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Improved SSD network for fast 
concealed object detection 
and recognition in passive 
terahertz security images
Lu Cheng1,2,3, Yicai Ji1,2,3*, Chao Li1,2,3, Xiaojun Liu1,2 & Guangyou Fang1,2,3

With the strengthening of global anti-terrorist measures, it is increasingly important to conduct 
security checks in public places to detect concealed objects carried by the human body. Research 
in recent years has shown that deep learning is helpful for detecting concealed objects in passive 
terahertz images. However, previous studies have failed to achieve superior accuracy and performance 
for real-time labeling. Our research aims to propose a novel method for accurate and real-time 
detection of concealed objects in terahertz images. To reach this goal we trained and tested a 
promising detector based on deep residual networks using human image data collected by passive 
terahertz devices. Specifically, we replaced the backbone network of the SSD (Single Shot MultiBox 
Detector) algorithm with a more representative residual network to reduce the difficulty of network 
training. Aiming at the problems of repeated detection and missed detection of small targets, a 
feature fusion-based terahertz image target detection algorithm was proposed. Furthermore, 
we introduced a hybrid attention mechanism in SSD to improve the algorithm’s ability to acquire 
object details and location information. Finally, the Focal Loss function was introduced to improve 
the robustness of the model. Experimental results show that the accuracy of the SSD algorithm is 
improved from 95.04 to 99.92%. Compared with other current mainstream models, such as Faster 
RCNN, YOLO, and RetinaNet, the proposed method can maintain high detection accuracy at a faster 
speed. This proposed method based on SSD achieves a mean average precision of 99.92%, an F1 
score of 0.98, and a prediction speed of 17 FPS on the validation subset. This proposed method based 
on SSD-ResNet-50 can provide a technical reference for the application and development of deep 
learning technology in terahertz smart security systems. In the future, it can be widely used in some 
public scenarios with real-time security inspection requirements.

In recent years, the global counter-terrorism situation has become increasingly severe. Security inspections in 
public places have gradually attracted widespread attention from various countries. In crowded public places, 
in addition to the security checks on the packages people carry, it is also important to conduct security checks 
on the human body to detect dangerous hidden objects. However, the existing security inspection systems have 
some deficiencies more or less. In this case, the terahertz security inspection system using electromagnetic waves 
as the detection method is playing an increasingly important role.

Terahertz waves refer to electromagnetic waves with frequencies between 0.1 and 10 THz, which have similar 
characteristics to microwaves and infrared1. Terahertz imaging can detect not only metallic objects, but also 
non-metallic contraband such as explosives, ceramic knives, drugs, and glass knives2,3. Terahertz waves can 
penetrate insulating materials such as clothing, plastics, and ceramics4–6, so they can be used to detect objects 
hidden under human clothing. Compared with microwaves, the terahertz waves have shorter wavelengths and 
higher imaging accuracy. Terahertz waves have much longer wavelengths compared to X-rays and visible light. 
Therefore, the resolution and signal-to-noise ratio of human security imaging based on terahertz systems are 
quite different from X-ray imaging and visible light imaging. Such characteristics make it difficult for terahertz 
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imaging to automatically detect hazardous objects using existing object detection algorithms. Terahertz imaging 
systems are divided into active and passive working modes. In the application of detecting concealed objects in 
the human body, passive terahertz imaging systems occupy a major position7,8. Passive terahertz imaging systems 
do not emit electromagnetic waves and will not cause harm to the human body. The current speed of passive 
terahertz imaging is as high as 10 frames per second, which puts forward higher requirements for the speed and 
accuracy of detection. At present, most of the images acquired by the terahertz systems are checked manually one 
by one, which not only consumes a lot of manpower, but also may lead to missed inspections when people mark 
images for a long time. As a result, the advancement of automatic identification technology for passive terahertz 
images is critical for the widespread adoption of intelligent security inspection scenarios.

It is well known that the security screening of terahertz imaging systems is designed to detect and identify 
the threat of dangerous goods carried by the human body. More and more terahertz passive imaging systems 
have been studied in recent years, but theories and methods for identifying or locating dangerous objects from 
terahertz images are still in their infancy. Compared with optical and active terahertz imaging, passive terahertz 
images have a low signal-to-noise ratio and are easily affected by background variations. These characteristics 
make the use of passive terahertz imaging systems for security inspections a huge challenge. Traditional object 
detection algorithms of passive terahertz images mainly include segmentation-based detection algorithms and 
feature matching-based detection algorithms. The segmentation-based detection algorithm uses the grayscale 
information in the passive terahertz image to divide the image into two regions, the target and the background, 
and then detects the target. At present, the commonly used segmentation algorithms include maximum entropy 
segmentation method9, Otsu method10, region growing method, etc. The target segmentation-based algorithm is 
fast and easy to implement, but it can’t detect complex targets. The feature matching-based detection algorithms 
construct a target feature descriptor to match known prior feature information. Common features include Haar 
features11, gradient histograms12 (HOG), dense SIFT features13, etc. Feature-based detection methods rely on 
manual feature extraction. However, since artificially constructed features are usually limited to specific object 
types, satisfactory object detection results cannot be achieved. In recent years, with the development of deep 
learning, the application of deep convolutional neural networks in optical image target detection has achieved 
good results, and its detection accuracy is far superior to traditional methods14,15. Low-resolution passive tera-
hertz images contain very little information, making it very difficult to extract features from images manually. 
The CNN network can automatically extract features from passive terahertz images. Although large-scale CNN 
networks have good detection and classification effects, they cannot meet real-time performance due to large 
parameters and complex structures. Extensive research shows that there is still space for improvement in the 
accuracy and speed of current CNN-based terahertz image target detection algorithms16–18. Hence, there is an 
urgent need to propose a method with sufficient accuracy and robustness for object recognition in passive tera-
hertz images. Nevertheless, to the best of the author’s knowledge, there are only a handful of studies in the area.

There are two main problems in the direct use of deep learning algorithms in the field of passive terahertz 
image object recognition, one is that the accuracy of object detection is not high, and the other is that the speed of 
object detection is not fast enough. In response to these two issues, we chose the single-stage detection algorithm 
SSD, which has relatively high accuracy and speed in the natural light object detection algorithm, as the basic 
model. This is the first application of the SSD algorithm in the field of passive terahertz image object detection. 
We investigate the potential of the residual network ResNet-50 in terms of accuracy and real-time performance 
in detecting concealed objects in passive terahertz images. The method described in this paper aims at select-
ing the most efficient CNN architecture and further exploring the ways of its modification and optimization to 
ensure superior real-time classification potential for detecting concealed objects. The significance and originality 
of this research lie in the first exploration of the application of the SSD model in the field of passive terahertz 
image detection and several important improvements are proposed for image characteristics. The ultimate goal 
of this research is to develop a fast and accurate detection algorithm for passive terahertz images and promote 
its practical application in intelligent security inspection scenarios. We propose the following improvements 
to further improve the accuracy and speed of the algorithm in detecting concealed objects. To summarize, our 
main contributions are as follows:

•	 Aiming at the network degradation problem of the VGGNet network19 in the SSD algorithm, the improved 
algorithm uses the ResNet-50 network20 as the feature extraction network.

•	 For the problem of poor detection performance of small objects, we extract multi-level features to form a 
feature pyramid network21, which is used to detect objects of different scales. Through upsampling, deep 
features and shallow features are fused to construct feature representations with rich semantic information, 
making the fused features more descriptive.

•	 The proposed algorithm introduces the spatial-channel attention mechanism into the SSD network to enhance 
the semantic information of high-level feature maps. Therefore, the ability of the algorithm to obtain the 
details and position information of the object can be improved, thereby reducing the missed detection rate 
and false detection rate, and improving the detection accuracy of small objects.

•	 This paper introduces the Focal Loss22 to improve the imbalance of positive and negative samples and hard 
and easy samples. By increasing the weight of the hard samples in the loss function, the robustness of the 
proposed algorithm can be improved.

Compared with the unoptimized SSD algorithm, this method can improve the detection accuracy and at 
the same time meet the detection speed requirements in intelligent security inspection scenarios. Specifically, 
our proposed algorithm achieves a mean average precision of 99.92%, and the detection speed of the algorithm 
can reach 17 FPS, which can meet the real-time requirements. This is an excellent outcome that could not have 
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been obtained with earlier methods. The remainder of the paper is organized as follows: The related works on 
terahertz image object detection and the basic introduction to SSD algorithm are introduced in “Related work”. 
In the following section, the proposed improved SSD algorithm is presented in detail. Section “Experimental 
results and discussion” shows and analyzes the experimental results of our method after its deployment. The 
conclusion of the paper is formed in the last section.

Related work
This section introduces the related works, including the introduction of common object detection methods based 
on CNN models, the basic introduction of the SSD model, and related work on terahertz image object detection.

Object detection and recognition based on CNN models.  In recent years, deep learning has made 
breakthroughs in object visual detection. At present, object detection algorithms based on deep learning models 
are mainly divided into two categories: one is various two-stage algorithms based on R-CNN23, including Fast 
R-CNN24, Faster R-CNN25, Mask R-CNN26, RFCN27, etc. These two-stage algorithms greatly improve the detec-
tion accuracy, but the two-stage detection results in a slow detection speed, which cannot meet the real-time 
requirements. The other category is one-stage detection algorithms represented by YOLO28 (You Only Look 
Once) and SSD29. The YOLO algorithm uses the idea of regression to greatly improve the detection speed, but 
its recognition accuracy of object location is poor and the recall rate is low. The SSD algorithm combines the 
regression method in the YOLO algorithm, not only follows the anchor mechanism in Faster R-CNN but also 
extracts multi-scale feature maps for classification and prediction, which greatly improves the precision and 
speed of object detection.

Detailed introduction of SSD algorithm.  The SSD algorithm is an object detection algorithm proposed 
by Wei Liu et al.29, which combines the anchor mechanism in Faster R-CNN and the regression idea in YOLO. 
The SSD algorithm not only has a clear speed advantage over Faster R-CNN, but also has a clear accuracy 
advantage over YOLO. It is based on the VGGNet-16 backbone and fuses feature maps of different scales for 
feature extraction. Its network structure is divided into two parts: one is the feature extraction network, and the 
other is the classification and regression layer. Specifically, the feature extraction network can extract the feature 
information of the object in the image, and at the same time can improve the ability of the network to perceive 
the object. The classification and regression layers are capable of classifying and regressing each candidate box to 
detect objects in the terahertz images. The structure of the original SSD network is shown in Fig. 1.

As we all know, the SSD algorithm no longer uses fully connected layers, which improves computational effi-
ciency. Moreover, the SSD algorithm uniformly modifies the size after the input image, and there is no mandatory 
requirement for the size of the input image. Besides, SSD directly uses convolution to calculate candidate boxes 
and predict classification in one step, which can simplify the process. However, the SSD algorithm also has some 
disadvantages. To begin with, the maximum size of feature maps used for prediction has a resolution of 3838. If 
the size of small objects in the input image is small, the detailed information contained in the lower layers can 
easily be lost after the pooling layer. Besides, as the feature map size of additional feature extraction networks 
continues to decrease, the feature extraction and representation capabilities of shallow feature layers are limited. 
While the feature output layer of deep features is mainly responsible for large objects, resulting in poor detection 
performance of SSD for small objects. Finally, the convolutional layer of SSD algorithm feature extraction can-
not take into account the features of adjacent feature layers of different scales. This results in insufficient feature 
extraction capability for small object features in complex environments during object feature extraction. All in 
all, the detection performance of the original SSD algorithm for small objects in complex environments needs 
to be improved. To meet the need of detecting hidden objects in passive terahertz images, some improvements 
to its network structure are also required.

Hidden object detection in terahertz security images.  In recent years, passive terahertz imaging 
technology has shown significant development prospects in the field of security inspection. It is of great sig-
nificance to detect dangerous objects hidden in the human body in passive terahertz security images. At pre-
sent, some scholars have carried out research on passive terahertz human body security image object detection 
algorithms30,31. According to the characteristics of terahertz images, Zhang et al. adopted the Otsu threshold 
segmentation algorithm and applied the contour tracking method to extract contours, which can realize object 

Figure 1.   The network structure of SSD.
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detection in human terahertz images32. Aiming at the difficulty of detecting edge objects in human terahertz 
images, Jiang et  al. proposed an automatic recognition algorithm for human edge objects33. Santiago Lopez 
Tapia et al. proposed a method combining image processing and statistical machine learning techniques to solve 
the problem of object localization detection in terahertz images34. Niu et al. proposed a terahertz human image 
processing and recognition method based on the principle of saliency and sparse coding, which can realize auto-
matic recognition of hidden objects in the human body35.

In these methods, the objects were first separated from the image and then classified and recognized in a 
complex and slow process. Moreover, the above traditional object detection methods have certain defects and 
poor generalization ability. The performance of these algorithms is often affected by the complexity of the image 
background. The simpler the image background, the higher the object detection efficiency and the better the 
detection performance. On the contrary, once the image background becomes complex, the efficiency and per-
formance of object detection will decrease accordingly.

The convolutional neural network CNN36 (convolutional neural network) based on deep learning technology 
can solve the defects of traditional methods well. CNN can not only complete feature extraction, but also has good 
robustness and strong feature expression ability. These properties enable it to accurately localize detection objects 
in both simple and complex environments. Liu Chen et al. introduced Focal Loss22 on the basis of Faster R-CNN 
and detected concealed objects in active millimeter-wave images without using transfer learning16. Hong Xiao 
et al. proposed the R-PCNN algorithm. The algorithm adds traditional image preprocessing methods to the front 
end, which improves the speed and accuracy of object detection and recognition17. Xi Yang et al. exploited the 
spatiotemporal information of terahertz image sequences and used CNN to achieve automatic object detection 
and recognition18. Extensive studies show that there is still space for improvement in the accuracy and speed of 
current CNN-based terahertz image object detection algorithms.

Methods
According to the characteristics of terahertz images, we propose a novel method for object detection in terahertz 
human security images. This method enables accurate real-time detection of concealed objects in terahertz 
images. The improved SSD framework is shown in Fig. 2. In general, the improved SSD object detection algorithm 
is divided into the following four parts. Firstly, the basic network VGGNet-16 is replaced with a deep convolu-
tional network ResNet-50 to enhance the feature extraction ability. Additional feature layers are introduced into 
the basic network to further enhance the feature expression capability of the object detection layer. Afterward, 
three feature maps of different scales are fused in the feature extraction layer to enhance the semantic information 
correlation between the front and rear scale maps. In the next parts, a hybrid attention mechanism is introduced 
into SSD to enhance the semantic information of high-level feature maps. This method can improve the algo-
rithm’s ability to obtain object details and position information, thereby reducing the missed detection rate and 
false detection rate. Finally, the Focal Loss function is introduced to improve the robustness of the algorithm by 
increasing the weight of negative samples and hard samples in the loss function.

The overall flowchart of our proposed algorithm is shown in Fig. 3. During the training phase, the objects in 
the input image are marked to obtain the location information and category information of the real target. Then 
the model is trained to generate the final improved SSD object detection model. During the testing phase, each 
test image generates N boxes that may contain objects. Ground truth offsets and class scores are then computed 
using the model generated during the training phase, resulting in N classification results per image. Finally, the 
non-maximum suppression algorithm is used to output the final result.

Ethical statement.  This study conforms to the ethical guidelines of the Declaration of Helsinki revised in 
2013. The study was approved by the ethics committee of the Aerospace Information Research Institute, Chinese 
Academy of Sciences. All experiments were performed by relevant guidelines and regulations. We confirmed 
that informed consent had been obtained from all subjects. All images were deidentified before inclusion in this 
study.

Improvement of feature extraction network.  The VGGNet-16 network is a simple stack of traditional 
CNN structures with many parameters. As the number of network layers deepens, there are not only the phe-
nomenon of gradient disappearance and gradient explosion, but also the problem of network degradation. In 
response to the problems existing in the traditional CNN structure, the team of Kaiming He of MSRA proposed 
a convolutional neural network called Deep Residual Network(ResNet)20, which successfully solved the above 
two problems by introducing a batch normalization (BN) layer and residual block. The BN layer normalizes the 
feature maps of the middle layer to speed up the network convergence and improve the accuracy. The residual 
block fits the residual map by adding a skip connection layer between the network layers. It can directly transfer 
the optimal weight of the front layer to the back layer, so as to achieve the effect of eliminating network degrada-
tion. The comparison between the ordinary structure and the residual structure is shown in Fig. 4. The ResNet 
network adopts the jump structure in Fig. 4b as the basic network structure, also known as Bottleneck. The jump 
structure enables the ResNet network to have deeper layers and relatively better network performance than 
ordinary networks. As shown in Fig. 4, H(x) is called the desired map for stacking several network layers, x is 
the entry of the current stacking block, and the use of the ReLU activation function shortens the learning cycle. 
Assuming that n nonlinear layers can be approximately expressed as a residual function, then the stacked net-
work layers are fitted to another map F(x) = H(x)− x , and the final base map becomes H(x) = F(x)+ x . The 
idea of residual structure can effectively solve the problem of network performance degradation and gradient, 
and also improve network performance. By constructing residual learning, the residual network can approxi-
mate a better-desired mapping by approximating the coefficients of multiple nonlinear connections to zero.
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The detection of concealed objects in passive terahertz images is affected by complex backgrounds and similar 
interference. Research has proved that deepening the network structure is effective for improving feature detec-
tion. However, VGGNet-16 is a relatively shallow network, which is insufficient to extract features of hidden 
objects. Therefore, we replace the feature extraction network with ResNet-50, a network with deeper and richer 
semantic information. ResNet-50 has a total of 16 Bottlenecks, each of which contains 3 convolutional layers. 
Together with the input layer and the final fully connected layer, a 50-layer residual network is formed. The com-
parison of network parameters and complexity between VGGNet-16 and ResNet-50 is shown in Table 1. It can be 
seen from Table 1 that the parameters and floating-point operations of the ResNet-50 network are much lower 
than those of the VGGNet-16, which proves that ResNet-50 is lighter and has the conditions for faster speed.

Compared to AexNet, GoogleNet, and VGGNet-16, ResNet-50 is known for its ability and performance to 
achieve lower error rates and higher accuracy output than other architectures37. The depth of each convolu-
tional layer of ResNet-50 is higher than that of VGGNet-16, which enhances the network learning ability and 
further improves the feature extraction ability of concealed objects in images. ResNet-50 introduces a residual 
module in the convolutional layer, which solves the problem of training degradation caused by the deepening 
of the network. The network has high convolution calculation efficiency and reduces the redundancy of the 
algorithm. Taking into account factors such as accuracy and detection speed, the novel CNN network based 
on the ResNet-50 network is more accurate than VGGNet-16. By using ResNet-50 as the backbone network, 
the data features can be better extracted for classification and loss computation. The improved algorithm uses 
ResNet-50 as the extraction network, removes the fully connected layer in ResNet-50, adds several additional 
convolutional layers to extract features, and obtains feature maps of different scales. In this way, the limitation 
of the fully connected layer on the size of the input image can be solved. The network can obtain feature maps of 
different sizes to construct the detection part of the feature maps of different sizes in the network. The size of the 
feature map of the feature extraction layer of the improved algorithm is 3838, 1919, 1010, 55, 33 and 11, and the 
dimensions are 128, 256, 512, 256, 128 and 64 respectively. The shallow convolution layers extract relatively small 
features, while deep convolution layers can extract richer information. Therefore, shallow convolutional feature 
maps and deep convolutional feature maps are used to detect small and large objects, respectively. Replacing the 

Figure 2.   Improved SSD network architecture.
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original front-end network VGGNet-16 with the ResNet-50 network can improve the accuracy on the basis of 
the original SSD algorithm, but there are still problems such as poor real-time performance, false detection, and 
repeated detection of small objects. Therefore, feature fusion techniques are used to improve the SSD algorithm.

Figure 3.   Flowchart of the algorithm.

Figure 4.   Comparison diagram of traditional structure and residual structure. (a) The traditional structure. (b) 
The residual structure.
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Feature fusion module.  The SSD algorithm takes full advantage of multiple convolutional layers to detect 
objects. It has better robustness to the scale changes of objects, but the disadvantage is that it is easy to miss small 
objects. The network structure of the SSD algorithm is shown in Fig. 1. Each convolutional layer corresponds 
to the scale of an object, thus ignoring the relationship between layers. The low-level feature layer Conv_3 has a 
resolution size of 3838 and contains a lot of edges and non-target information. Conv_4 and Conv_5 have higher 
resolution and basic contour information and thus have richer and more detailed feature representation. As 
the number and depth of network layers increase, the scale of convolutional layers gradually decreases, and the 
semantic information becomes more and more abundant. However, the underlying conv4_3 does not utilize 
high-level semantic information, resulting in poor detection of small objects.

The improved algorithm fuses adjacent low-level high-resolution feature maps with clear and detailed features 
and high-level low-resolution feature maps with rich semantic information. Feature fusion can enhance the abil-
ity of the low-level feature layer to fully express the detailed features of small objects, and improve the detection 
effect of the SSD algorithm on small objects. The feature fusion structure proposed in this paper is shown in 
Fig.  5. The improved SSD model performs upsampling operations on Conv_4 and Conv_5 by bilinear interpo-
lation, and performs feature fusion with Conv_3. Better upsampling results can be obtained by using bilinear 
interpolation operations instead of adjacent interpolation operations. We use the concatenation method to fuse 
the high-semantic feature maps of Conv_4 and Conv_5, and use them to supplement the feature information of 
the convolutional feature maps of the Conv_3. Moreover, we still use the scale of Conv_3 as the scale of the new 
prediction stage. This way of passing down the fusion information can further fuse high-semantic information 
in deep layers and detailed information in shallow layers.

As we all know, the update of the parameters of the previous convolutional layer will cause the data distribu-
tion of the later input layer to change, resulting in a large difference in the data distribution of the convolutional 
feature layer. Therefore, there will be large differences between feature maps, and feature connection operations 
cannot be performed directly. When the network layer changes slightly, the features are accumulated and ampli-
fied through the fusion layer, resulting in slow convergence of the algorithm. Therefore, a BN layer is added after 
each feature layer for normalization. BN layers can reduce the effects of a slow training process due to increased 

Table 1.   Comparison of network complexity between VGGNet-16 and ResNet-50.

Network Parameter quantity Number of floating-point operations

VGGNet-16 138 15.5

ResNet-50 25.5 3.8

Figure 5.   Overview of the proposed feature fusion strategy.
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model complexity. The improved SSD algorithm adopts the method of multi-level fusion of different scales, 
combined with the idea of FPN21, and transfers the feature information of feature maps of different scales from 
top to bottom. Feature fusion can provide feature representations with rich semantic information, improving 
the descriptiveness of fused features.

Attention mechanism CBAM.  The feature maps extracted by the feature extraction network not only 
have object features but also have similar interference features. The concealed objects on the human terahertz 
image and other similar objects are given the same importance on the feature maps, which is not conducive 
to the detection of hidden objects in complex backgrounds. Therefore, to improve the object recognition abil-
ity of feature maps for specific regions and specific channels, and reduce the negative interference of complex 
backgrounds and similar objects, the attention mechanism is applied in both channel and space dimensions. 
Mechanism of Attention CBAM38(Convolutional Block Attention Module) is a little universal module that saves 
computational resources and parameters. For a given feature map, attention weights are sequentially derived 
along both spatial and channel dimensions, and then the features are adaptively adjusted by multiplying with the 
original feature map. The implementation of the attention mechanism includes two modules: channel attention 
and spatial attention. The structure of the CBAM attention mechanism module is shown in Fig. 6. Usually, the 
two modules of channel attention and spatial attention are combined in turn, and better results can be achieved 
by placing the channel attention in the front. The improved algorithm connects the CBAM dual attention mech-
anism after each output feature map to improve the network’s attention to concealed objects.

Given an intermediate feature map F ∈ R
C×H×W as input, CBAM sequentially infers a 1D channel atten-

tion map Mr ∈ R
C×1×1 and a 2D spatial attention map Ms ∈ R

1×H×W as shown in Fig. 6. The overall attention 
progression can be summarized as:

where ⊗ represents for element-wise multiplication. During multiplication, the attention values are broadcast 
accordingly: channel attention values are broadcast along the spatial dimension and vice versa. F ′′ is the final 
refined output. Figures 7 and 8 describe the computation process of each attention map. The details of each 
attention module are described below.

Channel attention module.  The structure of the channel attention module is shown in Fig. 7. The channel atten-
tion module aggregates spatial information of feature maps by using average pooling and max pooling opera-
tions, generating two different spatial context descriptors: Fcavg and Fcmax , which denote average-pooled features 
and max-pooled features respectively. The two descriptors are then forwarded to the shared network to generate 
the channel attention map Mc ∈ R

C×1×1 . The shared network consists of a multilayer perceptron (MLP) with 
one hidden layer. To reduce parameter overhead, the hidden activation size is set to RC/r×1×1 , where r is the 

(1)F ′ = Mc(F)⊗ F

(2)F ′′ = Ms

(

F ′
)

⊗ F ′

Figure 6.   The overview of CBAM attention mechanism module.

Figure 7.   Diagram of channel attention module.
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reduction ratio. After applying the shared network to each descriptor, the channel attention module merges the 
output feature vectors using element-wise summation. Briefly, the channel attention module is computed as:

where σ represents the sigmoid function, W0 ∈ R
C/r×C , and W1 ∈ R

C×C/r . Note that both inputs share the MLP 
weights W0 and W1 ,and the ReLU activation function is followed by W0.

Spatial attention module.  The spatial attention module utilizes the spatial relationship of features to generate 
a spatial attention map. Figure 8 depicts the computation progress of the spatial attention map. Unlike chan-
nel attention, spatial attention focuses on ‘where’ is an informative part, which is complementary to channel 
attention. To compute the spatial attention, average pooling and max pooling operations are first applied along 
the channel axis and then concatenated to generate an efficient feature descriptor. On the concatenated feature 
descriptor, a convolution layer is applied to generate a spatial attention map Ms(F) ∈ R

H×W , which encodes 
locations to be emphasized or suppressed. The specific operation progress is as follows.

The channel information of the feature maps is aggregated using two pooling operations to generate 2D maps: 
Fsavg ∈ R

1×H×W and Fsmax ∈ R
1×H×W . Each represents the average-pooled and max-pooled features across the 

channel. They are then concatenated and convolved through standard convolutional layers to generate a 2D 
spatial attention map. To sum up, the spatial attention is calculated as:

where σ represents the sigmoid function and f 7×7 denotes a convolution operation with a filter size of 77.
The improved algorithm is based on SSD-ResNet-50 and adds CBAM modules after 6 feature maps of dif-

ferent sizes. By adjusting the size of the feature maps, each feature map can remain the same size as before the 
output after the feature weighting of the CBAM module. The attention mechanism further enhances the semantic 
information of high-level feature maps, reduces the target missed detection rate, and improves the robustness 
of the algorithm.

Improvement of the loss function.  The loss function of the original SSD network consists of a weighted 
sum of the confidence loss and the position loss. The specific expression is calculated as:

where Lconf  and Lloc denote the confidence loss and localization loss, respectively. α represents the weight of 
the localization loss, c and l are the category confidence and position offset information of the prediction box, 
respectively. x is the matching result between the previous frame and different categories, if it matches, the result 
is x = 1 , otherwise, it is x = 0 . Furthermore, g represents the offset between the ground-truth bounding box and 
the prior bounding boxes, and N denotes the number of the prior bounding boxes.

The problem of sample imbalance can be solved by adjusting the positive and negative sample ratio param-
eters in the input network. To solve the problem of sample imbalance in the SSD algorithm, we use the Focal 
Loss function22 to replace the confidence loss function in the original loss function. Its specific expression can 
be summarized as:

where pt represents the classification probabilities of the different classes, and the value of γ is greater than zero, 
which is used to adjust the rate at which the weights of the samples are easily divided. at is a decimal between 0 
and 1, which is used as a weight to adjust the proportion of positive and negative samples. For simple samples, 
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Figure 8.   Diagram of spatial attention module.
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pt will be relatively large, and the weight will naturally be small. On the contrary, for difficult samples, pt will be 
relatively small, and the weight will naturally be relatively large so that the network tends to use such difficult 
samples to update parameters.

The Focal Loss is visualized for several values of γ ∈ [0, 5] in Fig. 9. The function curve is the loss function 
curve in SSD when γ=0. It can be seen that even the loss function value of the easily separable samples is high, 
resulting in a high proportion of the loss value of the easily separable samples in the algorithm. The weight of 
the hard samples in the input samples increases with the increase of γ , indicating that Focal Loss achieves the 
balance of the positive and negative samples, hard and easy samples through at and γ , respectively. In this way, 
the samples participating in the training can be distributed more evenly, thereby further improving the reliability 
of the detection algorithm. In this paper, we set the parameters at = 0.25 and γ = 2 during the training process, 
because extensive experiments show that such parameters can achieve the best experimental results.

Experimental results and discussion
In this section, the image dataset is introduced first, and then the evaluation metrics are described. The results 
of the ablation experiments demonstrate the effectiveness of the improved points proposed by this method. 
Extensive comparison experiments between the improved SSD algorithm and other methods are conducted in 
succession. In addition, we give an intuitive discussion about the visual detection effect of this algorithm and 
depict the ROC curve.

Datasets.  In the research field of terahertz concealed object detection, few passive image datasets are cur-
rently publicly available. The passive terahertz dataset we used in this paper was constructed by a team led by 
researcher Chao Li from the Aerospace Information Research Institute, Chinese Academy of Sciences. The data-
set was collected by the 0.2 THz passive imaging device shown in Fig. 10a, a total of 896 images were collected. 
The size of each image is 160392, and 0 2 objects to be detected (“pistol model” and “mobile phone model”) are 
randomly hidden under clothes in different positions of the human torso. To ensure the authenticity and reli-
ability of the results, the imaging experiments were carried out in the form of real people carrying concealed 
objects. The pistol model and mobile phone model carried by the volunteers are shown in Fig. 10b, and the 
imaging results are shown in Fig. 10c. In the future, we plan to gradually increase the types of objects. In addi-
tion, 896 images are expanded to 1792 images by horizontal flipping through the data augmentation method to 

Figure 9.   Curve of focal loss function22.

Figure 10.   Passive terahertz hidden object imaging. (a) The 0.2 THz passive terahertz imaging device. (b) the 
metal pistol model and the mobile phone model. (c) the passive terahertz imaging results.
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increase the diversity of samples. The following training experiments, evaluation experiments, and comparison 
experiments are performed on this dataset.

Evaluation metrics.  Since passive terahertz image object detection in the security field is still a relatively 
“niche” field in computer vision, there is no standard evaluation protocol defined. We evaluate our proposed 
improved SSD algorithm using mean precision (mAP), F1 score, ROC curve, AUC value, and FPS. The following 
is a comprehensive overview of the indicators.

Object detection performance can be evaluated with Average Precision (AP) and mean Average Precision 
(mAP) between ground truth and predicted bounding box (IOU). AP is defined as the area enclosed by the 
precision and recall curves and the axes. The precision rate is the accuracy rate, which measures the classifica-
tion ability of the object detection algorithm to detect objects. The higher the accuracy rate, the stronger the 
model’s ability to classify the object. The recall rate measures the detection ability of the model to the object. The 
higher the recall rate, the stronger the model’s ability to distinguish the object. In the object detection algorithm, 
the precision-recall curve (PR curve) of each category can be obtained. The area enclosed by the curve and the 
abscissa axis is the average precision AP value. The mAP can be obtained by averaging the APs of all classes. 
Under the same confidence, the larger the mAP of the model, the better the detection performance of the model. 
The precision and recall rate are calculated as follows:

True positive (TP) means that the model predicts a positive sample and the actual prediction is correct; 
false positive (FP) means that the model predicts a positive sample and detects it incorrectly, and false negative 
(FN) means that the model predicts a negative sample and detects it incorrectly. These evaluation metrics are 
illustrated in Fig. 11.

Additionally, the F1 score is a composite metric that combines precision and recall. The advantage of the 
F1 score is that it provides a single measure of quality that is easier to understand. Its calculation formula is as 
follows:

A receiver operating characteristic (ROC) curve40, commonly used to visualize the discriminant ability of 
a binary classifier, is a plot of the true positive rate (TPR, sensitivity, recall) versus the false positive rate (FPR, 
1-specificity) at various given cut points. A typical ROC curve is a plot of FPR on the x-axis versus TPR on the 
y-axis. The area under the curve (AUC) maps the entire ROC curve into a single number that reflects the overall 
performance of the classifier over all thresholds. Typically, the value of AUC is between 0.5 and 1. The larger 
the value, the better the discriminative ability of the classifier. The formulas for calculating TPR and FPR are as 
follows:

The detection speed is mainly used to evaluate the real-time performance of the algorithm. If the inference 
speed cannot meet the real-time requirements, our model cannot be used in the real environment. FPS (frames 
per second) is currently a common metric for evaluating model speed. In two-dimensional image detection, 

(7)Precision =
TP

TP + FP

(8)Recall =
TP

TP + FN

(9)F1 Score = 2×
Precision× Recall

Precision+ Recall

(10)TPR =
TP

TP + FN

(11)FPR =
FP

FP + TN

Figure 11.   Definitions of true positive, false positive, false negative and true negative39. For example, “True 
Positive” means that one actual positive instance was predicted to be positive by one method.
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it is defined as the number of pictures that can be processed per second. The larger the value, the shorter the 
detection time and the faster the speed.

Experimental details.  The experimental environment of this paper is: in terms of hardware, we adopt 
the Inter(R)Core(TM)i5-10400F CPU processor and the graphics card of GeForce RTX 3090 Ti. In terms of 
software, we choose the Ubuntu 20.04 operating system, Pytorch deep learning framework, and Python 3.6 
programming language.

Batch_size is the number of images sent to training at one time. A larger batch_size can make model training 
more stable, but it will increase the amount of computation. Considering the computing power of the graph-
ics card we have, we chose 16 as the batch_size. The learning rate is the speed at which the model is iteratively 
trained, and setting the learning rate correctly can make the loss curve smoother. The initial learning rate was 
set to 2e-4 and the learning rate decay weight was 0.001. The number of training iterations is 6000, the parameter 
update method is the gradient descent method with momentum (momentum SGD), and the momentum fac-
tor is set to 0.9. The resulting model was saved after every 500 iterations in the training process. After training, 
the object detection accuracy is used as the criterion for selecting the optimal model. The model is validated 
using the test set, and the experimental results are analyzed. The change of the loss function during the training 
process is shown in Figure 12. After 6000 iterations, the network converges. After 6000 iterations, the total loss 
of the model can converge to 1.62.

Ablation study of the improved SSD algorithm.  This section carries out the ablation study of the 
improved SSD algorithm to prove its superiority over the baseline model. We analyze the impact of improving 
feature extraction network, adding feature fusion network, adding attention mechanism, and improving loss 
function on recognition accuracy. The results of the ablation experiments are shown in Table 2.

Model-1 replaces the backbone network from VGGNet-16 to ResNet-50, and the mAP is 3.61% higher than 
that of SSD. Model-2 adds a feature fusion module on the basis of adding ResNet-50, and constructs a feature 
with rich semantic information, indicating that mAP is 3.73% higher than SSD and 0.12% higher than Model-1. 
Model-3 adds a space-channel attention mechanism CBAM based on adding ResNet-50, and the mAP is 3.20% 
higher than that of SSD. Model-4 replaces the loss function with Focal Loss based on adding ResNet-50, and 
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Figure 12.   Change of loss function.

Table 2.   Ablation experiment results on the passive terahertz dataset.

NET

Module mAP(%)

VGGNet-16 ResNet-50 Feature Fusion CBAM Focal Loss

SSD
√

95.04

Model-1
√

98.65

Model-2
√ √

98.77

Model-3
√ √

98.24

Model-4
√ √

95.37

Model-5
√ √ √

98.86

SSD(ours)
√ √ √ √

99.92
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mAP is 0.33% higher than SSD. Model-5 replaces the feature extraction network with ResNet-50 on the basis 
of the original SSD algorithm and adds a feature fusion module and a hybrid attention mechanism CBAM. The 
results show that the mAP of Model-5 is 3.82% higher than that of SSD. Finally, the mAP of the fully improved 
SSD algorithm can reach 99.92% . In summary, adding different modules significantly improves the performance 
of the algorithm, and these gains add up to validate the effectiveness of our algorithm.

Furthermore, the comparison of mAP values obtained by different models in the first 6000 iterations is shown 
in Fig. 13. It can be seen that our proposed improved model has the highest mAP value with a high mAP of 
99.92% at the 6000th iteration.

Comparison with the state‑of‑the‑art detection methods.  We evaluated the improved SSD algo-
rithm to other state-of-the-art detection approaches, including Faster RCNN, YOLO v5, RetinaNet, and the 
baseline model SSD, to verify its comprehensive performance. Table 3 shows that the improved SSD model has 
a detection accuracy of 99.92%. It has the best accuracy, even outperforming the existing YOLO v5 detection 
model. Although the improved SSD model is slower than the fastest YOLO v5, it offers a 1.56% accuracy gain. At 
the same time, the improved model has a speed of 17 frames per second, which is sufficient for real-time detec-
tion. The aforementioned findings suggest that our proposed enhanced algorithm outperforms other techniques.

As shown in Table 3, the detection accuracy of the improved algorithm is improved compared with the 
mainstream algorithms. Meanwhile, due to the increased complexity of the network, the algorithm in this paper 
sacrifices the speed, but it can still meet the needs of real-time detection. We believe there are two primary 
reasons for such superiority. (1) The baseline model of the improved SSD algorithm is suitable for this task. Its 
detection accuracy is only 2.71% lower than Faster RCNN, but the speed is 2.55 times faster. (2) The improved 
SSD algorithm can robustly improve the accuracy of the baseline model. The specific reasons can be seen in 
“Ablation study of the improved SSD algorithm”.

We employed the passive terahertz human security image dataset given in the “Datasets” section above for 
detection experiments, and the visual detection results are shown in Fig. 14. As demonstrated in the red boxes in 
Fig. 14a, the original SSD algorithm has missed detection, and the detection confidence also has to be enhanced. 
The improved SSD algorithm effectively addresses the issue of missed detection while also enhancing detection 
confidence. The improved algorithm’s detection results are displayed in Fig. 14b. To summarize, the improved SSD 
algorithm outperforms the original algorithm in terms of robustness and accuracy, as well as overall performance.
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Figure 13.   Comparision of mAP values of different models.

Table 3.   Comparison of accuracy with other advanced algorithms.

Model

AP(%) mAP(%) F1 score Time(ms) FPS

Gun Phone

Faster R-CNN 98.30 97.20 97.75 0.95 9 4.5568

YOLO v5 99.24 97.48 98.36 0.96 42 12.2265

Retinanet 96.47 93.64 95.06 0.94 25 10.1952

SSD 96.10 93.98 95.04 0.93 23 11.2652

SSD(our) 99.94 99.90 99.92 0.98 17 8.2624
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ROC curve.  The ROC curve of the proposed model is shown in Fig. 15, demonstrating the excellent recogni-
tion ability of our model for concealed objects in passive terahertz images. AUC provides summary measures 
for the performance of a system. It provides meaningful performance analysis. The AUC value of our proposed 
model is 0.87, indicating that the model has a good discriminative ability.

Conclusion
To further improve the detection accuracy and speed of concealed objects in terahertz human security images, we 
proposed an improved SSD algorithm to promote its algorithm performance in this paper. First, the ResNet-50 
network was used to replace the original VGGNet-16 network to overcome the VGG network degradation 
problem. Afterward, we designed a feature fusion module to fuse deep features and shallow features to construct 
features rich in semantic information, which is beneficial to the detection of small objects. In the next parts, the 
hybrid attention mechanism was introduced in the SSD network to improve the network’s attention to concealed 
objects. Finally, we introduced the Focal Loss function in the loss function to improve the robustness of the 
algorithm. The results of ablation experiments illustrate the efficacy of the changes described in this paper. At 

(a)

(b)

Figure 14.   Visualized results of the passive terahertz dataset. (a) Detection results of the original SSD 
algorithm. (b) Detection results of the improved SSD algorithm.

Figure 15.   ROC curve.
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the same time, we also compare the proposed model with other mainstream detection methods on the terahertz 
human security image dataset. The results showed that our method achieves significantly improved detection 
accuracy in comparison with the original algorithm when the speed is only slightly reduced. The detection 
accuracy of the proposed method is as high as 99.9%, and the detection speed is about 17 FPS. Therefore, it can 
meet the real-time detection needs of security inspection scenarios.

Our approach can be improved in the future as follows: (1) The training dataset can be augmented to improve 
the generalization ability of the model. (2) The model can be further lightweight to reduce the amount of cal-
culation and improve the detection speed. (3) More emphasis should be placed on the model’s interpretability 
in order to make the model easier to interpret and understand. It also makes the black box of the CNN-based 
model more transparent and reasonable. We believe that the application of Explainable AI will help to reduce 
the uncertainty of deep learning models. The insights gained from this research facilitate the application of deep 
learning techniques in smart security screening scenarios. It is believed that the method proposed in this paper 
will have important application value in the terahertz intelligent security systems.

Data availability
The datasets generated during the current study are not publicly available to non-cooperative units in the short 
term due to the dataset has been collected for a long time and the data involves personal privacy. However, the 
dataset is available from the corresponding author upon reasonable request.
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