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Distribution model transferability 
for a wide‑ranging species, 
the Gray Wolf
M. G. Gantchoff1*, D. E. Beyer Jr2, J. D. Erb3, D. M. MacFarland4, D. C. Norton5, B. J. Roell5, 
J. L. Price Tack4 & J. L. Belant1

Using existing data can be a reliable and cost-effective way to predict species distributions, and 
particularly useful for recovering or expanding species. We developed a current gray wolf (Canis lupus) 
distribution model for the western Great Lakes region, USA, and evaluated the spatial transferability 
of single-state models to the region. This study is the first assessment of transferability in a wide-
ranging carnivore, as well as one of few developed for large spatial extents. We collected 3500 wolf 
locations from winter surveys in Minnesota (2017–2019), Wisconsin (2019–2020), and Michigan 
(2017–2020). We included 10 variables: proportion of natural cover, pastures, and crops; distance to 
natural cover, agriculture, developed land, and water; major and minor road density; and snowfall 
(1-km res.). We created a regional ensemble distribution by weight-averaging eight models based 
on their performance. We also developed single-state models, and estimated spatial transferability 
using two approaches: state cross-validation and extrapolation. We assessed performance by 
quantifying correlations, receiver operating characteristic curves (ROC), sensitivities, and two 
niche similarity indices. The regional area estimated to be most suitable for wolves during winter 
(threshold = maximum sensitivity/specificity) was 106,465 km2 (MN = 48,083 km2, WI = 27,757 km2, 
MI = 30,625 km2) and correctly predicted 88% of wolf locations analyzed. Increasing natural cover 
and distance to crops were consistently important for determining regional and single-state wolf 
distribution. Extrapolation (vs. cross-validation) produced results with the greatest performance 
metrics, and were most similar to the regional model, yet good internal performance was unrelated 
to greater extrapolation performance. Factors influencing species distributions are scale-dependent 
and can vary across areas due to behavioral plasticity. When extending inferences beyond the 
current occurrence of individuals, assessing variation in ecology such as habitat selection, as well 
as methodological factors including model performance, will be critical to avoid poor scientific 
interpretations and develop effective conservation applications. In particular, accurate distribution 
models for recovering or recovered carnivores can be used to develop plans for habitat management, 
quantify potential of unoccupied habitat, assess connectivity modeling, and mitigate conflict, 
facilitating long-term species persistence.

Understanding which factors limit species distributions is a foundational question in ecology and conser-
vation, and species distribution models (SDMs) have become an important tool to map and predict species 
occurrences1–5. Use of SDMs has proliferated in the past several decades due to increasing accessibility and 
quantity of species occurrence data, the development of robust modeling algorithms (e.g.6), and the improvement 
of software and technological resources7–9. In addition, SDMs have been used successfully for on-the-ground 
conservation and management initiatives10. For example, information regarding species occurrence and dis-
tribution is critical for natural resource decision making, including International Union for Conservation of 
Nature plans11, invasive species management12, state wildlife action plans13,14, and conservation of endangered 
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species15,16. In this context, researchers often use SDMs to understand species responses to different land uses 
and land covers, and spatial predictions can highlight priority locations to facilitate conservation initiatives.

Because natural resource management agencies and conservation organizations often have limited resources, 
using existing data to predict species distributions is an important line of research17. When species location data 
are unavailable or limited, researchers can estimate species distributions by transferring results across spatial 
and temporal extents and resolutions18. Studies on spatial transferability assess how well a model can be general-
ized to other areas19,20, such as evaluating niche opportunities for non-native species21 or species reintroduction 
assessments22. However, when models are overfitted to local conditions (i.e. when a model fits the calibration 
data too closely), performance on validation data and the spatial transferability of the model can be reduced23. 
Despite the importance of spatial transferability in distribution models, and the existence of studies designed 
to evaluate them (e.g.19,24–26), most are focused on species with marked ecological or climatic limits, or virtual 
species (i.e. simulations27), rather than wide-ranging or ecologically flexible species.

Evaluating transferability of SDMs is particularly important when assessing recovering species and spe-
cies with expanding distributions, as it can provide forecasts of future distributions and provide insights into 
potential transferability of a model rather than proceeding under untested assumptions28. Specifically, SDMs for 
recovering or recovered carnivores can be used to develop plans for habitat management, quantify potential of 
unoccupied habitat, assess connectivity modeling, and mitigate conflict (e.g.29–31). Globally, large carnivores have 
experienced vast range contractions driven mostly by human persecution, loss and degradation of habitat, and 
prey depletion32–34. However, these declines can be reversed (e.g.32), and populations of several large carnivores 
are recovering, particularly in the northern hemisphere34,35. In North America, gray wolves (Canis lupus) have 
recolonized portions of their historic range after severe population declines in the mid-twentieth century36,37. 
Our objective was to develop a current wolf distribution model for the western Great Lakes region, expecting 
likelihood of occurrence to be positively influenced by increasing natural cover, and negatively influenced by 
increasing human disturbance38,39. In addition, we assessed SDM transferability by comparing model perfor-
mance in making predictions within or outside the geographical domains of the model1. This study is the first 
assessment of SDM transferability in a behaviorally plastic and wide-ranging large carnivore, while also add-
ing to a limited number of studies that assessed SDM transferability in any type of ecosystem at a regional (i.e. 
thousands of square kilometers) scale (e.g.19,40,41).

Methods
Species background.  Wolves were nearly extirpated from the contiguous United States by the 1930s, 
mainly due to persecution to protect livestock, habitat loss, and prey declines37. By 1974, wolves were listed 
on the United States Endangered Species Act (16 U.S.C. 1531–1544, 87 Stat. 884). In January 2021, wolves in 
Michigan, Wisconsin, and Minnesota were removed from the United States list of Threatened and Endangered 
Species, however a federal judge restored protections on 10 February 2022, continuing a decades-long tug and 
pull between state and federal control of wolf management. Given the estimated population size (about 3800 
individuals), the gray wolf population was considered recovered in the western Great Lakes region by the US 
Fish and Wildlife Service37, encompassing roughly two-thirds of the current total population in the contiguous 
United States42.

Study area.  Our study area comprised Minnesota, Wisconsin, and Michigan, USA. The northern portion of 
the study area is forest-dominated, with agriculture and human development predominant in the south. The area 
includes 44% forested lands, 31% cultivated crops, 6% pastures, and 7% developed lands; with lesser amounts 
of wetlands, shrubland, and herbaceous land covers43. Elevations ranges from 174 to 701 m above sea level. The 
area contains abundant lakes and streams, with most (86%) areas within 10 km of water. Human population 
density is low in northern portions of the study area and increases to > 100 people/km2 in southern portions.

Wolf surveys.  We collected wolf location data from winter surveys in Minnesota (2017–2018), Wiscon-
sin (2019–2020), and Michigan (2017–2020). In Minnesota, the Minnesota Department of Natural Resources 
(MN DNR) mailed instructions to participants (i.e. trained natural resources staff at county, state, federal, and 
tribal agencies) and asked them to record locations and group size estimates of all wolves and wolf sign (e.g., 
track, scat) observed during normal work duties from November until snowmelt the following spring (about 
mid-May). Participants could record locations on forms or maps, but most data were entered by participants 
in a web-based GIS survey application. This database was combined with wolf observations and signs recorded 
during other wildlife surveys (e.g., carnivore scent station survey, furbearer winter track survey) coordinated by 
MN DNR.

In Wisconsin, the Wisconsin Department of Natural Resources (WI DNR) conducts wolf snow-track surveys 
every winter in areas of known or suspected wolf pack activity, with potential wolf range divided into 164 survey 
blocks to ensure comprehensive coverage. During winter 2019–2020, 158 blocks (96%) were sampled. Survey 
blocks were delineated to ensure an entire block could be surveyed in a day. Survey blocks average 500 km2 and 
are bordered by public roads, waterways, or state boundaries. Wisconsin Department of Natural Resources staff, 
Tribal biologists, and trained volunteers conduct the surveys 1–3 days after snowfalls and attempt to traverse 
most snow-covered roads in survey blocks. Trackers attempt to survey blocks at least 3 times (average 2.8 surveys 
per block) to identify the number of individuals in every pack.

In Michigan, the Michigan Department of Natural Resources (MI DNR), with assistance from the United 
States Department of Agriculture Wildlife Services (USDA WS), conducts wolf track surveys every other year 
during winter (December–March/April, e.g. 2018 survey was from December 2017 to April 2018), consisting of 
intensive and extensive searches of roads and trails by truck and snowmobile for wolf tracks and sign, to count 
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the number of individuals in each pack. The MI DNR also attempts to capture and attach GPS collars to wolves 
in areas to be surveyed during the next survey period, to locate packs and spatially differentiate adjacent packs. 
The Upper Peninsula of Michigan, where wolves currently occur, is divided into 21 wolf survey units from which 
a random sample, stratified by historic wolf density, is drawn for each survey (targeting at least 50% of the Upper 
Peninsula to be surveyed). Michigan DNR and USDA WS staff are assigned to conduct track surveys in specific 
units, and surveys in adjacent units are coordinated to avoid duplicate counting of wolves.

To standardize the three datasets and decrease spatial autocorrelation, we filtered the data so no more than 
one location (randomly selected) occurred per 1-km2 pixel (i.e. the resolution of our covariates, see below). To 
further test if spatial autocorrelation influenced results, we additionally filtered data to no more than one loca-
tion every 5 km. We compared modeling results for both datasets by assessing model performance (ROC and 
sensitivity, see below), and calculating the spatial correlation between resulting maps (using Band Collection 
Statistics in ESRI ArcMap 10.7).

Distribution modeling.  We considered 10 variables for our wolf distribution models: proportion of natu-
ral cover, proportion of pastures, proportion of cultivated crops, distance to natural cover, distance to agricul-
ture, distance to developed land, distance to water, major road density, minor road density, and annual snowfall. 
All variables were resampled to 1-km resolution. For land cover, we used data from the National Land Cover 
Database 201643. We regrouped the original land cover types into four categories: natural, cultivated crops, pas-
tures, and developed cover. Natural cover included all non-developed covers (i.e. forest, grassland, shrubland, 
etc.), and developed cover included all four NLCD developed categories (i.e. open, low, high, and very high). We 
calculated proportion of land covers (natural, pasture, and crops) by aggregating the original 30-m resolution 
layer and calculating the proportion of each cover at the 1-km scale. We developed four distance to cover layers: 
distance to natural cover, distance to crops, distance to pastures, and distance to developed cover, at 1-km reso-
lution. Using data from the National Hydrography Dataset (2016), we developed a distance to water layer (i.e. 
rivers and lakes). We created two road density layers using TIGER/Line Shapefiles (US Census Bureau): minor 
road density (county and local roads) and major road density (primary and secondary roads, e.g. highways and 
main arteries). Snowfall data (i.e. snow depth) was obtained from the National Weather Service National Snow-
fall Analysis (http://​www.​nohrsc.​noaa.​gov/​snowf​all) which estimates snowfall in the recent past by gathering 
several operational data sets into a unified analysis; we obtained the total annual winter snowfall from winters 
2017–2018 to 2019–2020 and calculated the average across years. To compare the range of environmental values 
in each state, we created a variable range violin graph each state and the regional study area.

We created a correlation matrix using all GIS layers. We found strong correlation between distance to pastures 
and distance to crops (r = 0.82) as well as between proportion of natural cover and proportion of crops (r = − 0.78). 
To determine the best combination of variables, we ran all possible combinations for the regional model (never 
including two correlated variables in the same model) and chose the one with the greatest performance metrics 
(ROC and sensitivity, see below). Because models require background data (e.g. pseudo-absence points), we 
generated a randomly drawn sample of 10,000 background points from the study area, gave equal weight to 
presence and pseudo-absence points during modeling44. We used the entire study area to draw background 
points assuming all of it was available to wolves, as indicated by historical distribution36,37 and more recent data 
confirming sporadic occurrence outside areas snow track surveys were conducted (MN DNR, WI DNR, MI 
DNR, unpublished data).

We used an ensemble model approach to achieve more robust predictions45, combining 8 individual algo-
rithms: random forest (RF), generalized boosted regression (GBM), Maximum entropy (MaxEnt), generalized 
linear model (GLM), generalized additive model (GAM), classification tree analysis (CTA), surface range envelop 
(SRE, also known as BIOCLIM), and flexible discriminant analysis (FDA) (algorithm details in Appendix S1). 
We assessed internal performance of individual models using threefold random cross-validation, with 80% 
of locations used as SDM training data and 20% as SDM testing data for each iteration. We evaluated models 
using the area under the curve of a receiver operating characteristic (ROC) plot, true skill statistics (TSS)46, and 
sensitivity scores represented as the ratio of presence sites correctly predicted over the number of positive sites 
in the sample9.

We created the ensemble model by weight-averaging all individual models proportionally to their perfor-
mance evaluation metrics scores9, which resulted in a map representing continuous likelihood of presence. We 
quantified the influence of each variable in each individual model by permutation importance9, the greater the 
value of this metric, the more importance the predictor variable has on the model. To evaluate uncertainty, we 
created a committee averaging map, in which each individual model estimates if the species is present or absent 
in a pixel by transforming the continuous likelihood of presence to a yes (1) or no (0) binary response using an 
optimized threshold (maximum sensitivity and specificity). When the value of the committee averaging map is 1 
or 0, it means that all models predicted presence (1) or absence (0), respectively. When the prediction approaches 
0.5, about half the models identified the species as present. We used the biomod2 package9 in R v. 3.6.2 (R Core 
Team 2020) to develop individual models, ensembles, and committee consensus maps.

Spatial transferability.  Models are often sensitive to the spatial extent of the study area47 and background 
points strategy48, and dividing data into multiple geographic regions provides inference into how well models 
perform in unsampled regions28. We estimated spatial transferability using two complementary approaches: 
making predictions within (state cross-validation) or outside (extrapolation via restriction of background 
points) the geographical domains of the models. To perform a balanced comparison, for the spatial transfer-
ability analyses all three states had an equal number of points included in each model. Because Michigan had the 

http://www.nohrsc.noaa.gov/snowfall
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lowest number of locations after filtering to 1-km resolution (478 locations), we randomly subsampled locations 
from the other two states to match that value.

For the cross-validation assessment, we used a spatially structured approach by creating three distribution 
models, each iteration using points from one state (i.e., MI, MN, and WI) as modeling locations, points from 
throughout the study area as background pseudo-absence locations, and wolf locations from the other two states 
as validation. For the extrapolation assessment, we similarly created three distribution models using points 
from only one state as modeling locations and the locations for the other two states as validation, however we 
restricted the background locations to occur only in the same state as the modeling locations (e.g., MI locations 
with MI only pseudoabsences). By doing this, we effectively created state-specific models, and then extrapolated 
the results to the other two unsampled states.

We quantified how well each single-state model (MI-crossvalidation, MN-crossvalidation, WI-crossvalidation, 
MI-extrapolation, MN-extrapolation, WI-extrapolation) predicted suitability for the study area by calculating 
Spearman correlation coefficients between all single-state and regional models, as well as ROC and sensitivity for 
the validation datasets. Additionally, we compared probability distributions with Schoener’s D and Hellinger’s 
I metrics49,50, which calculate niche similarity by comparing the estimates of suitability of each grid cell of the 
study area, and vary from 0 (no overlap) to 1 (complete overlap).

Results
We collected 3513 wolf locations: 594 in MI, 1597 in MN, and 1322 in WI. The 1-km filtering resulted in 2703 
locations (MI 478, MN 1372, WI 853), and the 5-km filtering in 1315 locations (MI 241, MN 691, WI 383). 
Both filtered datasets resulted in ensemble models with high performance (ROC = 0.91 and sensitivity = 88% 
for 1 km, and ROC = 0.89 and sensitivity = 84% for 5 km). Due to almost identical performance and high spa-
tial correlation between the two ensembles (98.2%), we considered the 1-km filtering process satisfactory and 
proceeded with analyses using this dataset (Fig. 1). Additionally, after testing all combinations of correlated 
variables (see “Methods”), the combination of proportion of natural cover and distance to crops had the best 
performance metrics (Appendix Table S1), therefore we excluded distance to pastures and proportion of crops 
from subsequent analyses.

The regional model (Fig. 1) had a ROC of 0.91. Variable permutation importance identified proportion of 
natural cover and distance to crops as having the greatest influence on regional wolf presence (Table 1). Likeli-
hood of wolf presence increased with greater proportions of natural cover (~ 20% wolf likelihood at 0–20% natu-
ral cover vs. ~ 80% likelihood at 80–100% natural cover; Supplementary material Fig. S1) and greater distances 
from crops (20% wolf likelihood at 0 km from crops vs. 70–80% likelihood at ~ 1 km from crops). Less important 
variables included distance to developed cover (decreasing wolf likelihood with increasing distance), minor 
road density (greatest wolf likelihood at lower densities, with 50% of locations occurring at < 0.72 km/km2, and 
90% at < 1.26 km/km2), and snowfall (wolf likelihood increasing to ~ 2.5 m snow depth then decreasing; Supple-
mentary material Fig. S1). Using committee averaging, the greatest uncertainty in suitability predictions among 
individual models occurred in the periphery of the distribution (Supplementary material Fig. S2), with high 
consistency in the core distribution. Using the binary map (optimized threshold = 47.5% suitability), the estimated 
winter area most suitable for wolves was 106,465 km2 (MN = 48,083 km2, WI = 27,757 km2, MI = 30,625 km2, 
[MI upper peninsula = 18,812 km2, MI lower Peninsula = 11,813 km2]; Fig. 1), with wolf presence sensitivity of 
88%, and pseudoabsence specificity of 75%.

Compared to the regional model, each single-state cross-validation model over- or underestimated suitability 
in different parts of the study area (Fig. 2), with overestimation often surrounding the presence locations. The 
WI-crossvalidation model had the greatest correlation with the regional model and the highest sensitivity for 
the validation points (0.74 and 78% respectively), followed by MN, then MI (Fig. 3). Internal ROC values were 
overall high (0.93–0.96), however the validation ROC values were markedly lower (Fig. 3), being greatest for 
MI and WI, followed by MN.

Comparisons between the regional model and each single-state extrapolation model also indicated over- or 
underestimation of suitability in different parts of the study area, though not as strongly as the cross-validation 
models (Figs. 2, 3). The correlation values with the regional model and validation sensitivity percentages were 
high; best performing was MN (0.92 and 88% respectively), followed by WI and MI (Fig. 3). Internal ROC 
values were again overall high (0.90–0.93), with validation ROC values lower (Fig. 3), but similar for the three 
states (0.78–0.80).

The comparison of cross-validation and extrapolation results indicated that overall, the extrapolation models 
performed more similarly to the regional model, with greater correlation with the regional model, higher sen-
sitivity for validation points, greater validation ROC values, and greater Schoener’s D and Hellinger’s I metrics. 
However, for internal prediction (within the spatial extent of presence locations used), the single-state cross-
validation assessment resulted in marginally greater mean ROC values (0.95 vs. 0.92). The variable permutation 
importance of single-state models revealed the most influential variables were similar, with distance to crops 
and proportion of natural cover (the two most influential for the regional model) always among the top three 
variables (Fig. 4). However, snowfall was also sometimes within the top 3 variables, with widely different ranking 
across states. The variable range violin graph revealed that the available environmental gradient varied among 
states, with only two variables (i.e. proportion of natural and proportion of pastures) having similar ranges in all 
three states (Supplementary material Fig. S3). Wolves overall did not appear to select for or against any specific 
distance to developed land, using them as available throughout the region (Supplementary material Fig. S3).
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Figure 1.   Wolf distribution in the western Great Lakes region, USA. (a) Wolf presence locations during 
2017–2020 resampled to no more than one point per km2 with major roads shown as grey lines. (b) Regional 
landscape suitability (see “Methods” and Fig. 2). (c) Binary map indicating areas most suitable for wolves 
(suitability threshold 47.5%, see “Methods”). Maps developed with ArcMap 10.8.1 (desktop.arcgis.com). Wolf 
photograph: J. Belant, Global Wildlife Conservation Center.
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Discussion
We developed a current wolf winter distribution model for the western Great Lakes region and evaluated model 
transferability comparing single-state model predictions to the regional model. Single-state models with restricted 
background points performed slightly better than the regional model at describing wolf distribution within 
the geographic extent of their presence locations, likely because local models are able to detect smaller-scale 
variations more effectively than global models that incorporate greater heterogeneity in environment–species 
relationships19,41. In contrast to a previous study40, our spatial transferability assessment indicated that extrapola-
tion produced results most similar to the regional model, as well as having better performance in relation to the 
validation data. Proportion of natural cover and distance to crops were the most important covariates determin-
ing regional wolf distribution, and single-state models also consistently indicated crops and natural cover among 
the three most influential variables.

Among states, we expected good internal performance (ROC) to be correlated with extrapolation 
performance51, but we found no such relationship between internal ROC and validation ROC. Similarly, a study 
in the Iberian Peninsula found that better internal performance metrics did not correspond with extrapolation 
success19. We observed variable extrapolation performance among states, likely a result of environmental differ-
ences or biotic factors such as area-specific species interactions20. From a modeling perspective, the differences in 
the variable extent within each state is expected to influence their extrapolation performance. For example, MN 
is the only state that envelops the complete extent of values for distance to crops (see Supplementary material, 
Fig. S3), a key variable for the regional wolf distribution model and possibly resulting in the better performance 
we observed for the MN-extrapolation model, and the poor performance when extrapolating to MN from the 
other two states. Barbosa and coauthors19 concluded that the analyzed range of values of the predictors is possibly 
more important than other factors, such as having a dataset free of false absences.

The regional model results suggested that distance to crops and proportion of natural cover were the most 
influential covariates explaining wolf distribution across the Great Lakes region. Previous studies in this area also 
found that wolves avoid agricultural land52, occur in forest cover52–54 and select for natural areas while avoiding 
human-modified covers including pastures, hayfields, and farms55. Wolves in Europe behaved similarly, selecting 
wild areas far from human disturbance39. Snowfall had minor importance at the regional level, but was more 
influential at the state level, particularly in Michigan, likely because it is the state with the greatest snowfall range 
variation, and wolves occur in some of the northernmost areas within the state. At finer spatial scales wolves 
seem to select areas with less snow, potentially in response to prey distributions56 or human activities57, which 
suggests that snowfall has a scale-dependent effect on winter wolf distribution.

All models predicted the northern half of the Lower Peninsula of Michigan to have suitable areas for wolves, 
though wolves are absent. The Lower Peninsula is the last major area of the western Great Lakes region with 
potential habitat where a breeding population of wolves are not established58. Gray wolves have only rarely been 
sighted in the Lower Peninsula in the past 15 years, even though wolves could cross the Straits of Mackinac 
(separating the Lower from the Upper Peninsula) during winters with adequate ice formation59. Habitat-based 
density estimates have calculated the potential for 40–10560 or 52–63 wolves59 in the Lower Peninsula. However, 
greater proportions of livestock-based agriculture in the Lower Peninsula, as well as greater road and human 
densities, may result in increased challenges such as human-caused wolf mortalities and human-wolf conflicts.

Persistence of large carnivores in human-modified landscapes is facilitated by their behavioral plasticity, which 
allows them to adapt to human activity through variable spatiotemporal patterns of habitat selection that facili-
tate human avoidance while supplying resources for persistence (e.g. prey, resting sites, etc.). In particular, road 
density has been identified as a major determinant of wolf presence, with wolf probability very low in areas with 
road densities exceeding 0.7 km/km254,59,60,62. However, half of the wolf locations in our study area occurred above 
this threshold (90% occurred below 1.26 km/km2), which could in part be influenced by our survey methods. 
Wolf responses to low-traffic roads are context-dependent, conditional on ease of travel, human settlements, time 
of day, prey densities, mortality risks, and seasons (e.g.63–67). Behavioral responses of wolves to anthropogenic 
disturbance can also vary due to internal factors, such as behavioral states and social affiliations61. Nonetheless, 

Table 1.   Variable permutation importance for individual models included in the regional model (see 
“Methods”) to estimate landscape suitability for wolves, western Great Lakes region, USA, 2017–2020. The 
greater the value, the more importance the predictor variable has on the model. Bold numbers indicate the top 
two performing covariates for each model.

GLM GBM SRE GAM RF FDA CTA​ MAXENT Mean

Prop. of natural cover 0.529 0.335 0.345 0.493 0.294 0.164 0.492 0.255 0.363

Dist. to crops 0.063 0.196 0.301 0.071 0.396 0.421 0.403 0.284 0.267

Dist.to developed 0.026 0.027 0.095 0.042 0.164 0.037 0.083 0.045 0.065

Minor road density 0.050 0.020 0.137 0.042 0.154 0.020 0.052 0.036 0.064

Snowfall 0.008 0.020 0.055 0.021 0.220 0.051 0.034 0.086 0.062

Dist. to natural cover 0.041 0.000 0.132 0.033 0.017 0.000 0.000 0.017 0.030

Major road density 0.013 0.003 0.101 0.012 0.025 0.004 0.015 0.044 0.027

Distance to water 0.000 0.000 0.118 0.004 0.075 0.000 0.005 0.011 0.027

Prop. of pastures 0.010 0.001 0.092 0.011 0.030 0.000 0.033 0.019 0.025
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suitable land covers (i.e. forests and shrublands) are consistently selected for, suggesting some habitat selection 
patterns will persist regardless of context (e.g. selection of natural cover). Although behavioral plasticity might 
facilitate wildlife occurrence, it might not be enough to ensure long-term population viability and persistence 
in areas with decreasing habitat quality and availability.

When species absence data are unavailable, SDMs (such as in this study) use pseudo-absences, and the 
environmental span of the background from which pseudo-absences are drawn has important ramifications 
for predictions and performance of SDMs68–70. Defining the spatial extent of pseudo-absences can be subjec-
tive (except for populations limited by geographical barriers), and different strategies have been proposed to 
improve the selection of an appropriate dataset (e.g. random, environmental exclusion, minimum–maximum 
distance), with some distribution modeling techniques including regression being more affected than others 
(i.e. machine learning, classification trees; see44). Specifically, limiting the maximum distance of background 

Figure 2.   Top: Calibration (wolf presences) vs background (pseudo-absences) locations for the regional model, 
and cross-validation vs. extrapolation assessments. Bottom: Performance of each single-state model compared 
to the regional model (Fig. 1) in estimating landscape suitability for wolves, western Great Lakes region, USA, 
2017–2020. Maps developed with ArcMap 10.8.1 (desktop.arcgis.com). Wolf photograph: J. Belant, Global 
Wildlife Conservation Center.
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Figure 3.   Performance metrics for the single-state distribution models (see “Methods”, Fig. 2) for wolves, 
western Great Lakes region, USA, 2017–2020. ROC_internal = area under the curve of an operator 
characteristic curve (ROC) for wolf calibration locations, ROC_validation = ROC for wolf validation locations, 
Validation sensitivity = proportion of correctly predicted wolf presence locations within the validation data, 
Correlation = Spearman’s r in relation to the regional model, Schoener’s D and Hellinger’s I = niche similarity 
metrics with the regional model (0 = no overlap, 1 = complete overlap, see “Methods”), MI Michigan, MN 
Minnesota, and WI Wisconsin.

Figure 4.   Average variable permutation importance (8 models, see “Methods”) for wolf distribution models, 
western Great Lakes region, USA, 2017–2020. Shown are the regional model and each single-state cross-
validation and extrapolation model (see Fig. 2). MI Michigan, MN Minnesota, WI Wisconsin, ‘cross’ cross-
validation, and ‘ext’ extrapolation.
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points may improve sensitivity performance44,70. In agreement, we found that for each single-state model, though 
restricting background points to the same state as the calibration data had no clear effect in internal performance, 
it always increased validation sensitivity values, indicating improved discrimination ability. Despite being beyond 
the scope of this study, we highlight how the background choice can influence SDM results, and encourage further 
exploration of this topic (see68,70).

Conclusions
While using existing data to predict species patterns for areas with limited information is a valuable and relevant 
research topic17, transferring model results into unsampled regions is more complex than simply filling gaps 
within a landscape26. We present a first assessment of the current distribution and spatial transferability for a 
flexible and wide-ranging large carnivore, finding that extrapolation had better predictive power into unsampled 
states, and that among states, good internal performance did not ensure extrapolation success. Consideration 
of these limitations can help develop better spatially-explicit models of conservation priority areas, which are 
becoming increasingly important71,72. Assessing spatial transferability performance is key when assessing expand-
ing and recovering species and can identify concerns with extending inferences beyond the current occurrence 
of individuals. Matching distribution models to the needs of particular objectives73, and assessing variation in 
predictive power, internal performance, as well as ecological and behavioral inferences, will continue to be criti-
cal to avoid poor scientific interpretations and develop appropriate conservation and management applications.

Data availability
The data that support the findings of this study are available from the Michigan, Minnesota, and Wisconsin 
Departments of Natural Resources. Legal restrictions apply to the availability of these data, which were used 
under agreement for the current study, and so are not publicly available. Data should be requested from each 
natural state agency (see author list for reference).
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