQ) and Sichuan 
(SC), covering 9.3 × 105 km2 (9.6%; Fig. 5b); (2) medium-suitable habitats (scattered around the high-suitable 
habitats, covering 6.8 × 105 km2 (7%; Fig. 5b) and specifically concentrated in eastern Sichuan (SC), northern 
and western Shandong (SD), and the junction of Hubei (HB) and Hunan (HN)); and (3) low-suitable habitats 
(slightly larger than the medium-suitable habitats, covering 7.1 × 105 km2 (7.4%; Fig. 5b)), and it is distributed in 
Yunnan (YN), central Guangxi (GX), eastern and northern Guizhou (GZ), southern Shaanxi (SN), western and 
northern Henan (HA), and southern Hebei (HE)).

RF model prediction of M. azedarach projected suitable habitats future changes.  Future 
projections using the RF model with two different climate scenarios (RCP 8.5 and RCP 4.5) indicated a clear 
graphical expansion of M. azedarach in the future periods with an increasing magnitude over time (Fig. 6). The 
projected range increase was greatest under RCP 8.5 as compared to RCP 4.5 (Fig. 6). More specifically, the 
expanded area would increase by 562.6 × 103 km2 and 584.5 × 103 km2 by 2020s, 807.4 × 103 km2 and 930.3 × 103 
km2 by 2050s, and 906.1 × 103 km2 and 1486.3 × 103 km2 by 2080s under the RCP4.5 and RCP8.5 scenarios, 
respectively (Fig.  6g). The main expanded area will be located in Yunnan (YN), Anhui (AH), Henan (HA), 
Shanxi (SX), Shaanxi (SN), central Guangxi (GX), central Jiangxi (JX), and northern Guizhou (GZ). Interest-
ingly, based on the RCP8.5 climate scenario, Xinjiang (XJ) would see a larger magnitude of area expansion 
in 2080s (Fig. 6f). Additionally, the species stable range area showed the same change pattern as that of the 
expanded area (Fig. 6g). The main stable area included Guangdong (GD), Guangxi (GX), Guizhou (GZ), Hunan 
(HN), Chongqing (CQ), Fujian (FJ), Zhejiang (ZJ), Jiangsu (JS), southwestern Jiangxi (JX), and eastern Sichuan 

Figure 3.   Bubble diagram of evaluation metrics for testing data. Different color bubbles represent different 
models.

Table 1.   Contributions of the most influencing climate variables to the M. azedarach random forest (RF) 
model. 1 See Table S1 for variables abbreviations.

Variable1 Units Overall contribution

MCMT °C 189.24

NFFD day 180.69

DD > 18 °C-days 104.77

TD °C 72.82

MAP mm 69.43

DD < 18 °C-days 64.12

DD > 5 °C-days 56.27

AHM 54.88

DD < 0 °C-days 44.01

PAS mm 28.54
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(SC) (Fig. 6a–f). Furthermore, the species area loss exhibited an opposite trend to that of expansion and stable 
range areas (Fig. 6f) and most of the loss area was mainly distributed in eastern coastal provinces near 30–38° N 
(e.g., Shandong (SD)) (Fig. 6).

Discussion
Model performance.  Here, we used the AUC, Kappa, and OA to evaluate the performance of seven spe-
cies range prediction models (GLM, GBM, MaxEnt, SVM, XGBoost, NBM, and RF) to predict M. azedarach 
contemporary and future ranges under two climate scenarios (RCP 8.5 and RCP 4.5). The results showed that 
RF and XGBoost were the top-performing models with RF being the best, while NBM and GLM were the low-
performing with the NBM being the worst. Similarly, multiple lines of evidence support the superiority of the 
RF algorithm26. In a study in northern California, the GLM, ANN, RF and ME models were used to predict new 
occurrences for rare plants, and the results showed that RF provided the best prediction27. Akpoti et al. used BRT, 
GLM, MAXNT and RF algorithms to predict rice production suitability and the results showed that RF has bet-
ter generalizability28. Silva et al. found the highest model quality for the RF and GAM algorithms when assessing 
the limitations of different species distribution models using the Azorean Forest as an example29. The RF is an 

Figure 4.   Response curves of the top six important climate variables (a–f) in the RF model. When the logical 
output > 0.5, the probability of species presence under this condition is higher than that under a typical 
condition, indicating that the condition is suitable for tree species.
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ensemble machine-learning model that could handle data with multi-dimensional, non-linear relationships, 
high-order correlations, and missing values30. Additionally, the RF model is capable of avoiding the accuracy 
reduction problem caused by missing and noisy data in the training sample when predicting the relationship 
between a large number of predictor variables and the response variable31, attributes supporting the present 
study results. In contrast, while the NBM like RF is also a machine learning algorithm, it was proven to be not 
very sensitive to missing data, and the algorithm is relatively simple32. Studies have demonstrated that more 
complex species distributions models provided better predictive performance demonstrating the suitability of 
the RF model in processing complex high-dimensional data such as the data used in the present study33. Moreo-
ver, the NBM is a linear classifier and similar to the traditional linear statistical methods, all are insufficient in 
revealing the complex relationship among environmental variables34. In our case, the two linear models, GBM 
and GLM, demonstrated this with their poor predictive power. Additionally, we observed that the prediction 
accuracy of the XGBoost was very close to that of RF as the XGBoost has good generalization performance35. 
Although, previous studies have shown that MaxEnt, SVM, and GBM models performed well in simulating 
species suitability distribution36,37, our results have shown that the prediction accuracy of these models was 
intermediate relative to the performance of the seven tested models. These phenomena may indicate that species 
characteristics and sample size also have influence on the accuracy of species distribution models38.

The importance of climate variables.  Our study along with several others39–41 were based on the 
assumption that species distribution is mainly determined by climate42,43. It is well documented that climatic fac-
tors are key elements for most species’ population regeneration44. Here, our results indicated that temperature-
associated climate factors have greater influence on M. azedarach suitable habitats than precipitation factors. 
Specifically, five of the top six contributing climatic variables were related to low temperature (MCMT, NFFD, 
and DD < 18) and continentality (TD), with MCMT contributing the most. This shows that low temperature was 
the main climatic factor that restricted M. azedarach suitable habitat, which is consistent with previous studies, 
as low-temperature stress imparted a negative impact on plant physiological and biochemical responses (e.g., 
plant membrane system disorder, photosynthetic rate decline, harmful active oxygen increased, and osmotic 
adjustment substances increase)45. The extension of the number of frost-free days (NFFD) was beneficial to 
increasing M. azedarach seed size and quality, thereby improving the survival rate46. In addition, MAP also 
influences the distribution of M. azedarach under certain TD conditions, as a warm and humid climate favors 
the growth and biomass accumulation of M. azedarach47. Xu et al. also confirmed that the ground diameter of 
M. azedarach tended to increase with increasing precipitation48.

Range shift in response to climate change.  Our study showed that M. azedarach would benefit from 
the anticipated climate change. More specifically, we found the RCP 8.5 scenario to be more favorable for the 
species habitat suitability expansion as compared to the RCP 4.5 scenario (Fig. 5g). The RCP 8.5 scenario pre-
dicted a greater increase in future temperature warming and precipitation, providing climatic conditions favora-
ble to the species growth46. From the species geographic range change point of view, it is expected that the 
future suitable habitat distribution to expand north- and west-ward. Compared with the RCP4.5 scenario, the 
predicted trend of suitable habitats changes of the RCP8.5 scenario was more significant in the plateau area near 
40° N (Fig. 5), including the Xinjiang Tarim Basin (RCP8.5) (Fig. 5f). Under the RCP4.5 and RCP8.5 scenarios, 
the future temperature is envisaged to rise by 1.4–1.8 and 2.0–3.7 °C, respectively, making high latitude areas 

Figure 5.   (a) M. azedarach contemporary suitable habitats distributions (1960–1990) and (b) their percentage 
representations. The map was created in ArcMap 10.2 of the Environmental System Resource Institute, Icn. 
(https://​www.​esri.​com/​zh-​cn/​arcgis/​produ​cts/​arcgis-​deskt​op/​resou​rces).

https://www.esri.com/zh-cn/arcgis/products/arcgis-desktop/resources
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warmer, resulting in a contemplated rise of mountains tree line, which would ultimately provide the species with 
a potential of geographic range expansion49. At the same time, we noted that the suitable habitat in the Shandong 
region would experience substantial range loss (Fig. 5), caused by a drastic change in climatic conditions from 
mainly dry continental airflow with little precipitation to a future warmer climate associated with intensified 
precipitation reduction50. Additionally, the impact of subtropical high pressure could not be overlooked as the 
Shandong is often affected by sinking air currents with long periods of high temperature and low precipitation. 
This subtropical high pressure is expected to gradually moved northward, followed by anticipated clear trend of 
northward movement associated with precipitation pattern change in the Shandong51. To a certain extent, the 

Figure 6.   RF projected range changes for M. azedarach under RCP 8.5 and RCP 4.5 climate change scenarios 
(a–f) (g shows areas of habitat change). The map created in ArcMap 10.2 of the Environmental System Resource 
Institute, Icn. (https://​www.​esri.​com/​zh-​cn/​arcgis/​produ​cts/​arcgis-​deskt​op/​resou​rces).

https://www.esri.com/zh-cn/arcgis/products/arcgis-desktop/resources


8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12617  | https://doi.org/10.1038/s41598-022-16571-y

www.nature.com/scientificreports/

contemplated climate changes are expected to exacerbate the dryland climate in the Shandong, creating pre-
dominantly drought conditions that is unsuitable for the drought-intolerant M. azedarach52.

Management strategies.  Rapid climate change causes most tree populations to exist in unsuitable envi-
ronmental conditions, threatening their growth and survival and even leading to population extinction53. 
Some tree species adapted to the new climatic conditions by migrating to the same environmental gradient or 
evolving54; however, other tree species would benefit from climate change55. M. azedarach belongs to those spe-
cies who would benefit from future climate change leading to anticipated range expansion. The wide distribu-
tion of M. azedarach harbours abundant phenotypic variation and most of the species phenotypic diversity is 
mainly distributed in the southwest and south regions and to a lesser extent in other regions56. It is worth noting 
that if a widely distributed species could not track the changing climate due to long-term local adaptation, they 
would become more vulnerable57. Therefore, to prevent this uncertainty, we suggest taking proactive in-situ 
conservation measures for Yunnan, Guizhou, Sichuan, Guangdong, and Guangxi regions, as they are rich in 
phenotypic diversity which will help in coping with future environmental uncertainty58. Assisted migration ini-
tiatives should apply to presently unsuitable habitats that are expected to be suitable in the future. For example, 
the northern regions of Jiangxi, Hubei, Anhui, Henan, and areas near 40° N are reasonable targets for assisted 
migration conservation measures59. We recommend for areas that would be negatively affected by future climate 
as Shandong, taking ex-situ measures through establishing botanical gardens and seed banks in suitable habitats 
to protect their resources. Therefore, analyzing the ex-situ target areas’ climate ecology could provide reference 
for breeding programs and seed transfer guidelines/polices. At the same time, we suggest that other biological 
factors along with climate should also be considered in the species future research, such as species interaction 
(allelopathy, soil nutrient competition), land-use change (bio-energy farmland expansion), and the influence of 
human activities60,61, these factors collectively affect the contemporary and future distribution of M. azedarach.

Conclusion
Here, we used three common model accuracy evaluation indicators to compare the suitability of seven data 
mining techniques for predicting M. azedarach distribution. The RF model, with its strong robustness and 
stability, provided the highest accuracy in establishing a climate niche model. Based on this model, maps of 
contemporary and future suitable habitats were developed. The RF prediction results indicated that M. azedarach 
would benefit from future climate change through range expansion and this has tendency towards north- and 
west-ward expansion. In order to maximize the species protection and development, we recommend taking a 
proactive in-situ conservation measures to conserve genetic variation for adaptation to uncertainties and ex-situ 
conservation to protect genetic resources under risk, and assisted migration to better use the areas with good 
potential in future climates.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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