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Area‑based breast percentage 
density estimation 
in mammograms using 
weight‑adaptive multitask learning
Naga Raju Gudhe1*, Hamid Behravan1*, Mazen Sudah2, Hidemi Okuma2, Ritva Vanninen2,3, 
Veli‑Matti Kosma1,4,5 & Arto Mannermaa1,4,5

Breast density, which is a measure of the relative amount of fibroglandular tissue within the breast 
area, is one of the most important breast cancer risk factors. Accurate segmentation of fibroglandular 
tissues and breast area is crucial for computing the breast density. Semiautomatic and fully automatic 
computer-aided design tools have been developed to estimate the percentage of breast density 
in mammograms. However, the available approaches are usually limited to specific mammogram 
views and are inadequate for complete delineation of the pectoral muscle. These tools also perform 
poorly in cases of data variability and often require an experienced radiologist to adjust the 
segmentation threshold for fibroglandular tissue within the breast area. This study proposes a new 
deep learning architecture that automatically estimates the area-based breast percentage density 
from mammograms using a weight-adaptive multitask learning approach. The proposed approach 
simultaneously segments the breast and dense tissues and further estimates the breast percentage 
density. We evaluate the performance of the proposed model in both segmentation and density 
estimation on an independent evaluation set of 7500 craniocaudal and mediolateral oblique-view 
mammograms from Kuopio University Hospital, Finland. The proposed multitask segmentation 
approach outperforms and achieves average relative improvements of 2.88% and 9.78% in terms of 
F-score compared to the multitask U-net and a fully convolutional neural network, respectively. The 
estimated breast density values using our approach strongly correlate with radiologists’ assessments 
with a Pearson’s correlation of r = 0.90 (95% confidence interval [0.89, 0.91]). We conclude that our 
approach greatly improves the segmentation accuracy of the breast area and dense tissues; thus, 
it can play a vital role in accurately computing the breast density. Our density estimation model 
considerably reduces the time and effort needed to estimate density values from mammograms by 
radiologists and therefore, decreases inter- and intra-reader variability.

Breast cancer (BC) occurs with the highest incidence of all cancers in women across 27 European Union countries 
(1,237,588 new cancer cases with 28.7% being BC; 555,650 total cancer deaths with 16.5% due to BC in 2020) 
(https://​ecis.​jrc.​ec.​europa.​eu/). Early detection of BC is a critical diagnostic requirement for lowering the BC 
mortality rate. Digital X-ray mammography is the gold standard and the most reliable imaging technique for BC 
screening in the early stages. The European Reference Organization for Quality Assured Breast Screening and 
Diagnostic Services recommends regular breast screenings for women over the age of 40 for both craniocaudal 
(CC)-view and mediolateral oblique (MLO)-view mammograms1.

Breast density has been identified as one of the strongest independent risk factors contributing to BC. Numer-
ous studies demonstrated a positive association between breast density and BC risk2–4. The mammographic breast 
percentage density (PD) measures the relative amount of fibroglandular (also known as dense) tissue within the 
breast area. Women with higher PD values ( > 75% ) have an indicative risk of BC that is 4-to-6 fold higher than 

OPEN

1Institute of Clinical Medicine, Pathology and Forensic Medicine, Multidisciplinary Cancer Research community, 
University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland. 2Department of Clinical Radiology, Kuopio 
University Hospital, P.O. Box 100, 70029 Kuopio, Finland. 3Institute of Clinical Medicine, Radiology, Translational 
Cancer Research Area, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland. 4Biobank of Eastern 
Finland, Kuopio University Hospital, Kuopio, Finland. 5These authors contributed equally: Veli-Matti Kosma and 
Arto Mannermaa. *email: raju.gudhe@uef.fi; hamid.behravan@uef.fi

https://ecis.jrc.ec.europa.eu/
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-16141-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12060  | https://doi.org/10.1038/s41598-022-16141-2

www.nature.com/scientificreports/

women with lower PD values ( < 5%)2. The sensitivity of mammography is density dependent, i.e., the higher the 
density, the lower the sensitivity due to the masking effect5. The sensitivity is also affected by other factors, such 
as light intensity of the mammography machine, vendor specific processing protocol, perception errors, and the 
composition of the breast tissue6. In clinical practice, radiologists visually analyze the patterns and distribution 
of fibroglandular tissues within the mammograms and report the density scores following the Breast Imaging 
Reporting and Data System (BI-RADS)7. The 4th edition of BI-RADS categorizes the breast density into four 
quartiles in range of 0–100% with an increment of 25%. The assessment of breast density using BI-RADS 4th 
edition subjects to intra-reader variability8. To reduce this variability, the breast composition lexicon was updated 
in BI-RADS 5th edition. In the 5th edition, the qualitative analysis is replaced with subjectivity. With the high-
est incidence of BC, the need for the specialized radiologist is growing. Given shortage of expert radiologists 
and workload, substantial time and efforts are needed to examine mammograms at large scale. Moreover, the 
quantitative and qualitative assessments of the breast density by radiologists are subjective, leading to inter- and 
intra-reader variability9.

There is a growing interest among medical imaging experts in developing fully automated methods that can 
assess PD values in a robust and quantifiable fashion. Semiautomated approaches, such as Cumulus10 and DM-
Scan11, have been developed for area-based PD estimation. However, these approaches require the domain expert 
(radiologist) to adjust a threshold value to segment the dense tissues for each mammogram, leading to the same 
problems as with manual assessments: time needed, subjective results, and intra- and inter-reader variability. 
Fully automatic software, such as LIBRA12 and Quantra13, have been developed for area-based and volumetric-
based PD estimation, respectively. Despite being leading-edge tools, LIBRA and Quantra have a few limitations, 
such as over- or under-segmenting the fibroglandular tissues14. In many instances, LIBRA performs poorly in 
delineating the pectoral muscle from the breast region14, potentially due to data variability, different mammogram 
acquisition protocols, and vendor-specific post-processing techniques (in the case of processed mammograms). 
The pectoral muscle has similar pixel intensities and texture to the breast region, and the boundary separating 
the pectoral muscle and the breast region are usually obscure and irregular. Excluding the pectoral muscle from 
the breast region in MLO-view mammograms is another challenge that must be handled for accurate breast 
density estimation.

Traditional image processing techniques, such as thresholding15 and clustering16, have been well established 
for segmentation tasks. However, the major limitations of adopting traditional algorithms are selection of dis-
criminative features in each given image for segmentation and finding an optimal threshold value to segment the 
fibroglandular tissues within the breast area. Artificial intelligence-based approaches, specifically deep learning 
(DL) algorithms based on convolutional neural networks (CNNs), have shown remarkable performances in 
various medical imaging applications17–19. The DL algorithms automatically extract the most descriptive and 
silent features within an image for a given task. The sophisticated computing infrastructure (graphical process-
ing unit) enhances DL algorithms’ training and deployment in the clinical settings. Long et al.20 proposed an 
encoder–decoder-based fully convolutional neural networks (FCN) for the semantic segmentation task. The 
encoder captures the contextual and spatial information, and the decoder reconstructs the information and seg-
ments the regions of interest from the input mammogram. Inspired by this work20, Ronneberger et al.19 modified 
the FCN by introducing skip connections to concatenate features from the encoder to the corresponding decoder 
and named the architecture U-net. The gold-standard U-net architecture has been successfully incorporated in 
various biomedical image segmentation tasks. Despite its popularity, U-net has a few limitations, such as the loss 
of spatial information during concatenation of the features from the encoder to the decoder, and it often fails to 
segment regions of interest at different scales and variations21,22.

Recently, multitask learning (MTL) was employed to improve the performance of image segmentation 
tasks23–25. Parameter sharing between subtasks is the most common approach used to perform MTL, as it avoids 
recomputing each task’s parameters and thus improves computational speed by reducing memory usage24. MTL 
has been shown to have a higher generalization capability and to reduce overfitting24,25. Kendall et al.23 proposed 
an MTL framework with multiple regression and classification tasks for semantic segmentation and demonstrated 
that task-dependent homoscedastic uncertainty improves the representation and individual task performance.

A few studies have incorporated DL algorithms into the breast-density estimation task using digital 
mammograms26–30. Kallengberg et al.30 developed a sparse convolutional autoencoder to automatically extract 
features in a mammogram using an unsupervised learning technique. The learned features are fed to a simple 
neural network classifier for fatty- and dense-tissue classification30. They showed that the computed PD scores 
strongly correlate with the manual Cumulus scores ( r = 0.85 ) and reported dice coefficients of 0.63± 0.19 and 
0.95± 0.05 for the dense and fatty tissue segmentation. Lee et al.14 developed a fully automatic DL algorithm for 
PD estimation based on the FCN approach that segments the breast area and dense tissues in the mammograms. 
The study considered BI-RADS7 density ratings as ground truth and generated binary masks for the dense tissues. 
The PD values estimated by the algorithm showed Pearson correlation of r = 0.81 and r = 0.79 for the CC- and 
MLO-view mammograms, respectively, compared with those estimated using LIBRA. Other studies26–29 used 
CNNs to classify the mammogram pixels into fatty and dense classes following BI-RADS 4th edition31 .

Previous studies segmented the breast area using classical edge-detection techniques or contour-based 
methods32. These approaches often failed to delineate the pectoral muscle and air gaps within the mammogram33. 
Mammograms acquired from various sources and sites often differ in terms of pixel intensities. Segmenting 
the dense tissues using image histogram thresholding based on BI-RADS categories increases the sensitivity of 
the model14. Accurate segmentation of breast and dense tissues are vital to computing the PD values. The main 
contributions of this study are listed as follows: 
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1.	 We proposed a multitask DL architecture, named MTLSegNet, that simultaneously segments the breast area 
and the dense tissues within a given mammogram and further computes the PD values using the segmented 
regions.

2.	 We generated 31,731 (21,315 from Kuopio University Hosptial (KUH) dataset and 10,416 from open-sourced 
datasets) breast-area and dense-tissue ground-truth binary masks for the segmentation task, under the 
supervision of two expert radiologists from KUH. The KUH data with annotations are available by request.

3.	 We evaluated the segmentation performance of the proposed approach against multitask U-net and FCN, as 
baseline approaches. We also compare the estimated PD values with existing LIBRA and Quantra software.

Material and methods
Data acquisition protocol.  The study was approved by the ethics committee of KUH. For the purposes of 
this retrospective image analysis, the need for patient consent was waived by the Chair of the Hospital District. 
All experiments were conducted according to the relevant guidelines and the principles expressed in the Decla-
ration of Helsinki.

The KUH mammograms were acquired using Selenia Dimensions from Hologic, Inc. or AMULET Inno-
vality from FUJIFILM corporation. The mammograms from the Kuopio region (Finland) were retrieved from 
the picture archiving and communications system. Pseudonymized digital mammograms (for Presentation) in 
DICOM format were collected from 6278 women from January 2011 to December 2020. Two expert radiologists 
with experience of 25 and 15 years reviewed all the mammograms, and any with a visual appearance of implants, 
marker clips, or device names, which considerably damage the breast region, were excluded. The resulting KUH 
dataset contains mammograms from 5682 women (21,315 mammograms).

Figure 1 shows the flowchart for preparing the KUH mammogram dataset. The KUH dataset was randomly 
divided into two disjoint sets, one for model development and the second for evaluating the model performance. 
The development set contained 13,815 mammograms and was further divided into a training set (80%; 11,052 
mammograms) and validation set (20%; 2763 mammograms). The evaluation set contained 7500 mammo-
grams and was used to demonstrate the performance of our proposed and baseline segmentation models, and 
to estimate the breast PD values. Note that the internal evaluation set is not used for the model development 
and training. To avoid data leakage, we ensured that mammograms from the same patients only appear in one 
set during the KUH data split.

To address the data variability problem, we also included three publicly available datasets: the Mammographic 
Image Analysis Society digital mammogram dataset (MIAS)34, mini-DDSM35, and INbreast36. The MIAS and 
mini-DDSM are open-source datasets, and for the INbreast dataset, we obtained written agreement from the 
authors for use in research. MIAS is the most requested dataset in the mammography research community. The 
original dataset was digitized with a 50-micron pixel edge. It consists of 322 digitized MLO-view mammograms 
from 161 women at 1024× 1024 pixels, each with corresponding label information. The mini-DDSM is the 
lightweight version of the Digital Database for Screening Mammography (DDSM)37, containing 9684 mam-
mograms from 2421 women (mean age of 57.51 ± 12.71) with variable image dimensions between 125 and 320 
pixels. INbreast is a full-field digital mammography dataset consisting of 410 mammograms from 115 women. 
The KUH data splitting protocol for the three publicly available datasets resulted in few test mammograms for 
model evaluation, especially in the MIAS and INbreast datasets. Therefore, we followed a 60:20:20 splitting 
protocol for training, validation, and evaluation for the MIAS, mini-DDSM, and INbreast datasets to maintain 

Figure 1.   Flowchart describing the KUH dataset preparation. After excluding mammograms containing 
implants, marker clips, and/or external devices, we divided the KUH dataset into two disjoint sets: the 
development set and the internal evaluation set.
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data distribution harmony and have a handful of mammograms to evaluate the performance of the proposed 
and the baseline approaches. Table 1 summarizes the datasets and the data splitting protocol used in this study. 
In total, we used 30% (9582) of the mammograms from the KUH and publicly available datasets for evaluation.

The datasets used in this study vary in the number of mammograms and the image pixel intensity distribu-
tion, as illustrated in Fig. 2. The variation could be potentially due to the vendor-specific processing of the mam-
mograms and the acquisition protocols. We combined the datasets and normalized the mammograms using the 
normalizer technique38 to develop a robust model capable of handling data variability issues. Normalization is a 
standard pre-processing technique that changes the range of pixel intensities of the individual image pixels and 
achieves consistency for the combined datasets.

Ground truth annotations and reference PD value computation.  Under the guidance of two 
expert radiologists from KUH, we developed an in-house mammogram annotation tool and generated in total 
31,731 breast-area and dense-tissue binary masks, among which 21,315 are from the KUH dataset and 10,416 
from the publicly available datasets, used in this study. All the annotations were reviewed by an experienced BC 
radiologist from KUH.

Breast‑area segmentation mask.  The contour-based algorithms remove the background noise (labels, patient 
identification, visible markers) and segment the breast region39. Although contour-based approaches are simple 
and easy to use, breast-region segmentation is challenging, especially for the MLO-view mammograms, due to 
the similar intensity of the pectoral muscle and the breast region. Furthermore, the visual partition line between 
the pectoral tissue and the breast area is obscure and often irregular in shape. We manually segmented the breast 
area using the VGG Image Annotator software tool40 and generated the annotations into JSON format, using 
OpenCV python package (https://​docs.​opencv.​org/4.​x/​index.​html), we generated the binary breast-area masks. 

Table 1.   The splitting protocol used in this study. We employed a 60:20:20 splitting protocol for training, 
validation, and evaluation sets for the MIAS, INbreast, and mini-DDSM datasets. Note that the splitting 
protocol for the KUH dataset is different than the public datasets. N.A not available.

Dataset

Development set Evaluation set

Training set ( n = 17,304) Validation set ( n = 4845) Test set ( n = 9582)

CC MLO CC MLO CC MLO

KUH ( n = 21,315) 5526 5526 1382 1381 3750 3750

MIAS ( n = 322) N. A 194 N. A 64 N. A 64

mini-DDSM ( n = 9684) 2906 2906 968 968 968 968

INbreast ( n = 410) 123 123 41 41 41 41

Figure 2.   Examples of mammograms from the datasets used in this study. (a) KUH, (b) MIAS, (c) INbreast, 
and (d) mini-DDSM. The histogram of the grayscale value distribution for each mammogram is given below the 
corresponding mammogram.

https://docs.opencv.org/4.x/index.html
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We used the generated breast-area mask and overlapped it with the original image to remove the background 
noise. All the background pixels were set to zero, and the intensity range of the breast area was normalized using 
the min-max normalization technique.

Dense‑tissue segmentation mask.  Based on BI-RADS categories, dense tissues are segmented using image-
thresholding techniques14. With the variability in the image intensities and uncertainty in BI-RADS classifi-
cation, the dense tissues are either over- or under-segmented. This study generated the dense-tissue binary 
masks using an in-house web-based interactive image segmentation tool developed in Python 3.6 and the Flask 
(https://​flask.​palle​tspro​jects.​com/​en/2.​0.x/) web framework under expert radiologist supervision. Figure  3 
shows ground-truth annotations generated for the KUH dataset. The red contour line separates the breast area 
from other muscles, such as pectoral tissue in the MLO-view mammograms. The green pixels represent the 
dense (fibroglandular) tissues in the mammograms.

Reference PD value computation.  For the KUH evaluation set (7,500 mammograms), two expert radiologists 
assessed the PD values, with an inter-reader correlation coefficient of 0.89. We have provided the Bland-Altman 
agreement plot between the two radiologists in Appendix  A. We considered a difference of ± 5% PD value 
between the radiologists’ given PD values, a clinically acceptable difference (CDI); 6840 out of 7,500 KUH evalu-
ation mammograms are within the CDI. The estimated PD values by the two radiologists within the CDI range 

Figure 3.   Examples of generated ground-truth segmentation masks from the KUH development set for 
the breast and dense-tissue segmentation. We overlapped the segmented binary masks on the original 
mammogram.

https://flask.palletsprojects.com/en/2.0.x/
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were then averaged and used as a reference PD value for a given mammogram. For LIBRA and Quantra, we 
computed the PD values using LIBRA software tool version 1.0.4 and Selenia Dimensions®, Hologic Inc., Bedford 
machine equipped with Quantra tool, respectively.

Proposed architecture.  An overview of the proposed MTLSegNet architecture is illustrated in Fig.  4. 
MTLSegNet is based on the MTL approach with two task-specific networks to segment the breast area and the 
dense tissue simultaneously. We considered the dense-tissue segmentation as the main task and the breast-area 
segmentation as the auxiliary task. This helps the model better differentiate the breast area from other tissues, 
such as pectoral and abdominal tissue, in the MLO-view mammograms and enhances the dense-tissue segmen-
tation within the breast area. The task-specific decoders share parameters with the encoder network, and the 
depth of the encoder network is similar to that of the U-net encoder network. We replaced the conventional 
blocks in the encoder and decoder paths with multilevel dilated residual blocks, as suggested in Gudhe et al.22, 
to enhance the learning capabilities of the network.

Additionally, we introduced three parallel dilated convolutions41 with dilation rates of d = 1, 3, and 5 as a bot-
tleneck that expands the field of view by extracting more complex and spatial information at different resolutions. 
The decoder part of each task has up-sampling layers with transpose convolutions. The extracted features from 
the encoder are concatenated with the corresponding decoder layer, and the nonlinear residual skip connections 
restore the information loss during the transition of up-sampling features to down-sampling in the decoder22. The 
prediction layer of the individual tasks is a 1× 1 convolution layer activated by SoftMax42 as a nonlinear function 
that predicts the probability maps of the breast area and the dense tissues. We modified the weighted multitask 
loss function23 to compute the combined loss of the breast-area and the dense-tissue segmentation tasks.

Weight‑adaptive multitask learning.  Multitask learning is an inductive-transfer learning approach that 
improves generalization by sharing domain information among multiple tasks23–25. MTLSegNet consists of a 
common encoder and two decoders for the breast-area and dense-tissue segmentation. The features extracted 
from the encoder are shared by the two independent tasks.

Figure 4.   Illustration of the MTLSegNet architecture with encoder, bottleneck, and task-specific decoders. 
The encoder unit extracts the low- and high-level imaging features from the input mammogram. The extracted 
features are then fed into the bottleneck unit. The bottleneck unit further enhances the field of view by 
extracting more complex and spatial information at different resolutions. The task-specific decoders segment the 
breast area and the dense tissues, simultaneously. The loss function (focal Tversky loss43) is computed using the 
corresponding predicted and ground-truth segmentations of the breast area and the dense tissues. We modified 
the weight adaptive multi-task loss function23 for the segmentation task and computed the combined loss of the 
breast-area and dense-tissue segmentation tasks. The predicted segmentation outputs are overlapped with the 
original mammogram. The red contour line is the predicted segmented breast area, and the solid green pixels 
represent the predicted fibroglandular tissues within the breast area.
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Consider a dataset D = {(x(i), y
(i)
b , y

(i)
d )}Mi=1 , where x(i) represents the input mammogram of the instance i, and 

y
(i)
b  and y(i)d  are the breast-area and the dense-tissue ground-truth binary masks of the corresponding instance 

i. The learning function F of the MTL approach is represented as F(x(i), θ(i)b , θ
(i)
d ) , where θ(i)b  and θ(i)d  are the 

network’s weight parameters for the independent breast-area and dense-tissue segmentation tasks, respectively. 
The total energy function Etotal is defined as follows:

where Eb and Ed are the energy functions, and �b and �d are non-negative hyperparameters with arbitrary values 
between (0,1]. Generally, the values of �b and �d are manually chosen until the model generalization is optimized, 
the so-called naïve approach. The parameter selection for the naïve approach is difficult and involves considerable 
computation, while the trained model usually becomes biased toward a specific task23.

The naïve multitask loss function is defined as follows23:

Since the �b and �d values are in the range (0, 1] and �b + �d ≤ 1 , for simplicity, Equation (2) can be rewrit-
ten as:

Motivated by23,44 , we modified the weight uncertainty loss function for segmenting the breast area and the 
dense tissues. The relative task weights, �b and �d , are learned by considering the uncertainty in the output pre-
dictions of each individual task. We define the weight-adaptive multitask loss function Ltotal as follows:

where Lb and Ld are the loss functions for the breast-area and dense-tissue segmentations, with σb and σd as the 
corresponding task weights for �b and �d , respectively. Consider the likelihood of the model for each segmenta-
tion task as a scaled version of the model output f θ (x) with uncertainty σ , and θ as a network weight parameter 
squashed through a SoftMax function:

Using the negative log-likelihood, the segmentation loss with uncertainty is expressed as follows:

where f θ
c
′ (x) is the cth element of the vector f θ (x) .

The multitask loss function Ltotal(θ , σb, σd) is defined as:

We employed the focal Tversky loss function (FTL)43 for each individual task, Lb and Ld.
For each pixel j, y(j)b  and y(j)d  are the ground truths for the breast area and dense tissue, respectively, and ŷ(j)b  

and ŷ(j)d  are the corresponding predicted segmentation masks. The FTLs for the breast-area and dense-tissue 
segmentation tasks are then defined as follows:

where c and c̄ denote two class labels for region of interest and background, respectively. The total number of 
pixels in an image is denoted by Nand ϕ prevents division by zero. The hyperparameters α and β can be tuned to 
improve the recall in case of class imbalance. The hyperparameter γ represents the focal parameter for detect-
ing hard classes with lower probabilities. We used α = 0.3 , β = 0.7 , and γ = 1 as penalties, as suggested in43.

(1)Etotal = �bEb(θb)+ �dEd(θd)

(2)Ltotal(D : θb, θd) = �b × Lb(D : θb)+ �d × Ld(D : θd).

(3)Ltotal(D : θb, θd) = �× Lb(D : θb)+ (1− �)× Ld(D : θd).

(4)Ltotal(D : θ , σb, σd) = Lb(D : θ , σb)+ Ld(D : θ , σd)

(5)p(y|f θ (x), σ) = softmax
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Computing area‑based percentage mammogram density.  The outputs of MTLSegNet are the probability scores 
of the breast-area and dense-tissue segmentations. We applied a threshold of 0.5 to convert the probability scores 
into binary masks. We resized the output predictions to their original image dimensions, as the reconstructed 
spatial resolutions are less than the original image spatial resolution due to the down-sampling and up-sampling 
operations. The PD value is computed as follows:

where ŷb and ŷd are the predicted breast-area and dense-tissue segmentation binary masks containing the white 
pixels only.

Implementation, evaluation metrics, and statistical analysis
Implementation details.  We implemented the proposed and the baseline approaches, multitask U-net 
and FCN, in Python 3.6 using PyTorch 1.3.145, as the DL framework. Additionally, we implemented Otsu 
thresholding46, as a conventional approach, to segment fibroglandular tissues. We considered four steps to esti-
mate PD value of a given mammogram using Otsu thresholding: first, we generated the segmented breast area 
following the protocol described in "Ground truth annotations and reference PD value computation" Breast-area 
segmentation mask and converted the segmented breast area into a grayscale image. In second step, we smooth-
ened the grayscale segmented breast area using a Gaussian blur with a kernel size of 5. Then, we applied Otsu 
thresholding to segment the fibroglandular tissues. Finally, using Eq. (10), we computed the PD value.

The datasets considered in this study were acquired from different devices, introducing variability to the 
image dimensions, intensity, and visual appearance. We resized all the images to 256× 256 dimensions using 
bicubic interpolation to maintain the original aspect ratio. We combined all the validation set of mammograms 
from all datasets and fine-tuned the proposed model to find the optimal hyperparameters, including optimizer, 
learning rate, learning rate schedulers, and loss functions. We implemented the Bayesian optimization technique47 
using an adaptive experimentation platform48 to find the optimal hyperparameters for the proposed model, the 
experiment results are provided in Appendix B. Additionally, we investigated the impact of various normaliza-
tion techniques, including batch normalization49, instance normalization50, group normalization51, and weight 
standard normalization52, at batch sizes of 2, 4, 8, and 16 on the performance of the multitask segmentation 
models using the validation set of all the datasets. The normalization techniques accelerate the training process 
of DL models and help them converge faster49. The batch size and normalization experiment results are presented 
in Appendix C.

The proposed MTLSegNet and the baseline approaches were trained using the optimal hyperparameters for 
100 epochs on a machine equipped with an Nvidia Tesla V100 16GB graphic card on an Intel Xeon processor 
provided by the IT Service Centre for Science (CSC) Finland53. The implementation source codes are available 
at https://​gitlab.​com/​rajgu​dhe.​uef/​mtlse​gnet.

Segmentation evaluation metrics.  We evaluated the segmentation performance of MTLSegNet and the 
baseline models using F-score and intersection over union (IoU). For a given image x, let y and ŷ be the ground-
truth and predicted binary masks, respectively. The evaluation metrics are defined as follows:

Statistical evaluation of the estimated breast‑density values.  To determine the degree of asso-
ciation between the estimated PD values of MTLSegNet and baseline models with the radiologists provided 
reference PD values, Pearson’s correlation coefficients54 r at 95% confidence intervals (CI) were computed for 
each mammogram view. Bland–Altman plots55 was used to measure the limits of agreement (LoA) between the 
density estimation models at 95% CI.

(10)PD =
�N

j=1 ŷ
(j)
d

�N
j=1 ŷ

(j)
b

× 100

(11)Precision =
�N

j=1 ŷ
(j) ∩ y(j)

�N
j=1ŷ

(j)

(12)Recall =
�N
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(j)
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Results
In this section, we demonstrate the quantitative and qualitative performance of MTLSegNet for both segmenta-
tion and PD value estimation. For the breast-area and dense-tissue segmentations, we compare the performance 
of MTLSegNet against the baseline approaches, FCN and U-net. Furthermore, we compare the accuracy of the 
MTLSegNet-estimated PD values with the radiologist-provided, LIBRA-computed, and Quantra-computed PD 
values. Model evaluation is given for both CC- and MLO-views and the combined CC-MLO view mammograms. 
The CC-MLO view is formed by randomly shuffling the CC- and MLO-view mammograms from the evaluation 
sets of all datasets. We then combined the CC- and MLO-view mammograms from the same patients and created 
the CC-MLO-view evaluation set.

Performance of breast and dense‑tissue segmentation using MTLSegNet and baseline ap‑
proaches.  Weight‑adaptive multitask learning outperforms the naïve multitask learning approach.  In this 
section, we demonstrate the efficacy of the weight-adaptive MTL, Eq. (7), compared to the naïve MTL, Eq. (3). 
For the naïve MTL, we implemented the trial-and-error approach, with � values in the range (0,1). Figure 5 
shows the segmentation accuracy of different values of � in terms of F-score and IoU on the combined validation 
sets. The model trained with � = 0.3 shows a better average segmentation performance for the CC-, MLO-, and 
CC-MLO-view mammograms.

The naïve multitask approach is an expensive grid search and time-consuming approach to find the opti-
mal value of � . We compared the performance of the modified weight-adaptive multitask loss function with 
the optimal weight parameter � = 0.3 of the naïve multitask loss function. Table 2 shows that the modified 
weight-adaptive loss function performs better in segmenting the breast area and the dense tissues than the naïve 
approach for the CC-MLO-view of the combined datasets, with relative improvements of 10.15% and 14.23% in 
terms of F-score and IoU, respectively. The advantage of using the weight-adaptive multitask loss function is that 
the model automatically estimates the weight parameters by considering the weighted uncertainty parameter σ of 
both the breast-area and the dense-tissue segmentations, which is considerably computationally less inexpensive 
than the naïve approach. It also reduces the bias between the primary task (dense-tissue segmentation) and the 
auxiliary task (breast-area segmentation).

Figure 5.   The performance of the naïve multitask loss function on the combined validation set. The weight 
parameter � in the range 0.1–0.9 is on the x-axis, and the segmentation evaluation metrics, IoU and F-score, are 
on the y-axis. The segmentation model trained with � = 0.3 shows better performance compared to the other � 
values.

Table 2.   The comparison of naïve multitask loss function with the modified weight-adaptive multitask loss 
function. The model trained with weight-adaptive multitask loss function shows superior performance in 
segmenting the breast area and the dense tissues than the naïve approach, with relative improvements of 
10.15% and 14.23% in terms of F-score and IoU, respectively, on the CC-MLO-view mammograms of the 
combined validation sets. Best values are in [bold].

Combined validation set ( n = 4845)

Naïve multitask
Weight-adaptive 
multitask

F-score IoU F-score IoU

CC ( n = 2391) 85.2 76.9 85.9 78.3

MLO ( n = 2454) 83.5 75.2 91.1 84.2

CC-MLO ( n = 4845) 83.7 75.2 92.2 85.9
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Multitask learning shows superior performance compared to single‑task segmentation.  We trained MTLSegNet 
and the baseline methods for both single-task and multitask segmentations. For the single-task segmentation, 
we removed the second decoder from the architectures and trained all models with the optimal hyperparameters 
(more details are enclosed in Appendix B) for 100 epochs. We compared the performance of the individual tasks, 
the breast-area and the dense-tissue segmentations, against the multitask learning approach using the combined 
validation sets. For the multitask learning, we computed the evaluation metrics independently for the two task-
specific decoders.

Table 3 shows that the proposed multitask MTLSegNet approach outperforms the single-task approach in 
segmenting dense tissues by average relative improvement of 13.5% in terms of F-score on the CC-MLO-view 
mammograms. For the single-task approach, MTLSegNet outperforms the FCN and U-net dense-tissue segmen-
tations by relative improvements of 10.97% and 5.99% in terms of F-score, respectively. Regarding the multitask 
approach, MTLSegNet shows superior performance for the dense-tissue segmentation compared to the multitask 
FCN and U-net by relative improvements of 12.34% and 16.88% in terms of F-score, respectively. We also notice 
that the breast-area segmentation by the single-task model performs slightly better than the multitask approach. 
Note that in the multitask segmentation approach, the model simultaneously segments the breast area and the 
dense tissues. To reduce the bias between the two tasks, the weight parameter of the individual decoder networks 
is balanced by the weight-adaptive loss function. In the single-task approach, the loss function is generalized to 
a specific task (e.g., the breast-area segmentation), thus achieving slightly better accuracy.

MTLSegNet outperforms the multitask segmentation U‑net and FCN models.  Table 4 shows that the proposed 
MTLSegNet approach outperforms the Otsu, FCN and U-net networks in all datasets. Average relative improve-
ments of 24.07%, 3.17% and 2.29% in terms of F-score are observed over the Otsu, FCN and U-net, respectively, 
in the combined CC-MLO-view evaluation set of all datasets. The highest segmentation improvements with 
MTLSegNet over the DL approaches are attributed to the CC-MLO-view images of the KUH evaluation data, 
at 9.78% and 2.88% relative improvements over the FCN and U-net networks, respectively. Similarly, the low-
est segmentation improvements with MTLSegNet are attributed to the CC-view of the mini-DDSM dataset, at 
1.08% and 0.11% relative improvements over the FCN and U-net networks, respectively.

Figures 6 and 7 show a few segmentation outputs predicted by the MTLSegNet, U-net, and FCN networks 
on the KUH evaluation data. For the CC-view mammograms, the breast-area segmentation accuracy for all 
models is similar (Fig. 6 , first row). For the MLO-view mammograms, MTLSegNet successfully delineated the 
breast area from other tissues, such as abdominal tissues, as shown in red contours in the second row of Fig. 6.

Figure 7 shows that, for both CC- and MLO-view images, the MTLSegNet model precisely segments the dense 
tissues by ignoring the fat tissues within the breast area, while the U-net and FCN models included the fat tis-
sues, resulting in over-segmentation. The introduction of dilated convolutions as a bottleneck in the MTLSegNet 
architecture has potentially improved the dense-tissue segmentation compared to FCN and U-net.

Table 3.   The multitask learning approach shows superior segmentation performance compared to the single-
task approach. For the multitask learning approach, we computed the evaluation metrics independently on the 
predictions of the two task-specific decoders. We compared the dense-tissue segmentation of CC-MLO-view 
mammograms for both the single-task and multitask approaches of FCN, U-net, and MTLSegNet (highlighted 
in bolditalics). Best values are in [bold].

Combined validation set (n = 4845) Single task Multitask

Model Tissue view F-score IoU F-score IoU

FCN

Breast

CC (n = 2391) 83.15 ± 0.013 73.16 ± 0.001 80.31 ± 0.037 70.19 ± 0.003

MLO(n = 2454) 82.68 ± 0.001 70.38 ± 0.003 76.51 ± 0.003 72.72 ± 0.001

CC-MLO (n = 4845) 80.16 ± 0.019 63.16 ± 0.003 79.36 ± 0.003 70.32 ± 0.003

Dense

CC (n = 2391) 68.39 ± 0.02 58.16 ± 0.015 70.16 ± 0.016 68.26 ± 0.12

MLO (n = 2454) 65.62 ± 0.001 57.82 ± 0.013 73.19 ± 0.032 67.37 ± 0.220

CC-MLO (n = 4845) 65.13 ± 0.002 57.10 ± 0.0012 73.03 ± 0.16 67.03 ± 0.11

U-net

Breast

CC (n = 2391) 87.32 ± 0.011 87.13 ± 0.003 84.19 ± 0.002 74.16 ± 0.009

MLO (n = 2454) 86.31 ± 0.003 86.09 ± 0.003 84.73 ± 0.005 72.78 ± 0.0042

CC-MLO(n =  4845) 87.51 ± 0.003 83.32 ± 0.001 85.13 ± 0.005 71.56 ± 0.019

Dense

CC (n =  2391) 71.53 ± 0.002 62.15 ± 0.013 73.36 ± 0.113 72.61 ± 0.001

MLO (n =  2454) 70.31 ± 0.002 61.92 ± 0.03 71.58 ± 0.056 70.32 ± 0.063

CC-MLO (n = 4845) 68.19 ± 0.003 56.12 ± 0.017 70.19 ± 0.005 68.13 ± 0.007

MTLSegNet

Breast

CC (n =  2391) 89.181 ± 0.003 88.381 ± 0.006 85.840 ± 0.001 82.286 ± 0.001

MLO (n = 2454) 89.098 ± 0.004 88.223 ± 0.009 88.906 ± 0.008 87.852 ± 0.016

CC-MLO (n = 4845) 89.095 ± 0.003 88.212 ± 0.007 88.940 ± 0.007 87.915 ± 0.013

Dense

CC (n =  2391) 73.651 ± 0.03 68.899 ± 0.038 81.866 ± 0.013 75.041 ± 0.021

MLO (n = 2454) 70.195 ± 0.037 64.690 ± 0.035 81.965 ± 0.014 75.202 ± 0.022

CC-MLO (n = 4845) 72.278 ± 0.022 67.140 ± 0.023 82.042 ± 0.010 75.323 ± 0.016
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Table 4.   The proposed MTLSegNet segmentation approach outperforms the FCN and U-net networks in all 
datasets. Numbers in parentheses denote the number of evaluation data points in each dataset. We compare 
the performance of MTLSegNet on the individual validation datasets for CC-, MLO-, and CC-MLO-view 
mammograms in terms of F-score and IoU, as evaluation metrics. Best values are in [bold].

Evaluation set ( n = 9582) View Model F-score IoU

KUH ( n = 7500)

CC

Otsu 55.32± 0.31 47.51± 0.03

FCN 71.56± 0.11 60.21± 0.13

U-net 80.09± 0.07 70.48± 0.08

MTLSegNet 81.27 ± 0.06 71.95± 0.07

MLO

Otsu 62.56± 0.03 51.36± 0.05

FCN 75.91± 0.05 65.41± 0.06

U-net 79.65± 0.05 69.59± 0.06

MTLSegNet 80.41± 0.04 70.83± 0.05

CC-MLO

Otsu 68.16± 0.02 57.39± 0.07

FCN 75.32± 0.06 65.76± 0.21

U-net 80.37± 0.13 70.53± 0.22

MTLSegNet 82.69± 0.02 73.40± 0.02

MIAS ( n = 64) MLO

Otsu 44.37± 0.02 51.56± 0.11

FCN 75.51± 0.14 65.10± 0.14

U-net 78.28± 0.10 67.77± 0.10

MTLSegNet 78.75± 0.13 68.41± 0.13

mini-DDSM ( n = 1936)

CC

Otsu 69.72± 0.03 76.32± 0.01

FCN 92.09± 0.00 85.82± 0.01

U-net 92.98± 0.01 87.27± 0.02

MTLSegNet 93.09± 0.01 87.43± 0.02

MLO

Otsu 31.52± 0.06 57.56± 0.02

FCN 75.51± 0.14 65.10± 0.14

U-net 78.28± 0.10 67.77± 0.10

MTLSegNet 78.75± 0.13 68.41± 0.13

CC-MLO

Otsu 75.32± 0.04 71.56± 0.05

FCN 91.78± 0.00 85.23± 0.01

U-net 92.70± 0.01 86.71± 0.02

MTLSegNet 92.83± 0.01 86.92± 0.02

INbreast ( n = 82)

CC

Otsu 58.16± 0.13 45.31± 0.05

FCN 65.93± 0.14 58.77± 0.12

U-net 70.87± 0.08 62.85± 0.07

MTLSegNet 72.13± 0.09 63.99± 0.08

MLO

Otsu 55.36± 0.12 40.5± 0.12

FCN 67.23± 0.14 57.65± 0.13

U-net 67.50± 0.13 57.79± 0.12

MTLSegNet 68.41± 0.09 58.88± 0.08

CC-MLO

Otsu 59.32± 0.05 48.16± 0.11

FCN 73.69± 0.10 64.39± 0.09

U-net 75.17± 0.08 65.97± 0.07

MTLSegNet 75.54 ± 0.07 66.55± 0.06

Combined evaluation set ( n = 9582)

CC

Otsu 71.56± 0.01 68.32± 0.02

FCN 81.60± 0.14 74.38± 0.14

U-net 83.32± 0.12 75.71± 0.13

MTLSegNet 85.92± 0.10 78.35± 0.11

MLO

Otsu 67.56± 0..5 54.16± 0.32

FCN 89.87± 0.02 82.35± 0.02

U-net 90.49± 0.02 83.32± 0.03

MTLSegNet 91.14 ± 0.02 84.28± 0.03

CC-MLO

Otsu 74.31± 0.01 70.30± 0.12

FCN 89.36± 0.91 82.47± 0.22

U-net 90.13± 0.11 84.29± 0.17

MTLSegNet 92.20± 0.01 85.99± 0.02



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12060  | https://doi.org/10.1038/s41598-022-16141-2

www.nature.com/scientificreports/

More segmentation examples for qualitative assessment of the MTLSegNet approach are provided in 
Appendix D.

Area‑based breast percentage density estimation:.  MTLSegNet more accurately estimates the breast 
density values compared to the baseline DL approaches.  The descriptive statistical summary of the estimated PD 
values by the baseline models is shown in Table 5. The mean difference between the FCN, and U-net PD values 
and the radiologist-provided PD values were 0.19%, and 1.9%, respectively, in the CC-MLO-view mammo-
grams. For the KUH evaluation dataset, the average mean difference between MTLSegNet estimated PD values 
and the reference PD values are similar with a Pearson correlation of r = 0.90 (p value < 0.001 ). In the CC-view 
mammograms of KUH evaluation dataset, the FCN estimated PD values are close to the radiologist assessment. 
The U-net model overestimated the PD values for both CC- and CC-MLO-view mammograms compared with 

Figure 6.   Breast-area segmentation outputs predicted by the MTLSegNet, U-net, and FCN networks on the 
KUH evaluation data. Red contours point to segmented regions of other tissue (in this case, abdominal tissues) 
predicted by the U-net and FCN models in the MLO-view.

Figure 7.   Dense-tissue segmentation outputs predicted by the MTLSegNet, U-net, and FCN networks on 
the KUH evaluation data. MTLSegNet successfully segmented the dense tissues, while FCN and U-net over-
segmented the dense tissues by including the fat tissues within the breast area. For the visualization purposes, we 
outline the dense-tissue pixel area using the red contour.
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the radiologist assessment. The distribution of density values for the KUH evaluation set are left skewed. Ap-
pendix E shows the distribution of the estimated density values on the KUH evaluation dataset for all models.

Table 6 shows the Pearson correlation coefficient between the radiologist-provided PD and estimated PD 
from the FCN, U-net, and MTLSegNet models. MTLSegNet shows a higher correlation of r = 0.90 [95% CI 
0.89, 0.91] (p value < 0.001 ) with the radiologist-provided PD values than the FCN and U-net models, with 
r = 0.88 (p value < 0.001 ) and r = 0.84 (p value < 0.001 ), respectively, for the CC-MLO-view mammograms. 
Additionally, we performed a statistical analysis within the DL approaches. For the CC-MLO-view of the KUH 
evaluation data, MTLSegNet-estimated PD values are significantly better than FCN and U-net with p values 
< 0.001 . However, in the CC-view mammograms, FCN- and MTLSegNet-estimated PD values did not show 
significant difference (p value > 0.01).

LIBRA and quantra overestimate the breast‑density values.  Table 7 provides summary statistics of the estimated 
PD values by the LIBRA, Quantra, and MTLSegNet approaches on the KUH evaluation set for the CC-, MLO-, 
and CC-MLO-view mammograms. For the CC-MLO-view, the mean PD values estimated by Quantra, LIBRA, 
and MTLSegNet were 16.18± 15.66 , 14.33± 11.85 , and 9.42± 5.28 , respectively. For the CC-MLO-view mam-
mograms, the mean PD differences between Quantra and LIBRA and the radiologist assessment were 6.76% 
and 4.91%, respectively, indicating that both Quantra and LIBRA overestimated the PD values (the mean PD 

Table 5.   Descriptive summary of estimated PD values by the FCN, U-net, and MTLSegNet approaches on 
the KUH evaluation dataset. We use the mean and the standard deviation (SD) to illustrate the distribution of 
the PD values and compare the robustness of the model predictions. The number in the brackets denotes the 
number of mammograms in each view of the KUH evaluation dataset. The last column represents the mean 
difference between the estimated PD values and the radiologist-provided PD values. We highlighted the model, 
whose mean difference is close to the reference (radiologist) mean PD value. Lower the mean difference, better 
the model performance. The negative mean difference indicates that the model has underestimated the PD 
values compared to the radiologist-provided PD values. Best values are in [bold].

KUH evaluation set ( n = 6840)

View PD estimation Mean ± SD PDmodel − PDradiologist

CC ( n = 3, 528)

Radiologist 10.38± 5.77 –

FCN 10.45± 4.85 0.07

U-net 14.17± 6.47 3.79

MTLSegNet 11.28± 5.75 0.9

MLO ( n = 3, 312)

Radiologist 8.29± 4.62 –

FCN 7.43± 3.71 −0.86

U-net 7.94± 3.50 −0.35

MTLSegNet 8.61± 4.27 0.32

CC-MLO ( n = 6, 840)

Radiologist 9.42± 5.38 –

FCN 9.61± 4.68 0.19

U-net 11.32± 6.16 1.9

MTLSegNet 9.42± 5.28 0

Table 6.   The Pearson correlation between the estimated PD values and radiologist-provided PD values at 95% 
confidence interval. For all three CC-, MLO-, and CC-MLO-view mammograms, MTLSegNet shows a higher 
correlation than the baseline models. Before correlation analysis, we applied a log transform to all density 
values. We highlighted the model with strongest correlation with the radiologist PD values. Best values are in 
[bold].

KUH evaluation dataset ( n = 6840)

View PD estimation r [95% CI] p-value

CC ( n = 3, 528)

FCN 0.88 [0.88, 0.89] < 0.001

U-net 0.87 [0.87, 0.88] < 0.001

MTLSegNet 0.90 [0.90, 0.91] < 0.001

MLO ( n = 3, 312)

FCN 0.89 [0.89, 0.91] < 0.001

U-net 0.86 [0.86, 0.88] < 0.001

MTLSegNet 0.91 [0.91, 0.92] < 0.001

CC-MLO ( n = 6, 840)

FCN 0.88 [0.89, 0.89] < 0.001

U-net 0.84 [0.83, 0.85] < 0.001

MTLSegNet 0.90 [0.89, 0.91] < 0.001
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value assessed by the radiologists was 9.42% for the CC-MLO-view images). Appendix F shows details of the 
distribution of the estimated density values on the KUH evaluation set for MTLSegNet, LIBRA, and Quantra. 
The maximum PD values estimated by LIBRA and Quantra were 62% and 86%, respectively, while the maximum 
reference PD value in the KUH evaluation set was 48%. In Appendix G, we show a qualitative visualization of the 
limitations of LIBRA segmentation and compared it with MTLSegNet to illustrate the success of our proposed 
approach in segmenting the breast area and the dense tissues for more accurate PD value estimation.

Table 8 provides the correlation of estimated PD values from the LIBRA, Quantra, and MTLSegNet approaches 
with the radiologist PD values. The PD estimated by MTLSegNet strongly correlates with the radiologist-provided 
PD values. For the CC-MLO-view images, the proposed MTLSegNet model shows a strong correlation of r = 0.90 
[95% CI 0.89, 0.91] with p value < 0.001 , while LIBRA and Quantra show high correlations of r = 0.67 [95% 
CI 0.66, 0.68] and r = 0.64 [95% CI 0.63, 0.65], respectively, with p values < 0.001 . In Appendices F and G, we 
qualitatively demonstrate the breast and dense-tissue segmentations from LIBRA and compared them with 
the MTLSegNet approach. LIBRA failed to exclude the pectoral and abdominal tissues from the breast-area 
segmentation and over-segmented the dense tissues, resulting in an overestimate of the PD values. The Quantra 
software tool provides only the PD values; thus, we were not able to compare the intermediate visualizations 
of breast and dense-tissue segmentations. We report the correlation between LIBRA and the radiologist on an 
evaluation set of 6840 mammograms. The correlation results are in agreement with Lee and Nishikawa14, who 
showed a Pearson correlation of r = 0.69 for the CC-MLO-view mammograms on an evaluation set of 91 mam-
mograms. These results indicate that our proposed model more accurately estimates the breast density values 
than the existing LIBRA and Quantra tools.

Table 7.   Descriptive summary of estimated PD values of MTLSegNet, LIBRA, and Quantra and the 
radiologist-assessed PD values using the KUH evaluation set. We show the mean and standard deviation (SD) 
of the PD values for all models. We highlighted the model, whose mean difference is close to the reference 
(radiologist) mean PD value. Lower the mean difference, better the model performance. Best values are in 
[bold].

KUH evaluation set ( n = 6840)

View PD estimation Mean ± SD PDmodel − PDradiologist

CC ( n = 3, 528)

Radiologist 10.38± 5.77 -

MTLSegNet 11.28± 5.75 0.9

LIBRA 14.89± 12.34 4.51

Quantra 16.22± 15.53 5.84

MLO ( n = 3, 312)

Radiologist 8.29± 4.62 -

MTLSegNet 8.61± 4.27 0.32

LIBRA 13.66± 11.21 5.37

Quantra 16.13± 15.82 7.84

CC-MLO ( n = 6, 840)

Radiologist 9.42± 5.38 -

MTLSegNet 9.42± 5.28 0

LIBRA 14.33± 11.85 4.91

Quantra 16.18± 15.66 6.76

Table 8.   The Pearson correlation computed between the radiologist-provided PD values and the estimated 
PD values from MTLSegNet, LIBRA, and Quantra at 95% CIs on the log-transformed PD values. The models 
with high correlation are highlighted. For both CC- and MLO-view mammograms, our proposed approach 
demonstrated a strong correlation with the radiologist-provided density values. Best values are in [bold].

KUH evaluation set ( n = 6840)

View PD estimation r [95% CI] p-value

CC ( n = 3528)

Radiologist Vs MTLSegNet 0.90 [0.90, 0.91] < 0.001

Radiologist Vs LIBRA 0.66 [0.65, 0.68] < 0.001

Radiologist Vs Quantra 0.64 [0.63, 0.67] < 0.001

MLO ( n = 3312)

Radiologist Vs MTLSegNet 0.91 [0.91, 0.92] < 0.001

Radiologist Vs LIBRA 0.68 [0.66, 0.67] < 0.001

Radiologist Vs Quantra 0.64 [0.62, 0.67] < 0.001

CC-MLO ( n = 6840)

Radiologist Vs MTLSegNet 0.90 [0.89, 0.91] < 0.001

Radiologist Vs LIBRA 0.67 [0.66, 0.68] < 0.001

Radiologist Vs Quantra 0.64 [0.63, 0.65] < 0.001
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Additionally, Fig. 8 shows Bland–Altman agreement plots for MTLSegNet, LIBRA, and Quantra with the 
radiologist-provided PD values for the KUH evaluation dataset. The estimated PD values using the MTLSegNet 
approach show a strong agreement with the radiologist (98.6% CDI acceptance range) with LoA from −0.54 to 
0.52 with a mean bias of −0.008 on the log-transformed scale. LIBRA and Quantra show moderate agreement 
with the radiologist with 82.75% and 80.87% CDI acceptance rates, respectively, and mean biases of −0.26 (LoA: 
−1.33 to 0.74) and −0.21 (LoA: −1.70 to 1.28).

Figure 8.   Bland–Altman agreement plots for MTLSegNet, LIBRA, and Quantra with the radiologist-provided 
PD values for the KUH evaluation dataset. The center blue dotted line shows the average PD values for the two 
methods. The dotted lines on the top and bottom indicate the LoA range, that is, the value at 1.96 times the 
standard deviation (SD) in both directions. If the data points are within the LoA, the two methods have strong 
agreement, otherwise the methods disagree. The Bland-Altman plots are shown for (a) MTLSegNet, (b) LIBRA, 
and (c) Quantra on the KUH evaluation dataset for the CC-MLO-view mammograms.
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Discussion
In this study, we developed a DL approach for estimating area-based breast PD value in mammograms using a 
weight-adaptive multitask learning approach based on 21,315 mammograms from KUH and 10,416 mammo-
grams from the open-source datasets. The results showed that the proposed approach successfully segmented 
the breast area and the dense tissues and could estimate the breast density with higher precision than the exist-
ing LIBRA and Quantra tools. The main reasons for the outstanding performance of MTLSegNet are as follows. 
First, the model consisted of two task-specific decoders, with the dense-tissue segmentation, as the primary task, 
and the breast-area segmentation, as the auxiliary task. This architecture helped the model to exclude tissues 
or organs that adversely affected the segmentation and thus, estimation of the PD values; Second, the proposed 
model was trained end-to-end with a modified weight-adaptive multitask learning loss function, which enabled 
the network to generate more accurate predictions; and third, the model was trained using combination of all 
the training mammograms from all datasets. Datasets had different data distributions; therefore, the model 
learned from multi-vendor, multi-resolution, and multi-intensity variations, and preferably only a single model 
was generated for evaluation. Results in Table 4 showed that our model achieved excellent segmentation perfor-
mance not only for each individual dataset, but also the combined evaluation set of all datasets. The proposed 
approach successfully segmented the breast area and the dense tissues more precisely than the multitask U-net 
and FCN approaches by on average, 3.17% and 2.29% relative improvements, in terms of F-score, respectively, 
in the combined CC-MLO-view data. The estimated PD values using our approach also showed a strong correla-
tion with the values provided by the expert radiologists with a Pearson correlation r = 0.90 (p value < 0.001).

In our study, 6840 out of 7500 mammograms from the KUH evaluation set were within the CDI range and 
therefore, considered for evaluation. The assessed density values of the excluded 660 mammograms were not 
in agreement between the radiologists mainly due to the poor quality of the mammograms and blood vessels 
embedded within the dense tissues. We additionally correlated the PD values estimated by our model with values 
given by each radiologist for these 660 excluded mammograms. As expected, we obtained moderate correlations 
with r = 0.715 [95% CI 0.706, 0.721] and r = 0.736 [95% CI 0.725, 0.746] for such mammograms.

The training sizes of MIAS ( n = 194 ) and INbreast ( n = 246 ) datasets were considerably lower than KUH 
( n = 11,052 ) and mini-DDSM ( n = 5812 ). Additionally, the resolution of mammograms and distribution of 
pixel intensities were different among the datasets (see Fig. 2). Therefore, the model, trained on the combined 
training sets of all datasets, has been biased towards datasets having larger training data, i.e., KUH and mini-
DDSM. This partly explains that why F-score and IoU values for the MIAS and INbreast datasets were relatively 
lower compared to the KUH and mini-DDSM datasets in Table 4.

The density assessment in the BI-RADS classification subjects to the radiologist’s experience and often shows 
intra- and inter-reader variability. Our data-driven DL approach for the density estimation is reproducible, scal-
able, and furthermore, provides density scores in a continuous percentage scale, which reduces the subjectivity. 
MTLSegNet accepts mammograms in DICOM format (or any other imaging format) irrespective of the acquisi-
tion manufacturer and device model, thus easily scalable. The inference time takes about a minute to estimate 
density values for 100 mammograms. Our method is, however, able to classify mammograms into BI-RADS 
density categories. We additionally performed a BI-RADS classification on the INbreast and mini-DDSM evalu-
ation data, where BI-RADS density categories were available. The estimated PD values for these two datasets 
were categorized into 25% density intervals in line with the BI-RADS 4th edition categories, i.e., 0–25% (category 
1), 26–50% (category 2), 51–75% (category 3), and 76–100% (category 4). Our proposed approach successfully 
classified the INbreast and mini-DDSM evaluation data into BI-RADS categories with accuracies of 87% and 
92%, respectively, comparable to the results reported in56,57.

Although our proposed approach improves the density estimation, it has a few limitations. The proposed 
model is restricted to the area-based density estimation. Moreover, due to the stochastic and non-linear nature 
of the DL methods, it is important to investigate the model uncertainty in predictions, which we leave it to a 
future study (Supplementary Information).

Conclusion
To conclude, we developed a reliable and scalable model to estimate area-based breast density from mammo-
grams. The proposed approach showed consistent results and would assist the radiologist in personalized screen-
ing settings. In future study, we extend this model to volumetric breast-density estimation by incorporating the 
concepts of generative adversarial networks to generate the ground-truth segmentations more effectively. This will 
reduce the time consumed by manually creating the ground-truth segmentations. We will also investigate various 
uncertainty qualification techniques to improve the model performance and to build trust among radiologist 
to incorporate the DL algorithms in regular screening workflow. The estimated PD values will be incorporated 
into BC risk-prediction models in our future studies.

Data availability
The KUH imaging data and the corresponding annotations used in this study are available under request to the 
corresponding author. MIAS and mini-DDSM datasets are open source and publicly available. Annotations of 
these two datasets are provided in the manuscript GitLab page at https://​gitlab.​com/​rajgu​dhe.​uef/​mtlse​gnet. 
INbreast dataset is available with the data owner, contact inesdomingues@gmail.com for more details.

Code availability
All the implementation source codes, the annotation tool, and the trained models are open-source and freely 
available online in the manuscript GitLab page at https://​gitlab.​com/​rajgu​dhe.​uef/​mtlse​gnet. A representative 
website demo is also shown in Fig. 9. During mammogram upload, the data provider gives consent that the image 

https://gitlab.com/rajgudhe.uef/mtlsegnet
https://gitlab.com/rajgudhe.uef/mtlsegnet
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is used for segmentation and density estimation. We expect this web platform will act as a hub for radiologists to 
efficiently assess the breast density so that inter- and intra-reader variability are considerably decreased.

Received: 23 March 2022; Accepted: 5 July 2022

References
	 1.	 Amendoeira, I. et al. European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis. 1–160 (2013).
	 2.	 McCormack, V. A. & dos Santos Silva, I. Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis. 

Cancer Epidemiol. Prev. Biomark. 15, 1159–1169 (2006).
	 3.	 Vachon, C. M. et al. Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res. 9, 1–9 (2007).
	 4.	 Vachon, C. M., Kuni, C. C., Anderson, K., Anderson, V. E. & Sellers, T. A. Association of mammographically defined percent breast 

density with epidemiologic risk factors for breast cancer (united states). Cancer Causes Control 11, 653–662 (2000).
	 5.	 Holland, K., van Gils, C. H., Mann, R. M. & Karssemeijer, N. Quantification of masking risk in screening mammography with 

volumetric breast density maps. Breast Cancer Res. Treat. 162, 541–548 (2017).
	 6.	 von Euler-Chelpin, M., Lillholm, M., Vejborg, I., Nielsen, M. & Lynge, E. Sensitivity of screening mammography by density and 

texture: A cohort study from a population-based screening program in denmark. Breast Cancer Res. 21, 1–7 (2019).
	 7.	 Sickles, E. et al. Breast imaging reporting and data systems. ACR BI-RADS Atlas Breast Imaging Rep. Data Syst. 5, 25 (2013).
	 8.	 Destounis, S. et al. Using volumetric breast density to quantify the potential masking risk of mammographic density. Am. J. 

Roentgenol. 208, 222–227 (2017).
	 9.	 Alikhassi, A., Gourabi, H. E. & Baikpour, M. Comparison of inter-and intra-observer variability of breast density assessments 

using the fourth and fifth editions of Breast Imaging Reporting and Data System. Eur. J. Radiol. Open 5, 67–72 (2018).
	10.	 Byng, J. W., Boyd, N., Fishell, E., Jong, R. & Yaffe, M. J. The quantitative analysis of mammographic densities. Phys. Med. Biol. 39, 

1629–1638 (1994).
	11.	 Gomez, I. M., El Busto, M. C., Guirao, J. A., Perales, F. R. & Azpitarte, R. L. Semiautomatic estimation of breast density with DM-

Scan software. Radiology (English Ed.) 56, 429–434 (2014).
	12.	 Keller, B. M. et al. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive 

fuzzy c-means clustering and support vector machine segmentation. Med. Phys. 39, 4903–4917 (2012).
	13.	 Hartman, K., Highnam, R., Warren, R. & Jackson, V. Volumetric assessment of breast tissue composition from FFDM images. In 

International Workshop on Digital Mammography, 33–39 (2008).
	14.	 Lee, J. & Nishikawa, R. M. Automated mammographic breast density estimation using a fully convolutional network. Med. Phys. 

45, 1178–1190 (2018).
	15.	 Zanaty, E. & Ghoniemy, S. Medical image segmentation techniques: An overview. Int. J. Inform. Med. Data Process. 1, 16–37 (2016).
	16.	 Chen, C. W., Luo, J. & Parker, K. J. Image segmentation via adaptive k-mean clustering and knowledge-based morphological 

operations with biomedical applications. IEEE Trans. Image Process. 7, 1673–1683 (1998).
	17.	 Van Grinsven, Mark JJP., van Ginneken, B., Hoyng, C. B., Theelen, T. & Sánchez, C. I. Fast convolutional neural network train-

ing using selective data sampling: Application to hemorrhage detection in color fundus images. IEEE Trans. Med. Imaging 35, 
1273–1284 (2016).

	18.	 Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).

Figure 9.   Sample website report of the MTLSegNet PD estimation model.



18

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12060  | https://doi.org/10.1038/s41598-022-16141-2

www.nature.com/scientificreports/

	19.	 Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Confer‑
ence on Medical Image Computing and Computer-Assisted Intervention, 20:234–241 (2015).

	20.	 Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition, 3431–3440 (2015).

	21.	 Amer, A., Ye, X., Zolgharni, M. & Janan, F. ResDUnet: Residual Dilated UNet for Left Ventricle Segmentation from Echocardio-
graphic Images. 2019–2022 (2020).

	22.	 Gudhe, N. R. et al. Multi-level dilated residual network for biomedical image segmentation. Sci. Rep. 11, 14105–14105 (2021).
	23.	 Kendall, A., Gal, Y. & Cipolla, R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7482–7491 (2018).
	24.	 Caruana, R. Multitask learning. Mach. Learn. 28, 41–75 (1997).
	25.	 Ruder, S. An overview of multi-task learning in deep neural networks. arXiv:​1706.​05098 (arXiv preprint) (2017).
	26.	 Lehman, C. D. et al. Mammographic breast density assessment using deep learning: Clinical implementation. Radiology 290, 52–58 

(2019).
	27.	 Li, S. et al. Computer-aided assessment of breast density: Comparison of supervised deep learning and feature-based statistical 

learning. Phys. Med. Biol. 63, 14 (2018).
	28.	 Ahn, C. K., Heo, C., Jin, H. & Kim, J. H. A novel deep learning-based approach to high accuracy breast density estimation in digital 

mammography. In Medical Imaging 2017: Computer-Aided Diagnosis, 10134 (2017).
	29.	 Fonseca, P. et al. Automatic breast density classification using a convolutional neural network architecture search procedure. In 

Medical Imaging 2015: Computer-Aided Diagnosis 9414 (2015).
	30.	 Kallenberg, M. et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE 

Trans. Med. Imaging 35, 1322–1331 (2016).
	31.	 Gemici, A. A., Bayram, E., Hocaoglu, E. & Inci, E. Comparison of breast density assessments according to BI-RADS 4th and 5th 

editions and experience level. Acta Radiol. Open 9, 25 (2020).
	32.	 Wirth, M. A. & Stapinski, A. Segmentation of the breast region in mammograms using active contours. Visual Commun. Image 

Process. 5150, 1995–2006 (2003).
	33.	 Rampun, A., Morrow, P. J., Scotney, B. W. & Winder, J. Fully automated breast boundary and pectoral muscle segmentation in 

mammograms. Artif. Intell. Med. 79, 28–41 (2017).
	34.	 Suckling, J. P. The mammographic image analysis society digital mammogram database exerpta medica. Digit. Mammo 1069, 

375–378 (1994).
	35.	 Lekamlage, C. D., Afzal, F., Westerberg, E. & Cheddad, A. Mini-DDSM: Mammography-based automatic age estimation. In 

International Conference on Digital Medicine and Image Processing, 1–6 (2020).
	36.	 Moreira, I. C. et al. INbreast: Toward a full-field digital mammographic database. Acad. Radiol. 19, 236–248 (2012).
	37.	 Rose, C., Turi, D., Williams, A., Wolstencroft, K. & Taylor, C. Web services for the DDSM and digital mammography research. In 

International Workshop on Digital Mammography, 376–383 (2006).
	38.	 StandardScaler. Accessed on 25.02.2022.
	39.	 Wirth, M. A. & Stapinski, A. Segmentation of the breast region in mammograms using active contours. Int. Soc. Opt. Photon. 5150, 

1995–2006 (2003).
	40.	 Dutta, A. & Zisserman, A. The VIA annotation software for images, audio and video. Proc. Int. Conf. Multimed. 4, 2276–2279 

(2019).
	41.	 Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. L. Deeplab: Semantic image segmentation with deep convolu-

tional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2017).
	42.	 Sharma, S., Sharma, S. & Athaiya, A. Activation functions in neural networks. Towards Data Sci. 6, 310–316 (2017).
	43.	 Abraham, N. & Khan, N. M. A novel focal tversky loss function with improved attention u-net for lesion segmentation. In Inter‑

national Symposium on Biomedical Imaging, 683–687 (2019).
	44.	 Kendall, A. & Gal, Y. What uncertainties do we need in bayesian deep learning for computer vision? Computing Research Reposi-

tory. arXiv:​1703.​04977 (2017).
	45.	 Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 25 (2019).
	46.	 Xu, X., Xu, S., Jin, L. & Song, E. Characteristic analysis of otsu threshold and its applications. Pattern Recogn. Lett. 32, 956–961 

(2011).
	47.	 Balandat, M. et al. BoTorch: A framework for efficient Monte-Carlo Bayesian optimization. Adv. Neural. Inf. Process. Syst. 33, 

21524–21538 (2020).
	48.	 Adaptive Experimentation Platform. Accessed on 25.02.2022.
	49.	 Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International 

Conference on Machine Learning, 448–456 (2015).
	50.	 Ulyanov, D., Vedaldi, A. & Lempitsky, V. S. Instance normalization: The missing ingredient for fast stylization. Computing Research 

Repository. arXiv:​1607.​08022 (2016).
	51.	 Wu, Y. & He, K. Group normalization. Int. J. Comput. Vis. 128, 742–755 (2020).
	52.	 Qiao, S., Wang, H., Liu, C., Shen, W. & Yuille, A. L. Weight standardization. Computing Research Repository. arXiv:​1903.​10520 

(2019).
	53.	 IT Service Centre for Science (CSC) . Accessed on 25.02.2022.
	54.	 Pearson, K. VII. Mathematical contributions to the theory of evolution-III. Regression, heredity, and panmixia. Philos. Trans. R. 

Soc. Lond. Ser. A 20, 253–318 (1896).
	55.	 Giavarina, D. Understanding bland Altman analysis. Biochem. Med. 25, 141–151 (2015).
	56.	 Falconí, L., Pérez, M., Aguilar, W. & Conci, A. Transfer learning and fine tuning in mammogram bi-rads classification. In 2020 

IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), 475–480 (IEEE, 2020).
	57.	 Medeiros, A., Ohata, E. F., Silva, F. H., Rego, P. A. & Reboucas Filho, P. P. An approach to bi-rads uncertainty levels classification via 

deep learning with transfer learning technique. In 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems 
(CBMS), 603–608 (IEEE, 2020).

Acknowledgements
This study is supported by Grants from the European regional development fund and the Cancer Society of 
Finland.

Author contributions
N.R.G. involved in conceptualization, methodology, software, and writing the original draft. H.B. involved in 
conceptualization, methodology, validation, writing, review, and editing. M.S., H.O., R.V., V.-M.K., and A.M. 
involved in conceptualization, writing, review, and editing.

http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1903.10520


19

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12060  | https://doi.org/10.1038/s41598-022-16141-2

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​16141-2.

Correspondence and requests for materials should be addressed to N.R.G. or H.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-16141-2
https://doi.org/10.1038/s41598-022-16141-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Area-based breast percentage density estimation in mammograms using weight-adaptive multitask learning
	Material and methods
	Data acquisition protocol. 
	Ground truth annotations and reference PD value computation. 
	Breast-area segmentation mask. 
	Dense-tissue segmentation mask. 
	Reference PD value computation. 

	Proposed architecture. 
	Weight-adaptive multitask learning. 
	Computing area-based percentage mammogram density. 


	Implementation, evaluation metrics, and statistical analysis
	Implementation details. 
	Segmentation evaluation metrics. 
	Statistical evaluation of the estimated breast-density values. 

	Results
	Performance of breast and dense-tissue segmentation using MTLSegNet and baseline approaches. 
	Weight-adaptive multitask learning outperforms the naïve multitask learning approach. 
	Multitask learning shows superior performance compared to single-task segmentation. 
	MTLSegNet outperforms the multitask segmentation U-net and FCN models. 

	Area-based breast percentage density estimation:. 
	MTLSegNet more accurately estimates the breast density values compared to the baseline DL approaches. 
	LIBRA and quantra overestimate the breast-density values. 


	Discussion
	Conclusion
	References
	Acknowledgements


