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Genetic dissection of grain iron 
and zinc, and thousand kernel 
weight in wheat (Triticum aestivum 
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Genetic biofortification is recognized as a cost‑effective and sustainable strategy to reduce 
micronutrient malnutrition. Genomic regions governing grain iron concentration (GFeC), grain 
zinc concentration (GZnC), and thousand kernel weight (TKW) were investigated in a set of 280 
diverse bread wheat genotypes. The genome‑wide association (GWAS) panel was genotyped using 
35 K Axiom Array and phenotyped in five environments. The GWAS analysis showed a total of 17 
Bonferroni‑corrected marker‑trait associations (MTAs) in nine chromosomes representing all the 
three wheat subgenomes. The TKW showed the highest MTAs (7), followed by GZnC (5) and GFeC (5). 
Furthermore, 14 MTAs were identified with more than 10% phenotypic variation. One stable MTA i.e. 
AX-95025823 was identified for TKW in both E4 and E5 environments along with pooled data, which 
is located at 68.9 Mb on 6A chromosome. In silico analysis revealed that the SNPs were located on 
important putative candidate genes such as Multi antimicrobial extrusion protein, F-box domain, Late 
embryogenesis abundant protein, LEA-18, Leucine-rich repeat domain superfamily, and C3H4 type zinc 
finger protein, involved in iron translocation, iron and zinc homeostasis, and grain size modifications. 
The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds 
for subsequent use in marker‑assisted selection. The identified SNPs will be valuable in the rapid 
development of biofortified wheat varieties to ameliorate the malnutrition problems.

Over three billion global population suffers from diseases associated with micronutrient deficiencies including 
iron and zinc and the problem is more severe in the countries where the food habits are dominated by cereal-
based  diets1. Iron, zinc, and vitamin A are the three nutrients that are recognized as limiting factors in the diet 
by the world health  organization2. Approximately, one-fourth of the population around the globe is suffering 
from anemia due to iron  deficiency3. The women of reproductive age are more vulnerable as one in every three 
women is anemic, which lead to 0.12 million deaths and a loss of 48.2 million disability-adjusted life years 
(DALY) in  20104. Anemia due to acute iron deficiency, particularly in children,  pregnant, and lactating women 
lead to life-threatening health complexes such as chronic heart disease, kidney failure, and inflammatory bowel 
 disease5. Zinc is another important micronutrient essential for various immunological and biochemical functions 
and severe deficiency may lead to impaired growth and development, altered immunity, pregnancy issues, and 
neuro-behavioral  difficulties6. Around 17% of the world’s population is suffering from diseases related to zinc 
 deficiency7, which leads to 97,330 deaths and a loss of 9.1 million DALY’s in  20104. Micronutrient deficiency is 
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the major risk factor for health loss in developing countries and the most vulnerable groups are pregnant women 
and  children8.

Wheat is one of the most widely cultivated cereals and plays a key role in global food and nutritional security. 
Although wheat is nutritionally rich as compared to the other two major cereals (rice and maize), still most 
wheat-based diets fail to meet the required quantity of essential nutrients including iron and zinc. The problem 
of micronutrient malnutrition can be overcome by food fortification, supplementation, and diet diversification, 
but were unsustainable in a long run. The affordability and accessibility, particularly for the rural poor in remote 
areas are the other shortcomings associated with the above-mentioned  approaches9. Therefore, enhancement of 
the nutritional value of crops through conventional and molecular approaches, termed as “biofortification”, has 
been recognized as an economical and sustainable strategy to reduce the problems associated with micronutri-
ent and protein malnutrition.

Genetic dissection of complex quantitative traits through trait mapping approaches is essential for develop-
ing better marker-assisted breeding and genomic selection strategies. The identification of linked molecular 
markers governing complex traits is highly useful and economical for trait improvement, especially in the post-
genomics era where the genotyping costs become much cheaper. The quantitative inheritance of wheat quality 
traits and significant effects of environment and genotype-environment interaction (GEI) on the expression of 
GFeC GZnC and TKW were documented in several  studies10–13. In the past decade, extensive efforts have been 
made to identify QTLs associated with GFeC and  GZnC14–28, and  TKW25,26,29–33 in wheat through bi-parental 
populations based QTL mapping. However, QTLs identified in such approaches had a low resolution due to 
the restricted number of crossovers. In contrast, the mapping resolution could be greatly increased by using 
linkage disequilibrium (LD)-based association mapping approach where the mapping population represents a 
more diverse gene pool and considers historical recombination  events34. This approach allows the detection of 
non-random associations of genome-wide markers with the  phenotype35 and has been used widely to detect the 
markers associated with the genomic regions governing complex traits in crop  plants36. The QTL resolution in 
association mapping has been significantly improved by using unrelated diverse genotypes that have accumulated 
many historical crossover events since their last common progenitors  diverged37.

Although many GWAS studies have been performed for various agro-morphological traits, only a limited 
number of studies were conducted for nutritional quality traits in wheat. Furthermore, hexaploid wheat has a 
genome size of ~ 17  Gb38, and LD decay has not been well characterized. Alomari et al.39 identified 40 MTAs 
for GZnC covering all the three wheat subgenomes in a panel of 369 genotypes using a high-density SNP array. 
Similarly, Bhatta et al.40 used a diversity panel of synthetic hexaploid wheat (SHW), being a great reservoir of 
grain micronutrients, to identify 92 MTAs for 10 micronutrients including GFeC and GZnC. Velu et al.41 reported 
39 MTAs for GZnC in a set of 330 bread wheat genotypes phenotyped in a wide range of environments. Liu 
et al.42 identified 14 significant MTAs for GFeC and GZnC, and manganese in a panel of 161 wild emmer-derived 
advanced lines. Genetic dissection of micronutrients including GFeC and GZnC has been performed in a diverse 
HarvestPlus association mapping panel consisting of 330 genotypes from CIMMYT’s biofortification breeding 
 program43. A total of 16 loci were identified which are associated with the GZnC on 11 different chromosomes 
covering all three wheat subgenomes in a set of 246 wheat  varieties44. Similarly, Calderini et al.45 used a set of 
167 Ae. tauschii accessions to map nine MTAs governing GFeC and  GZnC46. A total of 29 unique loci associated 
with grain GZnC was identified in a diversity panel of 207 bread wheat  genotypes47.

The TKW has no nutritional value per se in wheat, however, it has a dilution effect on protein and micronu-
trients. Therefore, TKW is one of the important breeding objectives due to its twin effects on yield and protein. 
The MTAs have been identified for  TKW48–51,91 using different compositions of GWAS panels. Therefore, more 
GWAS studies would be helpful to identify the genomic regions governing nutritional traits in wheat and also 
to identify the candidate genes to develop biofortified cultivars. The present study aimed to identify the genomic 
region(s) associated with GFeC, GZnC, and TKW in diverse bread wheat genotypes in a range of environments 
through the GWAS approach and the putative candidate genes associated with the SNPs.

Materials and methods
Plant material and field experiments. A set of 280 genetically diverse bread wheat genotypes (Supple-
mentary Table S1) consisting of advanced breeding lines and commercial cultivars were used for GWAS analy-
sis. The study material in GWAS panel with 280 genotypes was selected from All India Coordinated Research 
Project on Wheat and Barley. The GWAS panel was evaluated at five different environments: E1-University of 
Agricultural Sciences, research farm, Dharwad (15° 29′ 20.71″ N, 74° 59′ 3.35″ E, 750 m AMSL), E2-ICAR-
Indian Agricultural Research Institute, New Delhi (28° 38′ 30.5″ N, 77° 09′ 58.2″ E, 228 m AMSL), E3-Indian 
Agricultural Research Institute, Jharkhand (24° 16′ 58.4″ N, 85° 21′ 16.1″ E, 651 m AMSL), E4-ICAR-Indian 
Institute of Wheat and Barley, Karnal (29° 41′ 8.2644’’ N, 76° 59′ 25.9692″ E, 250 m AMSL), and E5-Punjab 
Agricultural University, Ludhiana  (30o 54′ N,  75o 48′ E, 247 m AMSL). The crop was sown in the first fortnight 
of november during the 2020–2021 Rabi (winter) season under irrigated condition. The genotypes were planted 
in an augmented block design with only the checks (DBW187, MACS6222, WH1124, and WH1142) repeated in 
a 2 row of 2 m length with a row spacing of 20 cm.

Phenotyping and phenotypic data analysis. Randomly selected 20–25 spikes were harvested and 
bulk-threshed manually in a clean cloth bag without touching any metal to avoid contamination. Around 20 g of 
grain sample from each genotype were used for phenotyping GFeC and GZnC through high-throughput Energy 
Dispersive X-ray Fluorescence (ED-XRF) machine (model X-Supreme 8000; Oxford Instruments plc, Abingdon, 
United Kingdom) calibrated with glass beads-based values. To record TKW, the Numigral grain counter was 
used to count the grain number, the reading was set at 1000 grains and the weight of the grains was recorded 
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in grams with an electronic balance. Phenotypic data were analysed using the R package ‘augmentedRCBD’52. 
Coefficient of variation (CV), broad-sense heritability  (h2

BS), genotypic variance (σ2
G), and environmental vari-

ance (σ2
E) were calculated using the following formula:

where SD = Standard deviation; x ̅ = Arithmetic mean.

where t0.025,DFw = The t-critical value from the t-distribution table with α = 0.025 and  DFw is the degrees of free-
dom within groups from the ANOVA table. MSw = The mean squares within groups from the ANOVA table. n1 
and n2 = The sample sizes for the first and second comparing samples

where σ2
G

 = Genetic variance was calculated as  (MStreatments –  MSresiduals)/ nBlock; σ2
E
 = Residual variance =  MSresidual; 

nBlock = Number of blocks

where  MStreatments = Treatment mean sum of square;  MSresiduals = Error mean sum of square; b = Number of 
blocks.

The CV indicates the degree of precision with which the treatments are compared and is a good index of the 
experimental reliability. It expresses the experimental error as percentage of the mean and if the value is high 
then the precision of the experiment is low and vice versa. The  h2

BS is the proportion of phenotypic variation that 
is attributable to an overall genetic variation for the genotypes. LSD is the value at a particular level of statistical 
probability, when exceeded by the difference between two genotypes means, then the two genotypes are said 
to be distinct for at that or lesser levels of probability. The σ2

G is the genetic or inherent variation that remains 
unaltered by environmental changes, this kind of variation responds to the selection during breeding process. In 
contrast, σ2

E does not respond to selection as it is non-heritable, which is entirely due to environmental effects.

Genotyping. Genomic DNA of the GWAS panel was extracted from the leaves of 21 days-old seedlings 
by Cetyl Trimethyl Ammonium Bromide (CTAB)  method53. The panel was genotyped using Axiom Wheat 
Breeder’s Genotyping Array (Affymetrix, Santa Clara, CA, United States) having 35,143 genome-wide SNPs. The 
monomorphic, markers with minor allele frequency (MAF) of < 5%, missing data of > 20%, and heterozygote 
frequency > 25% were removed from the analysis. The remaining set of 14,790 high-quality SNPs was used in 
GWAS analysis (Supplementary Table S3).

Population Statistics and GWAS. The pair-wise LD values (r2) between the SNPs located in each chro-
mosome were calculated with Trait Analysis by aSSociation Evolution and Linkage (TASSEL) version 5.054. The 
LD block size in three different subgenomes as well as in the whole genome was calculated by keeping r2 thresh-
old at half LD decay (Fig. 3). The principal component analysis (PCA) was done through  GAPIT55 to understand 
the structure of the population and included in the GWAS model to correct the structure. Furthermore, Kinship 
relationship was calculated through  GAPIT55 and presented in Fig. 2C. Additionally, the structure of the popula-
tion was evaluated through the STRU CUR E program by keeping K-value from 1 to 10. For every single K-value, 
3 independent runs were used and each run was set with 10,000 burn-in iterations followed by 10,000 Markov 
Chain Monte Carlo (MCMC) replications after burn-in. The STRU CTU RE  HARVESTER56 was used to detect 
the optimal K-value based on ad-hoc method described by Pritchard et al.  201090 as well as Evanno’s  method57. 
The suitability of the model to account for population structure was assessed using quantile–quantile (Q–Q) 
plots.

The phenotypic values of GFeC, GZnC, and TKW of 280 diverse genotypes along with corresponding geno-
typing data were used in GWAS analysis. Significant MTAs were identified using BLINK (Bayesian-information 
and Linkage-disequilibrium Iteratively Nested Keyway)  model58 implemented in Genome Association and Pre-
diction Integrated Tool (GAPIT) version 3.080 in R software package. Determining the correct P-value threshold 
for statistical significance is critical to differentiate true positives from false positives. To determine the statistical 
significance threshold in GWAS, Bonferroni correction has been employed. To estimate Bonferroni correction, α 
was set to 0.05 and which is divided by total number of SNPs. The Bonferroni-corrected SNPs were considered for 
significant association and R2 was used to describe the percentage variation explained (PVE) by significant MTAs.

In silico analysis. The sequence information of the significant SNPs was used to search for putative candi-
date genes with Basic Local Alignment Search Tool (BLAST) using default parameters in the Ensemble Plants 
database (http:// plants. ensem bl. org/ index. html) of the bread wheat genome (IWGSC (RefSeq v1.0)). The genes 
found in the overlapping region and within the region of 10 Kb intervals flanking either side of the associated 
marker were considered as putative candidate genes and their molecular functions were determined. In addition, 

CV(%) = SD/x × 100

LSD = t0.025,DFw

√

MSw(1/n1 + 1/n2)

Heritability
(

h
2
BS

)

=

σ
2
G

σ
2
G
+

σ
2
E

nBlock

× 100

σ
2
G =

MStreatments −MSresiduals

b

σ
2
E = MSresiduals
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their expression patterns were investigated using the Wheat Expression database (http:// www. wheat- expre ssion. 
com/) and potential links to phenotypes was determined using Knetminer tool integrated with Wheat Expres-
sion database. The role of the identified putative candidate genes in the regulation of GZnC and GFeC, and TKW 
was also determined with the previous reports.

Results
Variability, heritability, and correlations. The environment-wise heritability and variance components 
of the GWAS panel for GFeC, GZnC, and TKW are presented in Table 1. The GFeC ranged from 26.3 mg/kg 
to 49.9 mg/kg, whereas, the GZnC recorded a wider distribution across the environments, as it ranged from 
21.3  mg/kg to 64.1  mg/kg. Similarly, TKW ranged from 26.0 gm to 59.3 gm. The trait-wise heritability was 
recorded highest for TKW followed by GFeC, and GZnC, whereas, the trend for the coefficient of variation (CV) 
was exactly opposite with the lowest recorded for TKW followed by GFeC, and GZnC. The environment-wise 
heritability was ranged from 45.4% (E4) to 89.7% (E1), 33.3% (E4) to 84.9% (E5), and 89.9% (E4) to 98.8% (E1) 
respectively, for GFeC, GZnC, and TKW. For all the three traits, E4 has been recorded as the lowest heritability, 
which was corroborated with the highest recorded CV for E4. The genotypic variance (σ2

G) and environmental 
variance (σ2

E) are presented in Table 1.
The trait and environment-wise mean values are illustrated graphically through boxplots and presented in 

Fig. 1. The location means of GFeC were recorded as similar and highest for E3 and E5 followed by E1, E2, and 
E4, whereas, E5 was recorded highest pooled mean followed by E2, E1, E4, and E3 for GZnC. The E3 and E1 
recorded a similar and highest mean for TKW followed by E4, E2, and E5. The frequency distribution of grain 
quality traits in the GWAS panel evaluated at E1–E5 during 2020–2021 is presented in Fig. 1. The genotypes 
in the GWAS panel showed continuous frequency distributions for all the studied traits. Partial correlation 
coefficient (r2) of GFeC, and GZnC by keeping TKW as a controlling factor was determined. Highly significant 
and positive correlation was observed between GFeC and GZnC in E1 (0.296**), E2 (0.276**), E3 (0.202**), E4 
(0.520**), and E5 (0.35**) and also in pooled data (0.358**).

SNP markers statistics. The quality processing of 35,143 SNPs from 35 K array resulted in a set of 14,790 
cured genome-wide SNPs. These high-quality set of SNPs were further used for GWAS analysis. The chromo-
some and genome-wise marker distribution are presented in Table 2. The highest number of SNPs were mapped 
on the B genome (5649) followed by the D genome (4590), and the A genome (4551).

Population structure and linkage disequilibrium. The PCA plot (Fig. 2B) indicated that there were no 
clear distinct sub-populations in the GWAS panel; however, STRU CTU RE grouped the GWAS panel into eight 
sub-populations (Fig. 2A). The LD was estimated by calculating the squared correlation coefficient  (r2) for all the 
SNPs and plotted against the genetic distance (bp). The LD decay for the whole genome was 4.9 cM and it was 
found that the decay was rapid in the A subgenome (3.6 cM) followed by the B subgenome (5.7 cM) and the D 
subgenome (5.2 cM) (Fig. 3).

Genome‑wide association studies. A total of 17 Bonferroni-corrected MTAs were identified for GFeC, 
GZnC, and TKW. The details of the identified MTAs are presented in Table 3 and illustrated in Manhattan plots 

Table 1.  Descriptive statistics, variance and heritability estimates of grain quality traits in GWAS panel 
evaluated at five environments during 2020–2021. GFeC: grain iron concentration; GZnC: grian zinc 
concentration; TKW: thousand kernel weight; E1-Dharwad; E2-IARI,New Delhi; E3-IARI, Jharkhand; 
E4-Karnal; E5-Ludhiana; Env.: Environment; SD: standard deviation; CV: coefficient of variation; h2bs: broad 
sense heritability; σ2

G: genotypic variance; σ2
E: environmental variance.

Trait Env. Mean ± SD Range CV (%) LSD hbs
2 σG

2 σE
2

GFeC (mg/kg)

E1 39.5 ± 3.62 31.9–49.0 3.0 3.3 89.7 12.1 1.4

E2 37.8 ± 2.85 30.6–47.5 2.9 3.1 83.6 6.2 1.2

E3 40.7 ± 3.1 32.2–49.9 4.1 4.7 71.3 6.7 2.7

E4 35.3 ± 4.02 26.3–47.9 7.2 7.2 45.4 5.4 6.4

E5 40.2 ± 3.49 32.4–49.8 3.1 3.5 87.7 10.9 1.5

GZnC (mg/kg)

E1 39.6 ± 7.29 22.6–62.5 9.9 11.1 67.8 32.4 15.4

E2 43.8 ± 5.26 32.8–57.8 5.4 6.7 77.7 19.5 5.6

E3 35.2 ± 5.91 21.3–52.9 13.1 13.0 34.8 11.3 21.2

E4 36.9 ± 4.02 28.6–47.6 8.7 9.0 33.3 5.0 10.1

E5 45.9 ± 8.44 24.7–64.1 6.9 9.1 84.9 57.9 10.3

TKW (gm)

E1 45.6 ± 5.17 29.6–58.2 1.3 1.6 98.8 26.9 0.3

E2 41.3 ± 3.65 30.3–51.0 2.4 2.8 92.7 12.4 1.0

E3 46.1 ± 4.17 34.9–59.3 2.2 2.8 94.2 16.4 1.0

E4 44.6 ± 4.35 29.9–57.9 3.1 3.9 89.9 17.1 1.9

E5 40.5 ± 4.11 26.0–49.0 1.6 1.9 97.4 16.3 0.4

http://www.wheat-expression.com/
http://www.wheat-expression.com/
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in Fig. 4A,B. The Q-Q plots depicting the observed associations of SNPs and GFeC, GZnC, and TKW compared 
to the expected associations after accounting for population structure are presented in Fig. 4A,B.

MTAs for GFeC and GZnC. A total of five significant MTAs were identified for GFeC in E2 and E4 envi-
ronments on chromosomes 6A, 3B, 1A, 7B, and 5A explaining the phenotypic variation ranged from 12.7% 
to 24.1%. Two major SNPs (AX-9469986 and AX-95140213) on 7B and 5A chromosomes located at 706.0 Mb 
and 558.3 Mb explained the highest phenotypic variation of 24.1% and 23.1%, respectively in E4 environment. 
One SNP each on chromosome 6A (AX-94423274), 3B (AX-94490975), and 1A (AX-95195514) were mapped 
at 609.1 Mb, 795.8 Mb, and 354.9 Mb, respectively with the phenotypic variation of 15.6%, 12.7%, and 13.0% in 
E2 environment.

A total of 5 MTAs were identified for GZnC on chromosome 7B, 6A, 2B, 5B, and 7B explaining the phenotypic 
variation ranged from 5.7% to 10.9%. The B subgenome contributed more MTAs (4) followed by A subgenome 
(1), whereas, D subgenome didn’t contribute for GZnC in the present study. Two major SNPs (AX-95118780 
and AX-95140213) on 7B chromosome located at 91.6 Mb and 94.2 Mb explained the highest phenotypic varia-
tion of 10.9% and 10.0%, respectively in E1 and E3 environments. Another major SNP (AX-95113687) on the A 
subgenome (6A chromosome) mapped at 595.5 Mb, explained 10.1% phenotypic variation in E1. The remain-
ing two SNPs (AX-94390652 and AX-94524014) on 2B and 5B chromosomes mapped at 201.4 Mb and 440 Mb 
explained 5.7% and 8.8% phenotypic variation, respectively in E1.

Figure 1.  Frequency distribution and boxplots of grain quality traits in GWAS panel evaluated at Dharwad, 
IARI Delhi, IARI Jharkhand, Karnal, and Ludhiana during 2020–2021.

Table 2.  Sub-genome and chromosome-wise distribution of SNP markers in the GWAS panel.

Genome

Chromosome-wise SNP distribution

Total1 2 3 4 5 6 7

A 751 756 587 493 699 515 750 4551

B 1077 992 726 465 863 766 760 5649

D 986 951 648 264 657 459 625 4590
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MTAs for TKW. A total of seven MTAs were identified covering all the subgenomes. Major phenotypic 
variation was observed from those MTAs which were ranging from 10.7% to 17.4%.  The three subgenomes 
mapped more or less the same number of MTAs (A subgenome-3, B and D subgenomes-2 each). Six MTAs (AX-
94764034, AX-95025823, AX-94452219, AX-94820753, AX-94569403, and AX-95235178) were identified in E4 
on chromosome 5A, 6A, 7B, 5B, 2D, and 1A at 444.8 Mb, 68.9 Mb, 131.7 Mb, 689.9 Mb, 461.3 Mb, and 499.8 Mb, 
respectively with a corresponding phenotypic variation of 16.1%, 16.1%, 14.9%, 13.7%, 17.4%, and 16.7%. A 
total of 2 MTAs (AX-95117294 and AX-95025823) were mapped in E5 located at 290.3 Mb and 68.9 Mb, which 
explained 10.7% and 11.7% phenotypic variation on 5D and 6A, respectively.

For pooled TKW data, one MTA (AX-95025823) was mapped on 6A and located at 68.9 Mb, which explained 
16.9% phenotypic variation. One stable MTA i.e. AX-95025823 was identified in both E4 and E5 environments 
along with pooled data, which is located at 68.9 Mb on 6A chromosome.

Identification of putative genes associated with MTAs. The significant SNPs associated with 
GFeC, GZnC, and TKW were used to identify the putative candidate genes using the annotated wheat refer-
ence sequence (RefSeq V1.0) and are presented in Table 4 and Supplementary Table 2. AX-94490975 associated 
with GFeC found to encode Multi antimicrobial extrusion protein (TraesCS3B02G562500). Similarly, another 
SNP i.e. AX-94699865 associated with GFeC encodes an important F-box domain (TraesCS7B02G312400). Two 
important SNPs i.e. AX-94524014 (TraesCS5B02G257700) and AX-95203413 (TraesCS7B02G083600) associ-
ated with GZnC were found to encode Late embryogenesis abundant protein, LEA-18 and RNA recognition motif 
domain. Similarly, AX-95235178 encoding Leucine-rich repeat domain superfamily (TraesCS1A02G309000) and 
AX-95117294 encoding C3H4 TYPE ZINC FINGER PROTEIN (TraesCS5D02G188300) identified for TKW.

Discussion
Understanding the genetic basis of complex traits such as GFeC, GZnC, and TKW through GWAS with a diverse 
panel of genotypes can significantly improve QTL mapping resolution compared to bi-parental populations-
based QTL mapping. Using the genome-wide SNPs and multi-environment data, several significant SNPs were 
identified in this study.

Figure 2.  Population groupings in GWAS panel from different models. (A) Population structure based on 
STRU CTU RE  (B) Three-dimensional plot of the first three principal components,  and (C) heat map of pair-
wise kinship matrix.
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Figure 3.  Subgenome and whole genome-wide linkage disequilibrium (LD) decay in GWAS panel of 280 
diverse bread wheat genotypes.

Table 3.  MTAs for grain quality traits and TKW identified in the GWAS panel from five environments. 
Env.: Environment; GFeC: grain iron concentration; GZnC: grian zinc concentration; TKW: thousand kernel 
weight; E1: Dharwad; E2: IARI Delhi; E3: IARI Jharkhand; E4: Karnal; E5: Ludhiana; SNPs: single nucleotide 
polymorphisms; PVE: phenotypic variation explained.

Trait Env SNPs Chromosome Position (bp) P value PVE (%)

GFeC

E2 AX-94423274 6A 609111057 1.02E−08 15.6

E2 AX-94490975 3B 795800318 0.000000747 12.7

E2 AX-95195514 1A 354950241 0.00000214 13

E4 AX-94699865 7B 558319306 3.69E−17 24.1

E4 AX-95140213 5A 706021202 0.00000203 23.1

GZnC

E1 AX-95118780 7B 91660994 1.68E−10 10.9

E1 AX-95113687 6A 595578858 1.11E−07 10.1

E1 AX-94390652 2B 201463130 1.10E−06 5.7

E1 AX-94524014 5B 440179428 2.55E−06 8.8

E3 AX-95203413 7B 94271868 3.06E−08 10

TKW

E4 AX-94764034 5A 444849916 1.19E−09 16.1

E4 AX-95025823 6A 68975107 0.00000049 16.1

E4 AX-94452219 7B 131745573 0.000000747 14.9

E4 AX-94820753 5B 689950369 0.00000147 13.7

E4 AX-94569403 2D 461303027 0.00000256 17.4

E4 AX-95235178 1A 499807792 0.00000257 16.7

E5 AX-95117294 5D 290389058 0.000000555 10.7

E5 AX-95025823 6A 68975107 0.000000821 11.7

Across Env AX-95025823 6A 68975107 5.83E−08 16.9
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Figure 4.  (A) Manhattan and respective-QQ plots for grain iron and zinc concentration in GWAS panel 
phenotyped at Dharwad, IARI Delhi, IARI Jharkhand, Karnal, and Ludhiana during 2020–2021. (B) Manhattan 
and respective-QQ plots for thousand kernel weight in GWAS panel phenotyped at Dharwad, IARI Delhi, IARI 
Jharkhand, Karnal, and Ludhiana during 2020–2021.
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The expression of GFeC, GZnC, and TKW is significantly affected by the environment and genotype-environ-
ment interactions (GEI). Among all traits, GZnC was the most environment-sensitive trait, whereas, TKW was 
relatively the most stable with minimum environmental influence. The greater magnitude of the environment 
and GEI have also been reported in previous studies for the expression of GFeC and  GZnC10,11, and  TKW12,13. 
The magnitude of environmental interaction decides the identification of environment-specific QTL(s) as well 
as QTL(s) that can express stably across environments.

The highest heritability was recorded for TKW followed by GFeC, and GZnC, whereas, the trend for the 
coefficient of variation (CV) was exactly opposite with the lowest CV recorded for TKW and the highest CV 
for GZnC. The highest and lowest heritability for TKW and GZnC respectively is also concurred with earlier 
 studies46,72. The associations were highly significant positive in all the environments betweenGFeC and GZnC. 
Significant and positive correlations found in this study have also been reported in earlier  studies25,26. The sig-
nificant positive correlations between GZnC and GFeC indicated the possibility to map the genomic regions 
controlling multiple traits. Such co-mapped SNPs will be much useful in marker-assisted selection for simulta-
neous improvement of correlated traits.

The STRU CTU RE model explained 8 sub-groups in the populations. The genotypes in GWAS panel consists of 
advanced breeding lines suitable for various agro-climatic and production conditions. The first subgroup consists 
of genotypes mostly selected from international breeding material and suited for North West and North East 
Plains Zone in India. Similarly, the second group consists of international selections for restricted irrigated or 
rainfed production conditions. The third subgroup consists of genotypes dominated by 1B.1R translocation with 
genes for wider adaptation. Subpopulation 4 is mainly dominated by GW322, PASTOR, and OPATA parentage, 
whereas, 5th subpopulation largely consists of Indian wheat varieties/germplasm in their parentage. High fre-
quency of SOKOLL, KIRITATI, PBW65, and MILAN was present in the 6th subpopulation parentage. Genotypes 
in 7th subpopulation are dominated by old salinity/alkalinity tolerant varieties. Whereas, 8th subpopulation 
contains mainly indigenous germplasm, old landraces, and breeding lines. The PC1, PC2 and PC3 of PCA analysis 
were used as covariates in the GWAS analysis to identify the MTAs. The LD may vary in different populations due 
to population size, genetic drift, admixtures, selection, mutation, non-random mating, pollination behavior, and 
recombination  frequency73,74. The LD blocks are usually larger in self-pollinated crops such as wheat and hence 
decay  slowly75, whereas, in outcrossing crop species like  maize76, the LD decays rapidly. The presence of high 
LD across the genome would reduce the QTL mapping resolution and vice  versa77. In such cases, a better QTL 
resolution will be achieved by using genome-wide SNPs. The decay of LD was found comparable in the B and D 
subgenomes (~ 5 cM) compared to the A subgenome, which had a shorter decay distance of around ~ 3 cM. A 
similar pattern of LD decay was also observed in other GWAS studies in  wheat49,78,79,91.

A total of 17 Bonferroni-corrected MTAs were identified for GFeC (5), GZnC (5), and TKW (7). The identified 
genome-wise MTAs are much higher for B subgenome (8) and A subgenome (7) compared to the D subgenome 

Table 4.  Putative candidate genes identified for GFeC, GZnC, and TKW along with their molecular functions.

Trait SNP ID Chromosome TransID Position (bp) Putative candidate genes Molecular function

GFeC

AX-94490975 3B TraesCS3B02G562500 795800216–795810270 Multi antimicrobial extrusion protein

Iron translocation in bread  wheat59

Efficient translocation of iron from roots 
to shoots in  rice60

Iron homoeostasis in  Arabidopsis61,81,82

Fe homeostasis and Zn tolerance in 
 Arabidopsis62

Fe influx into aerial parts of the plant 
and/or for the distribution of intracel-
lular  Fe63,64

Aluminum tolerance and iron transloca-
tion in Arabidopsis thaliana65

Iron transportation in  rice83

Efficient translocation of Fe under 
limited Fe conditions in  rice60

Efficient translocation of iron in 
 Arabidopsis84

Overexpression of MtMATE69 affected 
Fe and Zn accumulation in M. trunca-
tula and play role in Fe  nutrition85

Iron efficiency in  soybean86

AX-94699865 7B TraesCS7B02G312400 558318164–558320180 F-box domain

F-box domain RAE1 regulates STOP1 in 
Arabidopsis. STOP1-ALMT1 pathway 
promote iron accumulation into the 
apoplast of root tip regions under Pi-
deficient  conditions66,67

GZnC AX-94524014 5B TraesCS5B02G257700 440178901–440179528 Late embryogenesis abundant protein, 
LEA-18

Iron transportation in the phloem of 
castor (Ricinus communis L.)68

Zinc ion binding in  cotton69

TKW
AX-95235178 1A TraesCS1A02G309000 499807479–499809182 Leucine-rich repeat domain superfamily

Regulate grain size in  rice71

Role in total kernel number and kernel 
size in  maize87

Controls endosperm development and 
thereby seed  size88

AX-95117294 5D TraesCS5D02G188300 290386100–290391792 C3H4 TYPE ZINC FINGER PROTEIN Important agronomic traits in maize 
 yield89
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(2). A similar trend on MTAs identified in the D subgenome for GFeC and  GZnC41 and yield-contributing 
 traits49,50.

The identified MTAs (5) for GFeC on chromosomes 6A, 3B, 1A, 7B, and 5A in this study were novel, as the 
earlier reported MTAs on the same chromosomes namely 3B, 7B, and  5A43,44, 1A, 3B, and  5A23,26,  1A40 and 6A, 
 3B91 were identified at different positions. A total of five novel MTAs was identified for GZnC on chromosome 
7B, 6A, 2B, 5B, and 7B. MTAs in the same chromosomes were also identified in different GWAS panels in previ-
ous experiments on  6A47,  2B26,41,43,47,  5B23,43,47, and  7B23,41,91. Zhou et al.47 identified an MTA on 5B chromosome 
located in a interval of 407.0 Mb – 412.1 Mb, which was similar to that of AX-94524014 located on 5B chromo-
some and mapped at 440.1 Mb explained 8.8% phenotypic variation.

A total of seven MTAs in different environments were identified covering the three subgenomes and all were 
major MTAs as they explained more than 10.0% phenotypic variation. The TKW was relatively the most stable 
trait compared to the rest of the other two traits, as TKW recorded the highest heritability and lowest coefficient 
of variation which reflected in detecting the highest number of MTAs as well. All the identified MTAs were 
mapped on 5A, 6A, 7B, 5B, 2D, 7A, and 5D located at 444.8 Mb, 68.9 Mb, 131.7 Mb, 689.9 Mb, and 461.3 Mb, 
499.8 Mb, and 290.3 Mb respectively. Previous reports were also identified MTAs on 6A and  7B29,48,50,  5B26,49, 
 5A26,  1D29,  1A48 and 2D, 5D, 7A and  7B91.

The various putative candidate genes underlying MTAs with high phenotypic variation for GZnC, GFeC, 
and TKW were identified through BLAST search (Table 4 and Supplementary Table 2). The MTAs identi-
fied in various chromosomes were located in gene coding regions related to transcription factors, transport-
ers, transmembrane protein and kinase-like superfamilies. For example, Multi antimicrobial extrusion protein 
(TraesCS3B02G562500) has a role in the translocation of iron during iron deficiency stress in bread  wheat59 and 
multi antimicrobial extrusion protein (MATE) family proteins were observed under iron excess in rice. Few 
protein members of MATE family were known to be involved in efficient iron translocation from roots to shoots 
in  rice60. Also, MATE transporter mediates iron homoeostasis under osmotic stress in  Arabidopsis61. Subfamily 
III of the MATE gene members plays an important role in plant aluminum tolerance and iron translocation in 
 Arabidopsis65. FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in 
Arabidopsis by loading Zn into  xylem62. MATE is also a candidate for the mechanism of Fe influx into aerial 
parts of the plant and the distribution of intracellular  Fe63,64.

Three up-regulated genes i.e. Os01g0684900, Os10g0345100, and Os06g0495500 of citrate transporters fam-
ily (MATE family protein) were observed under excess iron conditions and involved in iron transportation 
in  rice83. Similarly, a MATE gene (OsFRDL1), the closest homolog of barley HvAACT1 (aluminum-activated 
citrate transporter 1) is involved in the efficient translocation of Fe under limited Fe  conditions60. FRD3 is a 
member of the multidrug and toxin efflux (MATE) family, which is involved in the efficient translocation of iron 
in  Arabidopsis84. FRD3 is mainly expressed in root vascular tissues and is necessary to solubilize Fe and Zn in 
the extracellular space. Similarly, overexpression of MtMATE69 affected Fe and Zn accumulation in Medicago 
truncatula hairy roots, further suggesting a function for MtMATE69 in Fe  nutrition85. Also, two MATE proteins 
namely, GmFRD3a and GmFRD3b play a significant role in iron efficiency in  soybean86. Cloning and charac-
terization of an Arabidopsis gene i.e. FRD3, a member of the multidrug and toxin efflux family is involved in 
iron  homeostasis81. The FRD3, which is an efflux transporter of the efficient Fe chelator citrate is involved in 
Fe homeostasis maintenance throughout plant growth and development. Additionally to its well-known root 
expression, FRD3 is also strongly expressed in seeds and  flowers82.

One SNP i.e. AX-94699865 associated with GFeC encodes an important F-box domain (TraesCS7B02G312400) 
regulates STOP1 in Arabidopsis. STOP1-ALMT1 pathway promotes iron accumulation into the apoplast of root 
tip regions under Pi-deficient  conditions66,67. Another SNP i.e. AX-94524014 (TraesCS5B02G257700) associated 
with GZnC was found to encode LEA protein, where LEA-18 was involved in the transportation of iron in the 
phloem of  castor68. The binding of LEA proteins to different molecules like Zn ion, DNA and ATP binding, were 
the major activities for the action of upland LEA  proteins69.

The SNP i.e. AX-95235178 encoding Leucine-rich repeat domain superfamily (TraesCS1A02G309000) was 
associated with TKW. A total of 32 barley orthologs were identified as potential candidate genes that determine 
barley grain size or weight. The barley ortholog of the rice OsBDG1 gene is mapped on 3H chromosome at 
666.35 Mb (HORVU3Hr1G104350), which encodes the leucine-rich repeat receptor-like protein kinase  family70. 
The rice OsBDG1 gene encoding a small protein with short leucine-rich-repeats possessing cell elongation activ-
ity, has previously been proven to positively regulate grain size in  rice71. Therefore, HORVU3Hr1G104350could 
be a reliable candidate gene affecting grain size as the function of the OsBDG1 gene.

Another grain weight controlling gene i.e. FASCIATED EAR2 (FEA2) encodes the maize ortholog of CLAV-
ATA2 (CLV2), encoding a leucine-rich repeat receptor-like protein that regulates meristem size by transmitting 
signals from CLAVATA3 (CLV3) peptide ligand to the WUSCHEL (WUS) homeodomain transcription factor. The 
FEA2 has a role in total kernel number and kernel size in  maize87. Similarly, IKU pathway represents one of the 
well-studied genetic networks involves four major genes including HAIKU2 (IKU2), which encodes a leucine-
rich repeat kinase, mutational analyses of these genes in Arabidopsis revealed their physiological significance 
in controlling endosperm development and thereby seed size through regulating endosperm proliferation and 
 cellularization88, and loss of function mutations in IKU pathway genes cause a decrease in seed size. Another 
SNP (AX-95117294) encoding C3H4 type zinc finger protein (TraesCS5D02G188300) was associated with the 
expression of TKW. Functional prediction of maize C2H2—zinc finger gene revealed its involvement mainly in 
the formation of important agronomic traits in maize  yield89.

The study with 280 diverse set of bread wheat GWAS panel has shown that GFeC, GZnC, and TKW were 
quantitatively inherited traits. The strong positive correlation between the GFeC and GZnC suggested the pos-
sibility of improving both the traits simultaneously. A total of 17 MTAs including 5 for GFeC, 5 for GZnC, and 7 
for TKW were identified from the GWAS approach. The environment-specific and pooled-data MTAs identified 
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in the present investigation represented novel genomic regions associated with trait expression. Several putative 
candidate genes encoding important molecular functions such as iron translocation, iron and zinc homeostasis, 
and grain size modifications were associated with the identified MTAs. Further validation and functional char-
acterization of the candidate genes to elucidate the role of these genes in wheat is envisaged. The identified SNPs 
could be useful in marker-assisted selection programs to develop biofortified varieties to reduce micronutrient 
malnutrition.

Declaration. The set of 280 genotypes used in the present experiment were selected from All India Coordi-
nated Research Project on Wheat and Barley and the imported genotypes have been obtained through the nodal 
agency for germplasm exchange i.e. National Bureau of Plant Genetic Resources, New Delhi following the pre-
scribed guidelines. Also, the authors have all the required permissions and rights to collect and use the genotypes 
for research purpose. The experimental research and field experiments in the present study are duly approved by 
the institute research council of ICAR-Indian Institute of Wheat and Barley Research, Karnal.
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