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Metabolite, protein, and tissue 
dysfunction associated 
with COVID‑19 disease severity
Ali Rahnavard 1*, Brendan Mann1,2, Abhigya Giri1, Ranojoy Chatterjee1 & 
Keith A. Crandall 1

Proteins are direct products of the genome and metabolites are functional products of interactions 
between the host and other factors such as environment, disease state, clinical information, etc. 
Omics data, including proteins and metabolites, are useful in characterizing biological processes 
underlying COVID‑19 along with patient data and clinical information, yet few methods are available 
to effectively analyze such diverse and unstructured data. Using an integrated approach that 
combines proteomics and metabolomics data, we investigated the changes in metabolites and 
proteins in relation to patient characteristics (e.g., age, gender, and health outcome) and clinical 
information (e.g., metabolic panel and complete blood count test results). We found significant 
enrichment of biological indicators of lung, liver, and gastrointestinal dysfunction associated with 
disease severity using publicly available metabolite and protein profiles. Our analyses specifically 
identified enriched proteins that play a critical role in responses to injury or infection within these 
anatomical sites, but may contribute to excessive systemic inflammation within the context of COVID‑
19. Furthermore, we have used this information in conjunction with machine learning algorithms to 
predict the health status of patients presenting symptoms of COVID‑19. This work provides a roadmap 
for understanding the biochemical pathways and molecular mechanisms that drive disease severity, 
progression, and treatment of COVID‑19.

The COVID-19 pandemic continues to make an impact globally as communities reshape their activities due to 
the spread of various emerging SARS-CoV-2 strains. Despite the generation of multiple efficacious vaccines, our 
understanding of the factors that contribute to disease severity remains  limited1,2. A number of observational 
studies have established a relationship between severe COVID-19 and pre-existing conditions such as Type 2 
Diabetes and  obesity3. Utilizing a multi-omic approach to investigate how comorbidities may contribute to both 
sides of the virus-host interaction will allow for a molecular-level understanding of the infection and may lead to 
improved preventive or therapeutic interventions. Omics data sets are highly complex, often containing a high 
degree of dimensionality and zero-inflation which can complicate analyses that rely on conventional statistical 
testing. Therefore, as new computational tools are developed to handle omics data, reanalysis of publicly avail-
able COVID-19 data may reveal novel findings. Our group, alongside our collaborators, has recently generated 
several innovative methods for identifying key  clusters4,  molecules5, and biological  processes6 from omics data.

We previously have shown that SARS-CoV-2 genomic variation is independent of host characteristics (e.g., 
age and gender)7. SARS-CoV-2 genome variation over time has introduced new strains with various functional 
characteristics such as a set of mutations in spike protein, the primary vaccine  antigen8, and folding conforma-
tions in the virus variants and related  functions9. Host response to infection can be measured by profiling small 
molecules (metabolites) and large molecules (proteins). For example, 3′-Deoxy-3′,4′-didehydro-cytidine (ddhC), 
a human antiviral metabolite, was significantly increased in COVID-19  patients10, and Gamma aminobutyric 
acid (GABA) metabolite was suggested as a potential signaling molecule by activating B cells and plasma  cells11. 
We aimed to investigate metabolite and protein profiles to develop a comprehensive snapshot of host response 
and identify potential molecular biomarkers associated with COVID-19 disease severity.

We investigated the factors that influence COVID-19 disease severity by reanalyzing a previously published 
integrated study of metabolite and protein profiles, epidemiological data, and clinical  data12. The measurements 
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included a complete blood cell count panel, a comprehensive metabolic test panel, and quantification of 941 
metabolites and 894 proteins from serum samples. Metabolite profiling and protein profiling were performed 
using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and stable isotope-
labeled proteomics strategy TMTpro (16plex)13.

Results
Although the mode of transmission for SARS-CoV-2 infection is primarily through the respiratory tract, the 
effects of COVID-19 can often be observed throughout the  body14. This is especially the case for severe COVID-
19, which results in prolonged systemic inflammation that can damage multiple organ  systems15,16. The mecha-
nism behind these events can be investigated through the interrogation of soluble factors present within the 
circulation during infection. This includes proteins which are the downstream products of gene expression and 
metabolites which are products of biological reactions. Quantification and joint analysis of these molecules 
may identify the molecular determinants of the aberrant inflammation observed in COVID-19 cases leading to 
improved diagnostic and therapeutic methods (Fig. 1).

Study design: The original case control study performed by Shen, et al. (Supplementary Table 1) included 
clinical data (e.g., age, sex, BMI, and symptomes) from 28 Healthy controls, 25 non-COVID-19 participants 
presenting COVID-19 symptoms but negative for nucleic acid test, 37 non-Severe COVID-19, and 28 individu-
als with Severe COVID-19. From these groups, metabolite profiling was performed for 96 samples from the 
following number of individuals: healthy controls (n = 25), non-COVID-19 (n = 25), non-severe COVID-19 
(n = 25), and severe COVID-19 (n = 21). Protein profiling was performed for 92 samples from: healthy con-
trols (n = 21), non-COVID-19 (n = 24), non-severe COVID-19 (n = 24), and severe COVID-19 (n = 17). Begin-
ning with an assessment of the clinical data, we found that the health outcome is significantly associated with 
patient age (p-value = 0.001, Kruskal–Wallis test). Pairwise comparisons (Dunn’s test with Benjamini–Hochberg 
adjustment) revealed that the age distribution was significantly different between the severe and healthy groups 
(p-value = 0.008) (Fig. 2a), and the severe and non-severe groups (p-value = 0.002) (Fig. 2b); among infected 
people, severe COVID-19 is more likely in older individuals. No significant associations were present between 
health outcome and sex (p-value = 0.5308, Kruskal–Wallis test), and health outcome and BMI (p-value = 0.148, 
Kruskal–Wallis test) (Fig. 2c). The time between disease onset and sample collection for metabolites and proteins 
varies among groups (Fig. 2d) in the study and should be considered in subsequent analyses, especially as the 
sample collection for proteomics and metabolomics are not at the same time for individuals ((Fig. 2e). Overall 
protein (Fig. 2f) and metabolite (Fig. 2g) profiles can be explained by clinical information (using omeClust 

Figure 1.  Systemic drivers of COVID-19 associated inflammation. COVID-19 begins as a respiratory 
tract infection that targets the lung epithelium, but in many severe cases, as the disease progresses, clinical 
manifestations can span the entire body as a result of systemic inflammation. This includes multisystem 
abnormalities in biological processes and metabolic functions that may exacerbate the inflammatory response 
observed in severe cases. An integrated analysis of proteomics and metabolomics data collected from a cohort 
presenting a range of COVID-19-related health outcomes led to the identification of potential biomarkers 
within the lungs, liver, gastrointestinal tract, kidneys, and peripheral blood. This analysis provides a deeper 
resolution of the possible molecular determinants of COVID-19-associated inflammation that are worthy of 
further investigation. This figure was created with BioRender.com.
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enrichment  score4) and also by various health outcomes. However, sex seems to have the lowest effect on overall 
metabolites and protein profiles compared to other clinical variables (SFig. 1).

Investigation biomarkers of COVID‑19 severity and dysfunctions. We identified important pro-
teins (Fig. 3a) and metabolites (Fig. 4a) based on significant differences observed among the health outcome 
groups. We further tested if the associated molecules belong to enriched metabolic pathways. This analysis was 
conducted using a generalized linear model adjusted for age, sex, and BMI as confounding factors of health out-
come. We discuss potential biomarkers identified by our analysis that are biologically relevant during COVID-19 
infection. Based on existing literature, these molecules may contribute to the rampant inflammatory response 
and multiple tissue dysfunction spanning the lung, liver, kidneys, and gastrointestinal tract that have been 
observed in cases of COVID-19.

Imbalance of serum nucleic acids. Viruses have adapted over time to hijack cellular machinery and 
resources for their own replication. Consequently, homeostatic synthesis and recycling of nucleobases may be 
disrupted in favor of producing new copies of the viral genome. We found that cytosine levels are elevated in the 
COVID-19 groups as compared to the non-COVID-19 (Fig. 3b) and healthy (coefficient = 2.6, p-value = 9.7E-18) 
groups. This finding is consistent with a similar study analyzing metabolite profiles of COVID-19 patients, which 
found cytosine to be the distinguishing feature that determined infection  status17. It is hypothesized that changes 
in levels of cytosine are critically involved with RNA virus evolution, including SARS-CoV-218. Notably, the 
underrepresentation of cytosine within the SARS-CoV-2 genome suggests an alternative role for this metabolite 
beyond the synthesis of viral RNA. While it is unclear why cytosine levels are higher in COVID-19 patients, this 
finding points towards cytosine as an effective biomarker for COVID-19 infection.

Our results indicate that uridine levels are lower in the COVID-19 groups as compared to the healthy and 
non-COVID-19 groups. Uridine is a biologically dynamic metabolite that is critical to the synthesis of RNA and 

Figure 2.  Distribution of study participants by age and health outcome. (a) colors in all subplots reflect health 
status of groups as provided in the legend of subplot a. The sample population is not uniform for age ranges, 
with a higher proportion of older participants falling into the severe group. (b) age has a strong association 
with health outcomes (p-value = 0.001). (c) BMI is not associated with health outcomes (p-value = 0.1488). For 
assessing the association of age and gender with the health outcome status, we performed the Kruskal–Wallis 
test. (d) time between disease onset and sample collection for metabolites varies among health status. (e) 
metabolite and protein samples have been collected at different times within individuals and for groups with 
different health statuses. (f) ordination plot using proteins and (g) ordination plot using metabolite profiles 
reveal overall structure among individuals colored by health status. However, the signal is stronger using 
metabolite profiles measured by omeClust enrichment  score4 (metabolite enrichment score = 0.26 and protein 
enrichment score = 0.08) (SFig. 1).
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Figure 3.  metabolite changes in COVID-19. (a) 20 most significant metabolites with lowest q-value (FDR) in 
comparison of severe group vs. healthy group are shown. Then, the corresponding changes in non-severe and 
non-COVID-19 for the same metabolites are shown. (b,c,d,e) show different patterns we observed among these 
associations. For example, Cytosine has a higher level in COVID-19 groups vs. non-COVID-19 and has been 
shown that it can play a biomarker for COVID-19 diagnostics.

Figure 4.  protein changes in COVID-19. (a) 20 most significant metabolites with lowest q-value (FDR) in 
comparison of severe group vs. healthy group are shown. Then, we show the corresponding changes in non-
severe and non-COVID-19. (b,c,d,e) show different patterns we observed among these associations.
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 glycogen19. Circulating uridine levels are typically high in healthy individuals but tend to undergo short term 
fluctuations in response to diet. Changes in synthesis are tightly regulated by the liver along with the adipose 
 tissue20,21. Abnormal liver function appears to be a commonality between SARS-CoV22,23 and SARS-CoV-2 
 infection24–29. Therefore, liver impairment may mediate the lower uridine levels observed in COVID-19 patients. 
The functional consequences of this reduction are also unclear. In an animal model of pulmonary fibrosis, it was 
shown that uridine supplementation has anti-inflammatory and anti-fibrotic  effects30. While additional studies 
are needed, a similar therapeutic strategy may mitigate prolonged inflammation within the lungs that leads to 
eventual injury and disruption of the  epithelium31.

Multi‑organ dysfunction. Citrulline, an important amino acid metabolite in the urea  cycle32, is depleted in 
the severe (coefficient = -0.03974, p-value < 0.0001) and the non-severe COVID-19 groups (coefficient = -0.0219, 
p-value < 0.0001) compared to the healthy group (Fig. 3c). The depletion of citrulline in COVID-19 patients has 
been associated with gastrointestinal symptoms and systemic  inflammation33. Since citrulline is produced by 
enterocytes within the small intestine, low citrulline levels can be indicative of reduced enterocyte function and 
 mass34. Given that enterocytes express  ACE235, a host receptor that is recognized by the 2019  coronavirus36, it is 
possible that the presentation of gastrointestinal  symptoms37 and the lowered citrulline levels in the COVID-19 
patients is a result of enterocyte damage via viral infection.

Levels of branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are lower in the COVID-19 
groups (Fig. 3d) as compared to the healthy and non-COVID-19 groups (p-value = 8E-06 coefficient -0.4 for 
leucine in severe COVID-19 vs. healthy group). BCAAs play a critical role in protein  anabolism38, lowered 
BCAA levels are often observed in various conditions, including liver  cirrhosis39, urea cycle  disorders40, chronic 
renal  failure41,42, and impaired renal  function43. Thus, our finding is congruent with the impaired renal function 
observed in severe COVID-19  cases44.

Unlike citrulline and BCAAs, benzoate levels are elevated in the COVID-19 (coefficient = 4.5, p-value = 8.5E-
40) and non-COVID-19 (coefficient = 4.3, p-value = 4.6E-39) groups compared to the healthy group (Fig. 3e). 
Benzoate, in the form of sodium salt, is used as a preservative for foods and  drinks45 and a treatment in urea cycle 
 disorders46,47. The metabolism of this compound is directly regulated by the liver and  kidneys48–50. Benzoate has 
been found to have both proinflammatory and anti-inflammatory activities. In an in-vitro study with a colon 
cancer cell line, sodium benzoate was able to induce apoptosis and activate NF-kB51, a transcription factor criti-
cal for the expression of proinflammatory  genes52. Conversely, a review of animal models of multiple sclerosis 
highlighted the anti-inflammatory functions of sodium benzoate, which include promoting the differentiation of 
anti-inflammatory Th2 cells, increasing the number of regulatory T cells, and reducing the expression of certain 
proinflammatory molecules such as TNF-alpha and IL-1beta53. Therefore, it is not clear if the elevated levels 
of benzoate in the COVID-19 and non-COVID-19 groups are indicative of a shared biological phenomenon. 
The high benzoate levels could be reflective of the body’s proinflammatory response to infection. Alternatively, 
damage to the liver and kidneys due to COVID-19 infection could be disrupting benzoate metabolism, resulting 
in a backup of benzoate.

Hyaluronan-binding protein 2 or factor VII activating protease (FSAP, protein ID Q14520, Fig. 4b) is a bind-
ing protein in the human plasma that is expressed in the liver, kidney, and  pancreas54. It is known to activate 
coagulation factor-VII55 and urokinase single-chain plasminogen  activator54. We found higher FSAP levels in 
the COVID-19 groups compared to the non-COVID-19 groups and associations between FSAP and citrulline, 
and FSAP and uridine in block-wise association testing (SFig. 2). Several in vitro, as well as patient-based stud-
ies, have established a link between FSAP levels, inflammation, and disease. FSAP levels are upregulated in lung 
endothelial cells that have lipopolysaccharide-induced acute lung  injury56 and in the inflamed lungs of patients 
with acute respiratory distress  syndrome57,58. Increased FSAP levels in plasma are also associated with other 
pathologies such as symptomatic carotid  stenosis59, acute coronary  disease60, and ischemic  stroke61. In vitro stud-
ies have shown that FSAP can activate inflammation pathways in non-immune cell populations such as smooth 
muscle and endothelial  cells62 as well as NF-kB mediated proinflammatory cytokine production in myeloid  cells63. 
Elevated FSAP levels in the COVID-19 groups could be indicative of systemic inflammation that increases the 
risk of lung injury and cardiovascular issues.

Prenylcysteine oxidase 1 (PCYOX1 protein, protein ID Q9UHG3, Fig. 4c) is responsible for breakdown of 
prenylcysteines to cysteines and a C-1  aldehyde64,65. It is expressed ubiquitously, but the only expression in the 
liver leads to its incorporation into  lipoproteins66; as such, it is associated with very low-density  lipoproteins67 
explaining its presence within the plasma. PCYOX1 levels are depleted in the COVID-19 groups compared to 
the healthy and non-COVID-19 groups, and the protein is associated with sphingosine-1-phosphate in block-
wise association testing. Lower levels of PCYOX1 protein have been observed in mice lacking the interstitial 
cells of Cajal (ICC) in the gastrointestinal  tract68 and in mice models of liver injury and  dysfunction66,69–71. The 
lower levels of PCYOX1 protein seen in the COVID-19 groups may contribute to the liver dysfunction associ-
ated with COVID-1972.

Complement activation. The complement system involves a protein cascade that is typically classified as 
either the classical lectin or alternative  pathways73–75. This system plays a major role in B lymphocyte regulation, 
inflammation, and host  protection76, and consequently has been associated with proinflammatory actions and 
 diseases77. We found levels of the complement component 2 (C2, protein ID P06681, Fig. 4d) and complement 
component 9 (C9, Protein ID P02748, Fig. 4e) proteins were elevated in the severe and non-severe COVID-19 
groups as compared to the healthy group. Briefly, C2 is a protein that forms a short lived complex with C4b to 
cleave the C3 protein into C3a and  C3b78, and C9 is involved in the formation of a pore-like membrane attack 
complex associated with bacterial cell  lysis79. In addition to the individual components of the complement sys-
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tem, pathway enrichment analysis revealed that the pathway representing complement cascade regulation was 
significantly enriched between the healthy and other three groups, with the greatest difference found between 
the severe COVID-19 and healthy groups (Fig. 5a).

Our findings are in agreement with other studies that have suggested the complement system plays a criti-
cal role in COVID-19  pathogenesis74. For instance, COVID-19 spike proteins have been shown to activate the 
complement system via the alternative  pathway80, and evidence of complement system activation correlating 
with respiratory problems in hospitalized COVID-19  patients81. It has also been suggested that unregulated 
activation of the complement system due to viral presence in the lungs can contribute to organ failure and 
 death73. Given that C2 is expressed at higher levels in the liver and lungs, and C9 expression is restricted to the 
 liver82, our finding of elevated levels of C2 and C9 proteins in the COVID-19 groups could be indicative of the 
unregulated activation of the complement system in these organs. Currently, it is believed that the complement 
system has a contradictory role in COVID-19 infection where it is beneficial in mild or asymptomatic cases and 
harmful in severe  cases75,83.

In contrast to the complement component proteins, histidine-rich glycoprotein (HRG, protein ID P04196) 
levels are heavily depleted in the severe COVID-19 group as compared to the other groups. HRG is a plasma pro-
tein that is involved in many biological processes, including immune system regulation, cell adhesion, angiogen-
esis, and  coagulation84. HRG inhibits the formation of insoluble immune  complexes85, which are involved in the 
host’s immune response against foreign  substances86; when the immune system does not clear these complexes, 
they can deposit in tissues and activate the complement system  inflammation86. HRG can also enhance comple-
ment activation on necrotic  tissues87 and is directly involved in clearing of  apoptotic88 and necrotic  cells89–91. 
Low HRG levels have been observed in patients with advanced lung  cancer92 and advanced liver  cirrhosis93. 
Therefore, our findings of depleted HRG levels could be indicative of organ damage in the severe COVID-19 
patients, similar to what has been observed in other pathologies.

Inflammation. 15-HETE is a metabolite produced when arachidonic acid is oxygenated by arachidonate 
15-lipoxygenase94. It is associated with inflammation and can display either pro-inflammatory or anti-inflamma-
tory  effects95. However, the anti-inflammatory effects of 15-HETE are more well-studied and include inhibition 
of leukotriene B4 action on polymorphonuclear neutrophils (PMN)96 and the migration of PMN in response 
to  cytokines97. We found severe depletion of 15-HETE levels in the COVID-19 groups compared to the non-
COVID-19 and healthy groups. The depletion of 15-HETE and subsequent loss of anti-inflammatory signals 
could contribute to the heightened inflammation seen during COVID-19  infection98. Interestingly, 15-HETE 
also plays a role in promoting pulmonary vascular remodeling during hypoxia by exerting pro-angiogenic 
 effects99,100. A reduction in serum 15-HETE levels would suggest that this metabolite does not directly contribute 
to the cardiovascular dysfunction observed in severe COVID-19 cases.

To date, severe COVID-19 has been associated with an increase in the immediate and long-term risk of 
thrombosis and coagulation  abnormalities101,102. This has primarily been attributed to prolonged overactivation of 
platelets and high levels of neutrophil degranulation, both of which represent significantly enriched pathways in 
our analysis of this group. Increases in platelet mediated prothrombosis are typical in response to many invading 
pathogens. However, SARS-CoV-2 infection in particular triggers significant changes in platelet gene expression 
and aggregation. Furthermore, excessive platelet activation from COVID-19 leads to alterations in innate immune 
responses that contribute to thrombotic events. This includes the accumulation of platelet-monocyte complexes, 

Figure 5.  Enrichment pathway between severe group and healthy group. Pathway enrichment analysis was 
performed for metabolite profiles and protein profiles separately. Each metabolite (protein) assigned a rank 
based on coefficient from testing severe group vs. healthy group using generalized linear models. We applied our 
omePath tool with a Wilcoxon signed rank test and HMDB  database120 as the reference for metabolite pathways 
and the Reactome pathway  database121 with Physical Entity (PE) class for Uniprot to all levels of the pathway 
hierarchy mapping file. (a) Regulation of Complement cascade pathway using protein data was significantly 
enriched in the COVID-19 positive patients, with non-severe health outcome compared to the healthy group. 
(b) Purine Metabolism pathway using metabolite data was significantly enriched in COVID-19 positive patients 
with the severe health outcome compared to the healthy group. (c) Keratinization pathway using protein data 
was significantly enriched in COVID-19 positive patients with the non-sever health outcome compared to the 
healthy group.
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which directly express high tissue factor levels, which directly increases the risk of  clotting103. High plasma levels 
of platelet factors also contribute to dysregulated neutrophil responses, such as the excessive formation of neu-
trophil extracellular traps and  degranulation104,105. In addition to their direct detrimental role to cardiovascular 
health, these factors may also exacerbate systemic inflammation leading to damage within the tissues.

Pathway level analysis may also be beneficial for identifying overarching mechanisms that have a role in 
regulating rampant inflammation. Collectively, the purine metabolism pathway is significantly enriched within 
the COVID-19 groups compared to the healthy control (Fig. 5b). Cell-free purine derivatives such as ATP and 
adenosine are associated with cellular stress and exert potent immunomodulatory effects. Release of ATP into 
the extracellular space and subsequent binding to purinergic receptors P2X and P2Y lead to the induction of 
inflammation including the activation and chemotaxis of phagocytes and memory T  cells106. Sustained levels 
of extracellular ATP trigger the expression of ectoenzymes on the surface of immune cells that convert ATP to 
adenosine. Binding of adenosine to cognate purinergic receptors tempers inflammation by reducing neutrophil 
chemotaxis and platelet aggregation in addition to promoting wound healing via the release of vascular endothe-
lial growth factor (VEGF) by macrophages and dendritic  cells107. Under hypoxic conditions, hypoxia inducible 
factors HIF-α and HIF-β can alter adenosine metabolism in order to protect tissue from further damage brought 
about by prolonged  inflammation108. Acute lung injury that occurs during severe cases of COVID-19 may trigger 
such pathways leading to the observed enrichment in purine metabolism.

Fibrosis/keratinization. Lumican (protein ID P51884) regulates fibril assembly and stromal col-
lagen matrix  assembly109. In mice models, it has been found that lumican is critical for host immune innate 
 response110,111, and its deficiency has been associated with cardiomyocyte  hypertrophy112. In a study of Nepalese 
children, lumican levels were negatively associated with levels of α-1-acid  glycoprotein113, an acute phase protein 
that increases during inflammation, infection, or injury to  tissues114. We found that lumican levels were depleted 
in the COVID-19 groups compared to the non-COVID-19 and healthy groups and is also associated with some 
glycerophospholipids in block-wise association testing. Thus, lower lumican levels may act as an additional bio-
marker of rampant inflammation in the COVID-19 groups. Alternatively, lower lumican may lead to disruption 
of the collagen and fibril assembly pathways as a consequence of infection.

Analyses of lung tissue from mechanically ventilated or recently deceased patients with severe COVID-
19 revealed high levels of inflammatory infiltrate and fibrotic markers indicative of extensive epithelial and 
alveolar  damage115,116. Identification of additional biomarkers could facilitate diagnosing the severity of lung 
injury prior to the induction of respiratory failure. Our analysis identified significant alterations in processes 
that maintain cell or tissue structure, including enrichment of proteins involved in the keratinization pathway 
(Fig. 5c). Keratins play a vital role in both maintaining the structural integrity of the epithelium and promoting 
intracellular signaling to mediate wound healing. Cytoskeletal remodeling by keratin intermediate filaments can 
occur under excessive shear stress or in response to  hypoxia117–119. The significance of keratinization within the 
context of COVID-19 has yet to be investigated but may provide insights into the extent of lung damage that 
occurs in severe cases.

Correlations between clinical data, omics data, and health outcome. We next examined asso-
ciations between clinical biomarkers from panel tests and metabolites and proteins from the omics data in the 
context of COVID-19 severity.

Glucose: Severe COVID-19 patients had significantly higher levels of glucose compared to non-COVID-19 
patients (coefficient = 0.497, p-value = –1.2E-05) matching previous  studies122–125. While the direct impact of 
COVID-19 infection on glucose levels remains to be elucidated, inflammation may be responsible for the dif-
ferences in glucose levels observed between the groups. Okin and Medzhitov found that sustained inflammation 
can lead to elevated glucose levels in the  plasma126. Alternatively, IFN-gamma production in response to viral 
infection has been shown to induce insulin  resistance127 and subsequent higher glucose levels.

In addition to its association with COVID-19 severity, we also found some correlations between glucose and 
metabolites such as citrulline and uridine. Both of these metabolites were severely depleted in the COVID-19 
groups compared to the non-COVID-19 group. While it is unclear if there is a biological connection to these 
relationships, the metabolism of glucose has been linked with the metabolism of uridine and citrulline. Specifi-
cally, uridine has been shown to induce glucose uptake by skeletal  muscles128 and increased levels of citrulline 
in the plasma is associated with a reduction in glucose  production129. Regardless of the biological significance, 
the correlation of uridine and citrulline with glucose points towards these metabolites being modest candidates 
for COVID-19 severity biomarkers.

C-Reactive Protein (CRP): We found CRP levels to be lower in the non-severe COVID-19 group compared 
to the non-COVID-19 group (coefficient = -−.15 p-value = 0.0001), whereas an opposite trend appears when 
compared to the severe COVID-19 group. This reinforces what has been established in previous  studies124,130–133. 
CRP plays a critical role in inflammation and response to infection via the complement pathway and cytokine 
 production134–136. Thus, our finding of increased CRP levels in the severe group is in agreement with previous stud-
ies that suggest elevated inflammatory markers including procalcitonin, D-dimer, and lactate  dehydrogenase137 
are associated with COVID-19 disease severity.

Similar to glucose, CRP has some metabolic and protein correlates which may be able to serve as novel 
biomarkers for COVID-19 severity. Specifically, CRP is positively correlated with kynurenine and lipopolysac-
charide-binding protein (LBP) (SFig. 3). Kynurenine as a positive correlate of CRP is expected due to its involve-
ment in inflammation and immune activation in various disease  contexts138,139. Additionally, within COVID-19, 
kynurenine has been found to be positively correlated with proinflammatory  cytokines140,141, and activation of 
the kynurenine pathway has been observed in COVID-19  patients142.
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The correlation between CRP and LBP is likely a product of these molecules’ role in inflammation. LBP has 
been shown to be increased in patients with inflammatory conditions like systemic inflammatory response 
 syndrome143. Additionally, previous studies have shown that LBP is associated with inflammation markers, 
including CRP, in patients who have undergone  hemodialysis144 and in patients with conditions such as acute 
respiratory distress syndrome and inflammatory bowel  disease145,146.

Monocyte: We found monocyte levels to be significantly decreased in the severe COVID-19 group (coef-
ficient = -0.25 p-value = 0.04). Based on a meta-analysis of COVID-19 studies involving severe and non-severe 
patients, lower monocyte counts have been observed as part of a larger trend of immune  dysregulation147.

Salicylate: When investigating associations across all groups, we observed a positive relationship between 
Monocyte counts and Salicylate (coefficient = 1.64 p-value = 0.0001). Salicylate is commonly found in non-ste-
roidal anti-inflammatory drugs, including aspirin. Sodium salicylate has been shown to have potent effects on 
limiting monocyte migration, expression of inflammatory cytokines, and preventing  proliferation148–150. Whether 
or not there is a prophylactic benefit to administering aspirin to limit COVID-19 infection is currently the 
subject of  debate151–153. A positive association between salicylate and monocyte counts seems to indicate that 
other factors, either directly related to infection or other forms of treatment, are responsible for the decrease in 
monocytes observed in patients with severe COVID-19.

Sphingomyelin: An additional positive correlation was found between monocyte counts and sphingomyelin 
(coefficient = 0.91 p-value = 0.002). Sphingolipids are a class of membrane-associated molecules that play an 
important role in cell-to-cell interactions and intracellular signaling within the immune  system154. Sphingo-
myelin is cleaved by sphingomyelinases to produce ceramide which induces a signaling cascade that can lead 
to the differentiation, proliferation, apoptosis, or cytokine secretion by select immune cell populations. It was 
recently shown that neutral sphingomyelinase 2 can cause monocyte migration and secretion of inflammatory 
cytokines in response to soluble TNF-α 155. Elevated TNF-α has been associated with both obesity and severe 
cases of COVID-19156. Most of the COVID-19 biomarkers and their related pathways reported in our study are 
novel, and some have already been discussed  previously157 (Supplementary Table 2).

Group‑level correlations between proteins and metabolites. Block-wise association testing was 
performed to find associations among clusters of metabolites and proteins (Methods). Block 20 in particular 
shows that 5-methyluridine, citrulline, choline, and uridine are jointly associated with the C4b-binding protein 
chains (alpha and beta) and Vitamin-K dependent protein S. Inflammation may explain the observed associa-
tion between the proteins and most of the metabolites in block 20. The C4b-binding protein is involved with 
the inhibition of the classical and lectin complement system  pathways158,159. The Vitamin-K dependent protein S 
complexes with the C4b-binding protein and can modulate the complement regulation activities of C4b-binding 
 protein160. Collectively, both of these proteins co-occur due to their involvement in inflammation via comple-
ment system  regulation77. Similarly, there are links between inflammation and three of the four metabolites in 
the block. Low plasma citrulline levels are known to be associated with systemic  inflammation33, and uridine 
is linked with anti-inflammatory effects in an animal  model30. Furthermore, choline is known to be inversely 
associated with inflammatory marker  levels161.

Deep learning techniques accurately predict disease severity. We used four machine learning 
(ML) approaches for disease severity prediction, including deep neural networks (DNN), k-nearest neighbors 
(KNN), Random Forest (RF), and Logistic Regression (LR) (SFig. 4). We have compared the performance of 
all the models using precision, recall, F-1, and accuracy metrics (Fig. 6). Accuracy highlights the proportion of 

Figure 6.  Precision, Recall, and F-1 Score for various ML techniques used for the various groups. The precision 
of DNN outperforms other methods since it can detect severe-COVID-19 better than the rest of the methods. 
We also see the same trend in recall since it correctly detects the severe-COVID-19 and COVID-19 with a 
higher degree of certainty. A model with a low false positive case is better when used for prediction.
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true positive in the sum of true positive and false positive. The precision, recall, and f-1 score deals with the false 
negative, which portrays the versatility and robustness of the model.

DNN outperformed all other methods with an accuracy score of 81.78% when trained using the metabolomics 
data and clinical data (e.g., age and gender). The other ML processes that were used had accuracy in the range of 
60–70%. A higher F-1 score suggests better efficiency of models, which in turn means that the number of false 
positives is less, thus better prediction.

Discussion
Integrative analysis of multi-omics enables a more accurate and comprehensive understanding of biological 
activities at the molecular level. Utilizing omics data can provide finer resolution for identifying the specific 
molecules or processes that distinguish severe cases of COVID-19. This analysis holds the potential to not 
only improve our understanding of COVID-19 pathogenesis, but may also lead to improved diagnostic and 
therapeutic avenues. In this study, we used protein and metabolite profiles from a cohort of donors with vary-
ing COVID-19 and health statuses to measure the changes across groups after appropriate adjustment for data 
properties such as zero inflation and confounding factors. We followed up with pathway enrichment analysis 
to provide context at a functional level and then investigated associations between significantly different omics 
features (i.e., protein and metabolite) and clinical information (metabolic panel and complete blood count). 
Lastly, we utilized our findings to investigate the predictive potential of several machine learning algorithms 
benchmarked against conventional logistic regression to determine which model is best suited for diagnosing 
the status of COVID-19 infections.

Phenotype association testing revealed significantly altered proteins and metabolites based on health status 
(Supplementary Table 3). We found extensive evidence for systemic dysregulation of metabolic processes that may 
contribute to the varied clinical manifestations observed in severe cases of COVID-19 (Supplementary Table 4). 
This was reflected in aberrant levels of basic organic molecules that influence viral replication and immune 
responses, such as cytosine and BCAAs (Fig. 3d). Additionally, although COVID-19 begins as a respiratory tract 
infection, multiple organs including the gastrointestinal tract, liver, and kidneys can be heavily impacted during 
infection. Determining if additional organ damage is a product of direct infection, overactive inflammation, or 
a side effect of treatment remains the subject of investigation. For example, we found lower levels of citrulline in 
severe cases of COVID-19 (Fig. 3d), indicative of gastrointestinal dysfunction. Whether or not the significant 
reduction in citrulline is caused by a loss in intestinal enterocytes from direct infection or an alternative mecha-
nism highlights the merit of pursuing these questions. Similarly, over half of the ten proteins and metabolites 
outlined in our results are directly implicated in severe liver impairment (Fig. 2). Several of these markers were 
also identified in the original analysis conducted by Shen et al., which revealed alterations in liver-derived acute 
phase proteins (CRP) and components of the complement cascade. Similarly, both studies found a reduction in 
key biological processes such as amino acid metabolism (BCAAs) and metabolic intermediates of the urea cycle 
(citrulline). These similarities underscore the potential damage or dysfunction of the liver during severe COVID-
19 cases. While this may potentially be explained by the aggressive use of antiviral and anti-inflammatory drugs 
that possess hepatic toxicity, the influence of pre-existing medical conditions and behavioral changes associated 
with the pandemic cannot be  discounted162.

Despite the development of prophylactic vaccines, the threat of emerging variants necessitates the exploration 
of additional measures that can limit disease severity. The identification of biomarkers associated with disease 
severity may be directly translated into repurposing FDA-approved drugs for the treatment of COVID-19. 
Our analysis revealed a positive correlation between severe COVID-19 and serum levels of glucose (SFig. 3). 
Therefore, use of glucose-lowering agents such as metformin or glucagon-like peptide-1 receptor agonists may 
represent an alternative treatment option in addition to the use of antiviral  compounds163,164. Several observa-
tional studies have found positive associations between metformin use and improved mortality rates. Although 
it has also been demonstrated that metformin can directly inhibit replication of several viruses and therefore 
additional studies are required to determine the mechanism of action within the context of COVID-19165,166.

Pathway enrichment analysis identified pro-inflammatory elements within the circulation as potential etio-
logical agents for multi-organ damage (Fig. 5). Overactivation of platelets and neutrophils contributes not only to 
thrombotic events but may also give rise to tissue damage in a low oxygen environment. Similarly, persistent acti-
vation of the complement system by components of SARS-CoV-2 or other factors may further increase damage 
to vital organs. By employing novel computational tools that handle complex multi-omics data, we were able to 
highlight metabolites, proteins, and pathways that distinguish COVID-19 based on infection status and severity. 
Our analyses identified new potential biomarkers or therapeutic targets worthy of further investigation. Inclusion 
of additional paired omics data, including metagenomics, single-cell RNA sequencing, transcriptomics, and viral 
genomics, can provide a better picture of disease pathogenesis and host response to infection and co-infections. 
Moving forward, a well-designed longitudinal measurement of omics can provide a deeper understanding of 
both the short and long term effects of infectious diseases, including COVID-19.

Materials and methods
Study design and data. All methods were performed in accordance with the relevant guidelines and 
regulations as described by the authors of the original  study12. The metabolomic data were from 28 patient 
cases with severe COVID-19 who were matched to controls based on certain epidemiological features. The 
matched controls included 28 healthy persons, 25 patients without COVID-19 exhibiting clinically similar signs 
as COVID-19 patients, and 25 patients with non-severe COVID-19 (Fig.  2a). Proteomic data were available 
from 17 participants with severe COVID-19, 21 healthy controls, 24 individuals with non-COVID-19, and 24 
donors with non-severe COVID-19. Serum samples were obtained a few days after admittance into the hospital. 
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For a small number of cases, serum samples were collected at a later stage of the disease. Twelve clinical meas-
urements were obtained for the COVID-19 and the non-COVID-19 groups but not for the healthy groups; the 
measurements included a complete blood cell count panel as well as a comprehensive metabolic panel of tests. 
941 metabolites and 894 proteins were quantified from the 83 serum samples. Metabolite- and protein- profiling 
were performed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) 
and stable isotope-labeled proteomics strategy TMTpro (16plex)13.

Data preparation. The study’s aim was to predict health outcome status and discover important features 
using proteomics and metabolomics data and clinical information. Metabolomic and proteomic data from the 
original study were downloaded from ProteomeXchange Consortium (https:// iprox. org/) by searching for the 
Project IDs: IPX0002106000 and IPX0002171000. Before feeding the publicly available  dataset12 into machine 
learning algorithms, various data cleaning steps were taken. The steps included removing any columns of the 
942 metabolites and 640 proteins with missing values across samples and imputing missing BMIs for healthy 
individuals based on the optimal BMI of Chinese  people167. We removed other clinical information like platelet 
counts, etc., since they were only present for the unhealthy patients and not for the healthy subjects. Removing 
missing values resulted in a dataset that included 404 metabolites and 374 proteins. We also normalized the data-
set based on the min–max function available in the sklearn  package168. The cleaned and normalized dataset was 
split into training (80% of data) and testing (20% of data) subsets to train and test various prediction algorithms, 
including Logistic Regression, Random Forest, K-Nearest Neighbor, Decision Tree, and Deep Neural Network.

Omics community detection and prioritizing metadata. We applied omeClust4 to detect underlying 
clusters from metabolites profiles and protein profiles independently. omeClust, in addition to detecting clusters 
(communities), also provides an enrichment score for each metadata to measure the potential influence of each 
metadata on detected structure (clusters). omeClust first discretizes metadata; and then calculates enrichment 
score as normalized mutual information between cluster labels and discretized metadata.

Multivariate association testing. We used multivariate association testing with considering noisy, sparse 
(zero-inflated), high-dimensional, and extremely non-normal data.

Pathway enrichment analysis. Enrichment analyses were performed using the omePath  package6. ome-
Path assigns an importance score (i.e., coefficient score from the CPLM model) to each omics feature (e.g., 
proteins, metabolites) and performs statistical tests (Wilcoxon sum rank) between rank of feature score in a 
given pathway against all ranks to calculate a p-value for the null hypothesis. There is no difference between 
the distribution of score of features with the pathways of interest vs. all other features in the study. We used an 
alpha level of 0.05 for significance. omePath is an open-source software implemented as an R package with code, 
tutorials, and documentation at https:// github. com/ omics Eye/ omePa th. The result for each association contains 
the identified pathway, members of the pathways, number of observed members in the study (n), and the total 
number of pathway members in the database (HMDB database for metabolite  pathways120 and Reactome path-
ways  database121 for proteins), used for the analysis, p-value, q-value from Benjamini–Hochberg FDR correction 
(q = 0.25).

Machine learning algorithms. Machine learning (ML) algorithms like neural networks are often con-
sidered to be a black box because of their inability to provide a simple and straightforward explanation of their 
predictions. Nevertheless, this prediction model generally exceeds simple linear models or decision trees and 
random forest predictions. Yet, such simple models are still preferred in the field of medical science due to 
their simplicity and  interpretability169–171. Many studies have been targeted to build and execute model-agnostic 
interpretability  tools172–174. We use the term feature importance to explain how important a feature is to the 
model’s predictive performance. The most well-known approach is using permutation importance which was 
introduced by  Breiman175. Using permutation importance, we have quantified the importance score of features 
for predicting health outcomes. The features consist of metabolomics, proteomics, and clinical info for all the 
patients considered in the study. The samples were labeled into four labels based on the health status; Healthy, 
non-COVID-19, COVID-19, and severe-COVID-19. We predicted the health status of a patient based on the 
various proteomics and metabolomics data and found the importance of each feature inside the prediction 
model such as beta-alanine and 15-HETE metabolites which both were ranked as top influential features in RF 
and DNN models (SFig. 5).

Data from a real-world scenario are never flawless. The medical records and the clinical information for the 
patients affected by COVID-19 are no exception. The data in this study contained many values which were lost 
due to machine or human error. The data thus was cleaned of all the unknown values and also the null values 
by dropping the instance with the missing feature value. Serum panel data tends to have a significant difference 
between the maximum and minimum value, to rectify this issue, we used normalization. Normalization is a 
scaling-down transformation in data where the difference between min and max values is significantly big. The 
data were normalized using a min–max scaler function which is present in the sklearn package.

Decision tree. Decision Tree follows a flow-chart-like structure where the nodes are the features, the 
branches are the decision rules, and the leaves are the outcomes. Decision Tree is a supervised learning method 
that utilizes a divide and conquer approach; it selects the best attribute using Information Gain and then divides 

https://iprox.org/
https://github.com/omicsEye/omePath
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the dataset into a subset. This division is performed repeatedly until the method reaches a child node which 
satisfies the condition of no remaining attributes or no more remaining instances.

KNN‑ K nearest neighbor. K-Nearest Neighbor (KNN) is a supervised machine learning technique that 
is dependent on the training dataset. The K, in KNN, stands for a user-defined number. This algorithm assumes 
that data points with similar features reside in close proximity to each other. Proximity is generally calculated in 
the form of euclidean distances among points. In a classification problem such as ours, the distances between the 
test data points and the training data points are calculated, sorted, and stored in a  table176. Then, the mode of the 
labels of K- nearest neighbors using the sorted table is given as an output.

Random forest. Random Forest is a supervised algorithm that randomly selects a subset of the training 
dataset and creates a decision tree on the subset; it then carries out a vote to predict the class of the test data 
points.

Logistic regression. A predominant part of published propensity results uses Logistic Regression (LR). 
Logistic regression is a very sought after technique because of its mathematical ability to produce probability in 
the range [0,1]177. Logistic regression uses a functional approach to estimate the probability of binary response 
based on input features. LR finds the best-fit parameters to a nonlinear function called  sigmoid178. Logistic 
regression models probability for a binary class, however, our health outcome variable has more than two classes. 
To address the binary class limitation of logistic regression, we used a ‘newton-cg’ solver. In our study, we use 
logistic regression as a baseline for the other methods.

Deep neural network. Deep neural network (DNN) is a type of machine learning architecture that mimics 
the working of the neurons located in the brain, and how they transfer information to learn new problems for 
the purpose of solving  them179. The inputs of DNN are fed in the input layers, which are passed through one or 
more hidden layers, which consist of neurons, where they are analyzed and processed to determine the output 
of the next layer. DNN uses a learning rule which correctly decides the weight and the bias of each neuron in 
the hidden layer and output layer. The power of DNN to determine and adapt the weight and bias dynamically 
makes it a powerful tool to capture the various complex and non-linear relationships among the various features, 
which in turn facilitates classification and prediction of correct labels, thus increasing the accuracy and efficiency 
of the  model180,181.

We have incorporated the full extent of the data since some were discarded due to missing values. Including 
a more extensive set of data and features in deep learning, the model brings out a more comprehensive hidden 
complex relationships among all the proteins and metabolites. This enables a more accurate prediction and pri-
oritization of metabolites and proteins for further studies to show how they affect a patient’s health status. The 
importance scores for metabolites and proteins generated by the model are based on their degree of influence 
on the result.

The only ML model which was used in the above said paper was Random Forest (RF). Still, in our evaluation, 
we used decision tree (DT), k- nearest neighbors (KNN), random forest (RF), logistic regression (LR), and deep 
neural network (DNN). We have made a thorough comparison of all the methods using various metrics like 
accuracy, precision, recall, and F-1 score to evaluate the performance of each model. The accuracy of DNN comes 
higher than all other methods that were considered. We then used the DNN model for importance evaluation 
that leads to the discovery of numerous metabolites and proteins which when done, a thorough study shows a 
relationship with covid and health status.

The different evaluation metrics used in machine learning section are as follows:
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