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Construction of a new automatic 
grading system for jaw bone 
mineral density level based 
on deep learning using cone beam 
computed tomography
Yanjun Xiao1,8, Qihui Liang2,8, Lin Zhou3, Xuezhi He2, Lingfeng Lv4, Jiang Chen5, Su Endian6, 
Guo Jianbin4, Dong Wu  4,7* & Lin Lin2*

To develop and verify an automatic classification method using artificial intelligence deep learning 
to determine the bone mineral density level of the implant site in oral implant surgery from 
radiographic data obtained from cone beam computed tomography (CBCT) images. Seventy 
patients with mandibular dentition defects were scanned using CBCT. These Digital Imaging and 
Communications in Medicine data were cut into 605 training sets, and then the data were processed 
with data standardization, and the Hounsfiled Unit (HU) value level was determined as follows: Type 1, 
1000–2000; type 2, 700–1000; type 3, 400–700; type 4, 100–400; and type 5, − 200–100. Four trained 
dental implant physicians manually identified and classified the area of the jaw bone density level 
in the image using the software LabelMe. Then, with the assistance of the HU value generated by 
LabelMe, a physician with 20 years of clinical experience confirmed the labeling level. Finally, the HU 
mean values of various categories marked by dental implant physicians were compared to the mean 
values detected by the artificial intelligence model to assess the accuracy of artificial intelligence 
classification. After the model was trained on 605 training sets, the statistical results of the HU mean 
values of various categories in the dataset detected by the model were almost the same as the HU 
grading interval on the data annotation. This new classification provides a more detailed solution to 
guide surgeons to adjust the drilling rate and tool selection during preoperative decision-making and 
intraoperative hole preparation for oral implant surgery.

Clinically, there is no clear consensus on the definition of bone quality, but in general it covers many aspects such 
as the degree of bone mineralization and the shape and type of the bone trabecula. At present, the most widely 
used jaw bone quality classification is the four types of jaw classification proposed by Lekholm and Zarb in 19851, 
in which the jaw bones are divided into one of four types according to the amount of cortical bone and cancellous 
bone in the radiological images of the jaw2: Type I bone is considered the least vascular and most homogenous, 
type II is a combination of cortical bone with a marrow cavity, type III is predominantly composed of trabecular 
bone, and type IV is described as having a very thin cortex and low-density trabeculae. However, the existing 
grading method is limited to the grading of bone quality. This is a disadvantage in the context of implant surgery, 
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where it is common to observe bones of different densities in one area. Thus, using this classification system 
alone may cause offset of the implant site or the loss of torsion during implant placement. We believe that the 
ultimate goal of bone classification in oral implant surgery is to guide a more comprehensive understanding of 
the implant site area, so as to help the surgeon decide the size of the cavity preparation and the choice of implant 
diameter during the implant surgery. In addition, an improved bone classification system will help to improve 
the initial stability of the implant and the resistance to drilling during the operation.

In this study, a deep learning artificial intelligence method was adopted to determine the bone density types 
at different locations of the implant sites from the radiological data obtained from cone beam computed tomog-
raphy (CBCT) images, so as to provide a more detailed bone density classification range. This method can also 
improve the accuracy of bone mineral density grade judgment and reduce the possibility of errors in individual 
subjective judgment. Based on this method, an automatic classification method was developed and verified, and 
a new classification standard of jaw bone was proposed. The jaw bone is divided into five types, type 1 being the 
densest, and type 5 being the loosest. The range of bone types is automatically calibrated through the use of a big 
data artificial intelligence system to better guide clinicians in implant surgery operations.

Material and methods

1.	 Data labeling and processing: Seventy patients with mandibular dentition defects who were treated at the 
Affiliated Dental Hospital of Fujian Medical University from March 2020 to September 2020 were selected 
and scanned with CBCT (KAVO i-CAT). The 70 DICOM data were extracted and imported into the pre-
processing program for vertical sagittal arch cutting, with about 10 pieces cut per dataset, and finally got 
605 training sets. The recognized types of jaw bone, according to the HU values, were as follows: Type 1, 
1000–2000; type 2, 700–1000; type 3, 400–700; type 4, 100–400; and type 5, − 200–100. Data standardization 
was performed first. From experience, HU values that fell within the range of − 200–2000 were extracted. 
Those higher than the maximum value were set as the maximum value, and those lower than the minimum 
value were set as the minimum value. For the convenience of labeling, DICOM data mapping was converted 
into PNG format and imported into the graphical image annotation tool LabelMe 4.5.6. Four trained dental 
implant physicians combined the HU values of the slices to manually identify and label the area of the jaw 
bone density level in the image (Fig. 1). Then, a physician with 20 years of clinical experience confirmed the 
labeling level using the HU value of the LabelMe software as a guide. The random selection of images was 
repeated five times to confirm that the classifications were correct. Moreover, each evaluator was compared 
to the reference standard classification to evaluate the effectiveness of subjective classification. The datasets 
were divided into training sets and test sets at a ratio of 9:1.

2.	 Model construction: In the current study, we chose Nested-UNet3 as the backbone to extract and fuse mul-
tiscale information to determine the corresponding semantic segmentation results. Nested UNet involves 
stacking different levels of UNet4, in which the addition of dense short joins (upper and lower sampling) 
serves to achieve a better combination of depth and shallow features and better feature extraction perfor-
mance than UNet (Fig. 2).

Based on Nested U-net, we optimized the corresponding loss using the “Pixel-Level” of “FocalLoss”5 (1) and 
the Class-Level of loss Diceloss (2), and then two loss according to certain weight (3) the total loss resulting 
from the weighted function. Using Diceloss alone will reduce the training stability. The addition of FocalLoss 
can resolve the imbalance of positive and negative samples and accelerate convergence. Optimization through 
two different dimensions of loss can also help the model better understand the task.

(1)	 In Eq. 1, y represents the label and y’ represents the prediction results. The balance factor α is used to 
balance the uneven ratio of positive and negative samples. The coefficient γ can reduce the loss of easy-to-
divide samples. Focus on difficult samples.

(2)	 A and B represent the predicted result and Ground Truth (GT), respectively. |A ∩ B| is the intersection of 
AB, and |A||B| represent the number of elements of A and B, respectively.

In addition, we optimized the data enhancement module, and performed operations such as random rotation 
and scaling of the data to improve the robustness of the model. Finally, the segmentation results were processed 
by the corresponding connected domains to obtain the final segmentation results.

(1)Focal loss =

{

−α(1− y′)γ log y′, y = 1
−(1− α)y′γ log(1− y′), y = 0

}

(2)Dice loss = 1−
2|A ∩ B|

|A| + |B|

(3)L = αLfocal loss + βLdice loss
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Ethical approval.  This study was performed in line with the principles of the Declaration of Helsinki. 
Approval was granted by the Ethics Committee of Biomedical Research of the Affiliated Stomatological Hospital 
of Fujian Medical University (Date 8.9.2021/No.60).

Informed consent.  Informed consent was obtained from all individual participants included in the study.

Figure 1.   Bone density annotation picture.

Figure 2.   Model structure of UNet and Nested-UNet.
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Result
After the model was trained on 605 training sets, the average dice of each category on 68 test sets could reach 
a maximum of 0.75.

The 68 test sets were counted, and the statistical results of the HU mean labeled by physicians, and the HU 
mean detected by the model are shown in Table 1. It can be seen that the mean HU of all categories in the neural 
network test results is almost the same as the HU grading interval labeled by physicians.

The results of analysis and comparison between the standard deviation of the HU value labeled by physicians 
and the standard deviation predicted by the model are shown in Table 2. It can be seen that when the model 
predicted each category, the standard deviation of the HU value in this category was consistent with the standard 
deviation of the category labeled by physicians. This indicates that the model has learned that the HU value of 
each bone mineral density level should fluctuate within a certain range without excessive deviation.

The recognition effect is shown in Fig. 3 (types 1–5 are represented by red, yellow, green, blue, and purple, 
respectively).

Discussion
Advantages of artificial intelligence and its application in stomatology.  Within artificial intel-
ligence (AI), machine learning has emerged as the method of choice for developing practical software for 
computer vision, speech recognition, natural language processing, robot control, and other applications6. As 
decisions are made based on the combination of computer processing of data and algorithms, AI can improve 
accuracy and reduce the chance of errors compared to humans in the same situation. In addition, unlike human 
beings, machines are not affected by subjective factors such as emotional factors, mental state, and personal 
experience, so the efficiency of machines when dealing with problems is greatly improved, which enables correct 
decisions to be made quickly. The combination of AI such as in the context of diagnosis and treatment proce-
dures, can greatly reduce the risk of misdiagnosis.

Artificial intelligence has been extensively studied in the field of dentistry. Indeed, Lu et al.7 analyzed samples 
from 36 patients with head and neck tumors using artificial intelligence deep learning, and constructed an arti-
ficial intelligence model using hyperspectral imaging technology. This technology can predict the boundary of 
head and neck tumors with an accuracy of up to 91%, which is significantly better than traditional fluorescence 
imaging technology. In another artificial intelligence system focused on early detection of tumors, Uthoff et al.8 
combined fluorescence imaging technology with artificial intelligence to develop an early prediction device for 
oral tumors. By collecting natural images and fluorescence imaging images of intraoral tissue, combined with AI, 
patients with early cancer can be identified quicker and easier, with a prediction accuracy of up to 80%. In the 
field of stomatology, the Japanese scholar Hiraiwa et al.9 used the imaging data of 760 mandibular first molars in 
an artificial intelligence model to predict the presence of double distal roots with an accuracy of 86.9%. In addi-
tion, there are also extensive studies in the application of artificial intelligence in the prediction of periodontal 
lesion state, tumor lymph node metastasis prediction, and auxiliary colorimetry in aesthetic repair.

The use of artificial intelligence combined with big data allows researchers to provide a snapshot of the real 
world from population-level clinical data. In addition, as a powerful data network connection, previously unre-
lated isolated datasets between different fields are integrated with big data to provide new possibilities for the 
discovery of biological manifestations, research progress, and clinical associations of diseases10.

Issues with the existing bone classification.  At present, the most widely used jaw grading was pro-
posed by Lekholm and Zarb in 19851, in which the grading is divided into four categories according to the 
proportion of compact bone and spongy bone. However, this classification method is not sufficiently accurate, 
which is reflected by the difficulty in distinguishing between type II bone and type III bone11. In addition, this 
classification method is limited to the classification of bone quality, which is based on the whole classification of 
the jaw block, and does not reflect the bone condition of the local part of the jaw or other specific sites.

Table 1.   The mean HU of all categories of physicians labeled and model detected.

Type 1 2 3 4 5

Standard HU value interval 1000–2000 700–1000 400–700 100–400  − 200–100

HU mean labeled by physicians 1519 920 693 351 195

HU mean labeled by model prediction 1520 964 648 352 136

Table 2.   The standard deviation of HU values of all categories marked by physicians and the model prediction 
results.

Type 1 2 3 4 5

HU standard deviation labeled by physicians 350 309 359 307 303

HU standard deviation predicted by the model 369 327 371 315 286
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In 2018, Asama et al.12 proposed a revised L&Z (Lekholm and Zarb) classification, which considered all pos-
sible combinations of compact bone and spongy bone. Although compact bone and spongy bone can be clearly 
distinguished with high repeatability, it is not sufficient to directly guide the implantation procedure.

In 1994, Klemetti et al.13 divided the mandible into three categories based on the X-ray morphology of the 
lower margin of the mandible on the oral surface slice: Cl, the endosteal margin of the cortex was even and 
sharp on both sides; C2, the endosteal margin showed semilunar defects (lacunar resorption) or seemed to form 
endosteal cortical residues (one to three layers) on one or both sides; and C3, the cortical layer formed heavy 
endosteal cortical residues and was clearly porous. Statistical studies of large datasets demonstrated that there 
is a positive correlation between the mineral density of bones and the changes in the mandibular cortex. Yet, 
panoramic images provide too little information to definitively diagnose the risk of osteoporosis.

Later, Nicolielo et al.14 developed a computer-based automatic bone classification method. According to the 
trabecular bone parameters obtained by CBCT, all bone regions were classified into three trabecular pattern 
classes (sparse, intermediate, and dense), and morphometric parameters were used to automatically classify the 
trabecular patterns. This method has higher retest consistency and reliability. However, the proposed classifica-
tion is relatively general and requires artificial follow-up analysis before implantation.

Some scholars classify the jaw according to the hand feel during the drilling process. Greenstein et al.15 divided 
the jaws into four types based on the tactile feedback from the 2 mm twist drill: D1 feels like drilling into oak or 
maple, D2 feels like drilling into pine or spruce, D3 feels like drilling into balsa wood, and D4 feels like drilling 
into Styrofoam. This method can guide the subsequent implantation operation according to the feeling during 
drilling. However, since most clinicians lack the experience of drilling wood with different textures, and con-
siderable surgical experience is gained by relying on the feel, the hand feel classification is not widely accepted.

Characteristics of the new classification and its significance in clinical application.  The tradi-
tional jaw classification focuses on different bone types in different regions of the jaw, and there remains a lack 
of analysis of different positions in the same region. The new jaw bone classification can fill this gap to a certain 

Figure 3.   Bone mineral density section and its identification effect map. From left to right are the original 
image, doctor’s label and model identification effect map.
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extent by covering preoperative diagnostic evaluation and intraoperative decision-making to reducing the dif-
ficulty of decision-making in implantation.

The new classification divides the jaw bone density from high to low (type 1–5) according to the HU value of 
CBCT. Type 1 bones are the densest, suggesting that in these cases, attention should be paid to the blood supply 
at the implant site and the cooling during the implant preparation. Type 5 bones are the most loose, indicating 
that attention should be paid to the initial stability of the implant and the possibility of implant osseointegration 
failure in this type of bone.

The new classification system outlined here is an artificial intelligence classification system that has been 
designed to guide the clinical implantation decision. Artificial intelligence is used for deep learning of the model 
to improve the accuracy of classification. This technique has high potential to showcase the application of preci-
sion medicine in the field of oral implantology. The cornerstone of precision medicine is naturally the ability to 
make precise diagnoses based on a mechanistically informed taxonomy, and the consistency of results can be 
guaranteed using machine classification16. After artificial intelligence analysis determines the quality classifica-
tion of the jaw bone, it can directly propose a reasonable implant process plan, which improves the accuracy of 
the clinical operation.

This new classification provides a more refined solution for implant surgery. In clinical practice, differences 
in jaw bone density are often encountered at implant sites in the jaw-gingival, mesiodistal, and buccal-lingual 
directions. Thus, the drill needle can easily deviate from the preoperative design position in the horizontal direc-
tion toward the less osteoporotic part and the vertical upward part. This is often due to accidental perforation 
caused by a sudden decrease in bone mass or a sharp increase in the temperature of the drill head caused by 
the increase in bone density, which consequently affects osseointegration. The traditional classification model 
cannot provide the surgeon with the specific distribution position of the different densities of the jawbones, 
which may cause the surgeon to misjudge during the implantation process. However, the new jaw classification 
can clearly identify the loose or dense sites in the jaw. Combined with the conventional imaging data measure-
ment and analysis, it can guide physicians to adjust the drilling speed and the selection of drilling tools in the 
process of preoperative decision-making and intraoperative hole preparation. For example, in the application of 
computer-guided implant surgery (implant navigation surgery/template guided implant surgery), the technology 
can be used to indicate the density of different areas of the jaw bone, which can be used to guide the optimal 
three-dimensional location of the implant.

With regard to the limitations of this method, the new classification method lacks clinical prospective studies 
to confirm its practical feasibility. Thus, it is necessary to use a new type of jaw bone classification to assess the 
correlation between the initial stability of the implant and the resistance to the cavity. Therefore, further research 
is needed, including the use of artificial intelligence big data to investigate the epidemiological characteristics of 
different jaw bone types and jaw bone types in different regions in the population.

Data availability
The datasets analysed during the current study are available from the corresponding author on reasonable request.
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