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A dynamically structured matrix 
population model for insect life 
histories observed under variable 
environmental conditions
Kamil Erguler1*, Jacob Mendel2, Dušan Veljko Petrić3, Mina Petrić4, Mihaela Kavran3, 
Murat Can Demirok5, Filiz Gunay5, Pantelis Georgiades1, Bulent Alten5 & Jos Lelieveld1,6

Various environmental drivers influence life processes of insect vectors that transmit human disease. 
Life histories observed under experimental conditions can reveal such complex links; however, 
designing informative experiments for insects is challenging. Furthermore, inferences obtained under 
controlled conditions often extrapolate poorly to field conditions. Here, we introduce a pseudo-
stage-structured population dynamics model to describe insect development as a renewal process 
with variable rates. The model permits representing realistic life stage durations under constant and 
variable environmental conditions. Using the model, we demonstrate how random environmental 
variations result in fluctuating development rates and affect stage duration. We apply the model to 
infer environmental dependencies from the life history observations of two common disease vectors, 
the southern (Culex quinquefasciatus) and northern (Culex pipiens) house mosquito. We identify 
photoperiod, in addition to temperature, as pivotal in regulating larva stage duration, and find 
that carefully timed life history observations under semi-field conditions accurately predict insect 
development throughout the year. The approach we describe augments existing methods of life table 
design and analysis, and contributes to the development of large-scale climate- and environment-
driven population dynamics models for important disease vectors.

Life tables provide valuable insights into the environmental dependence of many species1. They have been used 
to inform species conservation2 and vector and pest control3,4. By providing the biological foundations, they 
have become essential components of mathematical models that predict population dynamics and disease risk5–8.

A common practice in constructing life tables is to follow a cohort of organisms under controlled condi-
tions and catalogue the number of individuals at each development stage together with a set of processes, such 
as mortality and fertility1. Several statistical methods have been derived to infer realistic development time 
distributions and survival rates from life history observations9. Some of the early pioneers assumed normal or 
gamma distributions for stage durations and a time-varying survival probability9–11.

For many insect vectors, including mosquitoes, ticks, and small biting flies, the assessment of viability dur-
ing development can be challenging12,13. Population heterogeneity, as an added complexity, may arise from the 
overlap of subsequent development stages. Experimental interventions, e.g. separating individuals or develop-
ment stages, to improve observations may interfere with the natural processes14,15. On the other hand, most 
insect species are strongly affected by external temperature variations as they lack the ability to regulate their 
body temperature16. Attempts to establish controlled experimental conditions are known to result in inferences 
which may not be applicable in the field under diurnal variability17,18.

Understanding the environmental dependencies of population dynamics thus presents an inverse problem, 
where observations inform mathematical models (as opposed to the forward problem of finding a solution to a 
model)19. Inverse problems involve mechanistic models, which represent a simplified version of the reality. To 
provide accurate insights into environment-driven population dynamics, models should ideally capture as much 
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of the complexities of the biological processes, environmental drivers, and experimental methods20. Population 
heterogeneity, time delay of development, and variable environmental conditions could be accounted for in an 
ideal model. Finally, the computational demand of the mathematical framework should enable fast optimisation 
in a multi-dimensional parameter space21,22.

Several modelling frameworks have been employed for environment-driven population dynamics of insect 
vectors that transmit human disease. Some of the most popular ones are based on ordinary differential equations 
(ODEs)6,23–26. Despite their prevalence and relative ease of use, the canonical ODE framework poorly represents 
population heterogeneity and time-delay caused by development27,28. Extensions have been made to incorporate 
realistic development time distributions by incorporating a series of sub-stages with identical exponentially 
distributed dwell times (also known as the linear chain trick)27,29,30. Delay differential equations (DDEs) have 
also been used to model insect population dynamics with true time delays in development31–33. Although the 
framework implies a homogenous cohort, heterogeneity can be introduced at the beginning through variable 
entry times. Recently, the framework has been extended towards representing trait variation under environmental 
change in successive development stages and generations34.

Alternatively, discrete-time matrix population models (MPM) have been used to represent populations struc-
tured with respect to age35 or physiological stage36. MPMs make use of carefully designed projection matrices and 
matrix algebra to project population structure from one census date to the next37,38. Integral projection models 
(IPMs)39 and the age- and stage-structured model of Caswell et al.40 accommodate populations structured by 
a combination of age and a physiological trait, such as body size or wing length. Extensions have been made to 
accommodate a variable environment based on detailed age-trait observations41–43.

The age-structured population dynamics model of Erguler (sPop) is an MPM incorporating a dynamic age 
structure44. As specified by the model, individuals in a development stage are grouped into distinct age classes, 
and the population structure is propagated using hazard functions to generate the desired distributions of survival 
and development time. However, the effect of temperature on development is not exclusively age-dependent 
for many insect species, but it involves accomplishing a series of tasks through complex biochemical reactions, 
enabled by the heat absorbed45–47.

Here, we extend this framework by considering development as a cumulative process, where accumulation 
of a sufficient number of (intangible) units triggers stage completion. An analogy can be drawn to a mathemati-
cal concept called renewal processes48, where hypothetical events occur (arrive) randomly in time and iterate 
a process counter. By representing development as a renewal process, we extend the MPM framework with a 
dynamic state vector and projection matrix. As a result, the framework permits variations in both the number of 
pseudo-development stages and stage transition rates, and reproduce common development time distributions 
under the influence of environmental variation. To inform models based on this framework, we propose an 
experimental design of life table construction under variable semi-field conditions, which permits the inference 
of many environmental dependencies at once. We demonstrate this approach on two common disease vectors, 
the southern and northern house mosquito, Culex quinquefasciatus and Culex pipiens, respectively, and compare 
the information content of constant and variable-condition life table experiments.

Methods
sPop2: a dynamically‑structured matrix population model.  We represent development as a renewal 
processes48 with a dynamic probability of event arrival. While each renewal event corresponds to a fraction of 
development, individuals with identical development fractions are grouped together to form a pseudo-stage-
structured population.

During a single time unit (time step), we assume that the arrival time of each event is a nonnegative independ-
ent identically distributed random variable. Therefore, the number of independent events arriving in a time step 
is a discrete random variable, i, with a cumulative density function F(x, θ) = Pr(i ≤ x|θ) , where θ represents the 
expected time between successive events (interarrival time). The fraction of development achieved with each 
event is 1/k, where k is the target number of events to complete development. Thus, the rate of accumulation—the 
fraction of development completed—per time step is given by i/k.

Under the specific restrictions of invariable k and deterministic dynamics, this framework is equivalent to an 
MPM. To expand from the matrix population framework, we introduced a development indicator, q, which is 
used to structure the population; i.e. individuals with identical q values are grouped together to form a pseudo-
stage. A single indicator value of q = 0 at the beginning of a simulation implies a cohort of individuals; however, a 
pre-structured initial population is also allowed. According to the framework, at each time step, q is incremented 
by i/k, and development occurs when q ≥ 1.

We developed Algorithm 1 to facilitate the dynamic handling of the pseudo-stages, allow for intrinsic sto-
chasticity, and accommodate variable interarrival times. We implemented the algorithm in C and distributed it 
under the GPL 3.0 license on the GitHub repository https://​doi.​org/​10.​5281/​zenodo.​57883​77 as an extension to 
the age- and stage-structured population dynamics model of Erguler44 (sPop2 v.2.1).

Algorithm 1 simulates a single step of development in a deterministic or stochastic setting. The development 
scheme is selected by setting the cumulative density function, F(x, θ) , according to (i) I(x ≥ θ) for fixed dura-
tion, (ii) 1− θx+1 for Pascal-distributed, and (iii) Ŵ(x + 1, 1/θ)/x! for Erlang-distributed development time. In 
this context, I is the indicator function and Ŵ(x, θ) is the upper incomplete gamma function. We present the 
detailed derivation of the three schemes in Development time distributions. To accomplish dynamic popula-
tion restructuring in one pass, we employ the hazard function, H(x, θ) , i.e. the probability of x events arriving 
conditional on the absence of fewer events,

https://doi.org/10.5281/zenodo.5788377
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where

Scheme selection is followed by iteration through the existing pseudo-stages. Here, we adopt the notation 
q =

{

q0, q1, . . .
}

 to represent the array of pseudo-stage classes and n = {n0, n1, . . . } the individuals assigned to 
each class. At each step, each q is expanded into an array of pseudo-stage classes, q′ , as a result of incrementing q 
by i/k for every possible value of i. An appropriate fraction of the sub-population associated with q is allocated to 
each class in q′ either deterministically or stochastically (given the probability of i). Once the smallest value of i 
such that q′ ≥ 1 is reached, the remaining individuals, m, are flagged to complete development, and the algorithm 
moves forward to the next q. As a result, for each q with an allocated population size of n, the algorithm generates 
one or more pseudo-stages ( q′ ) among which the population ( n′ ) is distributed accordingly.

It is important to note that the probability of i leading to q > 1 in a time step may become significant especially 
with a relatively large arrival rate. Such overshooting will not prevent a population from completing develop-
ment as required; however, may create bias should the process be followed by another stage of development. 
Overshooting can be minimised by extending the loop above q = 1 to maintain a record of all individuals with 
q > 1 . In turn, the ones completing development form a structured population to be fed into the next stage of 
development. However, there may be cases where q > 2 in one step, which require multiple successive stages 
to utilise the accumulated development. Consistent overshooting is a clear indication of a coarse time scale. 
However, due to the indirect time dependence of the renewal process, reducing the step size involves a change 
in the desired duration and rate of these processes (see Shifting the unit of time).

(1)H(x, θ) = Pr(i = x | i > x − 1, θ) =
F(x, θ)− F(x − 1, θ)

1− F(x − 1, θ)
,

(2)H(0, θ) = F(0, θ) and lim
x→∞

H(x, θ) = 1.
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Simulating development with renewal processes under variable conditions.  We refer to devel-
opment represented by renewal processes as cumulative development. To demonstrate how a change in rate 
manifests in cumulative development and how alternative representations capture the process, we constructed a 
scenario where a group of individuals is subjected to two different development rates. We employed a population 
of 100 individuals with a deterministic Erlang-distributed development time of 40± 5 steps (a mean of 40 and a 
standard deviation of 5 steps corresponding to k = 64 and θ = 0.625 ). At the 20th step, we switched development 
time to 20± 5 steps ( k = 16 and θ = 1.25 ) and continued simulation until all individuals complete the process.

We constructed four alternative models to compare with cumulative development. The first alternative is an 
age-structured MPM constructed using the sPop package44. The sPop algorithm dynamically structures a popula-
tion with respect to the time spent in development, and the proportion of individuals completing development 
in a step ( d(τ ) ) is given by a gamma distribution with mean µ and standard deviation σ . We note that we use t 
to represent time in continuous domain and τ in discrete domain in this context. When we let xτ represent the 
size of a population at step τ,

where

f (τ ) = γ (k, τ/θ)/Ŵ(k) , k = µ2/σ 2 , and θ = σ 2/µ.
We employed the stage-structured DDE framework developed by Nisbet, Gurney, and Lawton as the second 

alternative31,32. By using the stagePop package written in R by Kettle and Nutter 49, we represented the process 
with a variable development duration function,

and a rate of recruitment function,

We used R(t) to construct a population history with a gamma-distributed age-structure between t = −40 and 
t = 0 to result in stage completion at t = 40± 5 . Since this is an artificial construct, we employed modified 
development rates for favourable (1/40) and unfavourable (1/60) conditions to yield approximately 20± 5 and 
40± 5 units of development time, respectively. The R code implementing this model is given in The variable-rate 
development model in R..

The third alternative is an ordinary differential equation (ODE) of the form

where � is the reciprocal of average development time (shifting from 0.025 to 0.05 at t = 20).
Finally, we introduced time dependence to the ODE by applying the linear chain trick (LCT)27,29, which 

results in

where γ = 1/θ.

Transformation of environmental variation in development.  To investigate how frequent changes 
in the environment may affect development, and expand on the previous section, we assumed that there is a 
non-linear relationship between temperature and development rate. We employed the Briere-1 function, which 
is widely used to model development rate in insects50,

where fr(T) is the reciprocal of development time in days, T is temperature in degree Celsius, TL and TH are lower 
and higher temperature thresholds, and α is a scaling constant.

We conjectured a population of 100 individuals, with a deterministic Erlang-distributed (cumulative) devel-
opment time, and defined the distribution with a variable mean ( µ ) and a fixed standard deviation of 5 steps. 
We let µ be the reciprocal of fr(T) , linking mean development time to temperature.

Next, we assumed that the population develops under a variable temperature regime, ρ , which is randomly 
sampled at each time step from one of the three alternative Gaussian distributions: (i) ρL ∼ N(15, 4) , (ii) 
ρM ∼ N(25, 4) , and (iii) ρH ∼ N(35, 4) , where N(µ, σ) indicates a Gaussian distribution with mean µ and 
standard deviation σ , and ∼ defines the probability distribution of a random number.

(3)xτ+1 = (1− d(τ )) xτ ,

(4)d(τ ) =

{

f (τ+1)−f (τ )
1−f (τ ) if f (τ ) �= 1

1 if f (τ ) = 1
,

(5)M(t) =

{

1/60 if t < 0

1/40 else
,

(6)R(t) =

{

f (t − 20) if t < 0

0 else
.

(7)dx/dt = − � x,

(8)

dx0/dt = − γ x0
.
.
.

dxk/dt = γ (xk−1 − xk)
dxk+1/dt = γ xk ,

(9)fr(T) = α T (T − TL)
√

TH − T ,
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Population dynamics model of environment‑driven insect development.  We represented mos-
quito development with a generic 4-stage population dynamics model where eggs develop into larvae, then 
pupae, and emerge as adults. We assumed that egg, larva, and pupa development times are Erlang-distributed9,10, 
the mean of which are linked with ambient temperature using generic response functions, and assumed time-
independent daily survival for each stage (see The population dynamics model in C for detailed implementa-
tion).

We linked mean development time ( µ ) with temperature (T) with the widely used Briere-1 function (Eq. 9),

where T0 and T1 are temperature thresholds ( T1 > T0 ), and αs is a scale parameter. Since each dependency adds 3 
parameters to the model, we assumed that the standard deviation of the distribution is proportional to its mean, 
i.e. σ = αmµ , to limit the total number of parameters.

Furthermore, we employed a quartic (fourth degree) equation7,51 to represent the daily mortality rate, pm , of 
each stage as a function of temperature,

where p0 is the lower boundary of mortality, Tm is the optimum temperature, and αs is a scale parameter. We 
clipped pm between 0 and 1 to represent a fraction. Overall, the generic model has 24 parameters, values of which 
will be inferred using life history data.

In addition to temperature, we assumed that development of insect larva may also depend on photoperiod52–54, 
and employed a generic sigmoidal relationship,

where P represents day length at the corresponding latitude and date, αp is the threshold, and αs and αq are scale 
parameters. We concluded this extended version with a total of 27 parameters. An illustrative C code implement-
ing both the generic and extended models is given in The population dynamics model in C.

Further extensions to this model to represent the complete life cycle with egg laying is straightforward. 
Although we included an example model in the sPop2 v.2.1 package, we plan more in depth investigation of 
complete life cycles in future studies.

Inverse modelling with approximate Bayesian computation.  We followed the inverse modelling 
procedure described in Erguler et al.55, which involves proposing a generic model with exploratory environ-
mental dependencies to be calibrated with observations using Bayesian principles. Accordingly, we propose a 
model, estimate an optimum parameter configuration based on an observational dataset, and sample a set of 
alternative configurations around the optimum using approximate Bayesian computation (ABC)56. To arrive at 
the optimum, we employed the hoppMCMC (v1.1) parameter optimisation and posterior sampling algorithm, 
which uses an adaptive basin-hopping Markov chain Monte Carlo (MCMC) method57.

We assumed a uniform prior, Pr(θ) , and replaced the likelihood function58, Pr(δ|θ) , with a simulation-based 
distance (score) function, f (δ, y(θ)) , where δ represents observations and θ is the parameter configuration of the 
model. A score function is a measure of similarity between δ and the model output, y(θ) (with parameter θ ). We 
employed the negative logarithm of the Poisson probability as the score function (SS),

where δt is the observation at time t and yt(θ) is the corresponding simulation using θ . According to this, the 
posterior is approximated with a given threshold ε,

and it tends to its true value as ε → 0 . Despite the use of approximation, exploring the entire posterior dis-
tribution is computationally demanding, particularly when the number of parameters is large. To reduce the 
computational demand, we generated partial posterior samples around the optimum, i.e. sampled from the 
posterior mode, �8,55,59.

Life table experiments under constant conditions.  In 2009 and 2010, Gunay  et  al. reported 
Cx. quinquefasciatus (Say, 1823) life tables constructed under constant laboratory conditions at five temperatures 
(15, 20, 23, 27, and 30 °C)60,61. To calibrate the generic model against these experiments, we employed the param-
eter optimisation/posterior mode sampling procedure with three replicates from each temperature regime. Fol-
lowing the experimental protocol, we initiated cohorts with 750 larvae and simulated development until adult 
emergence. As a result, we obtained 100 parameter samples from a posterior mode we labeled as �q at ε = 2500.

Semi‑field life table experiments.  To evaluate development under variable conditions, we designed life 
table experiments for Cx. pipiens biotype molestus under variable semi-field conditions at the premises of the 
University of Novi Sad in Petrovaradin, Serbia. We introduced 16-to-24 h old egg rafts of the local laboratory 
colony in three Bioquip© mosquito breeders, set and kept outside in the semiurban (house garden) environ-

(10)µ = fr(T)
−1 =

(

αs T (T − T0)
√

T1 − T
)−1

,

(11)pm = p0 + αs(T − Tm)4,

(12)
µ′ = µ× φ

φ = 1+ αs

1+eαq(P−αp)
,

(13)SS = −
∑

t

ln Pois(δt , � = yt(θ)),

(14)Pr(θ |δ) ≈ Pr(θ |SS ≤ ε),
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ment, from 1 February to 31 December 2017. We recorded hatching, transition of instars through the larval 
stages (L1 to L4), pupation, and adult eclosion time every day at 8 am local time. We added a pinch of Tetramine™ 
fish food after observing larvae hatching from the eggs. We obtained five-minute temperature readings of the 
ambient air from the weather station close to the breeders (1 m). New egg rafts were introduced after all larvae/
pupae died or adults emerged, and a total of 16 experiments were performed (Fig. S4). We note that the initial 
conditions of the experiment shown in Fig. S4(b) were missing, and we estimated the number of eggs with a 
Poisson probability, assuming 30% mortality according to Spanoudis et al.62. We followed the inverse modelling 
procedure and used seven of these experiments—one from (a), (b), (d), one from (f), one from (g), (i), and (j) 
shown in Fig. S4—to obtain 100 parameter samples from the optimum posterior mode, �p ( ε = 1600 ), for the 
extended population dynamics model.

Development profiles for Cx. pipiens.  We define a development profile as a summary of development 
dynamics under variable conditions: maximum adult production, adult emergence time (development time), 
and the time when the first adults emerge in a series of experiments spanning a calendar year. We define devel-
opment time as the time when half of the maximum adult production is complete. While adult production and 
development time pertain to each semi-field experiment, first emergence is defined for the calendar year.

To obtain a profile for Cx. pipiens, we simulated the development of 100 eggs (with the extended model and 
the samples from �p ) until all the immature stages emerge into adults or die during the process. To extrapolate 
the profiles over a calendar year (annual development profile), we obtained hourly temperatures in Petrovaradin 
(45.2461012 latitude and 19.8516968 longitude) during 2017 from the ERA5 meteorological reanalysis dataset 
of temperature ( 0.25o spatial resolution)63. We converted the dataset into quarter-daily temporal resolution by 
averaging over every 6 hours, and simulated the development profiles at the beginning of each week.

Results and discussion
Renewal processes represent development under variable conditions.  The consequence of a 
drastic environmental change can be demonstrated by introducing a shift in development time during the pro-
cess. For demonstration, we consider a scenario where a group of individuals enter into a favourable environ-
ment reducing development time from 40± 5 time units to 20± 5.

We show, in Fig. 1, that our dynamic pseudo-stage-structured MPM yields a gradual stage completion with 
an average development time of approximately 30± 5 steps (solid dark lines) when conditions shift at τ = 20 
(each step corresponds to 1 time unit). The target Erlang-distributed development trajectories without the shift 
are shown as dashed gray lines. The snapshots of the population structure, represented by the development 
indicator q, taken at each time step, show that half of the development is complete at the time of the switch and 
the switch accelerates the accumulation of q (Fig. S1).

In age-dependent development, a sharp transition, instead of a gradual one, is observed at the 20th step 
(Fig. 1a). The switch results in the majority of individuals reaching target development age immediately at the 
time of switch. Previous work, reported in Erguler et al.59 and Erguler et al.55, aimed at modelling population 
dynamics under variable conditions, based on this dynamic age-dependent framework. Our results suggest that 
cumulative development might improve the fit to the data, prediction accuracy, and applicable geospatial range 
of these models.

We see in Fig. 1b that the canonical ODE framework represents an exponentially distributed development 
time and a shift in rate at t = 20 . The LCT extension to the framework helps to incorporate time dependence 
and represent the long and short development time distributions (Fig. 1c). The resulting model accommodates 
change in the rate parameter γ (Eq. 8), e.g doubling of γ changes development time from 40± 5 to 20± 2.5 . 
However, to accommodate the required shift, the model needs to be transformed from a 66-dimensional system 
to an 18-dimensional one, which is beyond the scope of this work. We argue that in cases where development 
time distribution is fixed a priori (excluded from model calibration), the LCT framework provides a signifi-
cant advantage over canonical ODEs. Although the framework has been used in the field of infectious disease 
epidemiology64,65, it has recently been applied to the modelling of vector population dynamics30.

The DDE framework also yields a gradual development trajectory with an intermediate duration (Fig. 1d). 
However, the distribution tends towards the longer development trajectory compared to the one achieved with 
cumulative development. The canonical DDE framework assumes a homogenous cohort, where all individuals 
react in the same way to variations in development rate. The assumption gives rise to sharp stage transitions 
within a single generation if all individuals are introduced at the same time. As a potential workaround, it has 
been proposed to generate a plausible population history, through variable entry times, until the required (or 
observed) developmental variation builds up31,32. Variation in development rates then acts upon the population 
and results in the modification of the existing age-structure. It is worthwhile to mention that a recent extension to 
the DDE framework to accommodate trait variation in population dynamics34 might also accommodate changing 
development rates within a single stage; however, it has not yet been employed at this scale.

Cumulative development is in agreement with the widely known degree-day (DD) framework, where develop-
ment time is predicted by the heat accumulating in organisms46. Although the rate of accumulation in response 
to environmental conditions varies considerably, the DD framework implies that the combination of two differ-
ent rates yields an average development time (also seen with cumulative development in Fig. 1). Experimental 
evaluation of this will be the topic of future research.

It is worth mentioning that our dynamically structured renewal process-based MPM follows the assumption 
of random population heterogeneity9,11; namely, at the individual level, the future behaviour of an organism is not 
affected by its historical behaviour. However, trait variation within a population is prevalent in many species, and 
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is known to impact population dynamics and species interactions34,66,67. Future development of our framework 
will consider improving upon this limitation.

Environmental variation transformed into development times.  Several non-linear relationships 
have been proposed to represent the temperature dependence of insect development68. A common feature is the 
presence of low and high temperature thresholds beyond which development is prohibitively slow. Often, there 
exists an optimum between the thresholds where the process is most efficient. A typical relationship between 
temperature and development rate, reported in Briere et al.50, is seen in Fig. 2a. Mean development time, given 
by the reciprocal of rate in Fig. 2b, exhibits the two thresholds and the optimum.

To investigate how temperature variation is transformed into cumulative development time, we assumed 
three variation regimes at relatively low, medium, and high temperatures ( ρL , ρM , and ρH , respectively). Densi-
ties of the corresponding Gaussian probability distributions are plotted in Fig. 2b. Accordingly, each variation 
is transformed by a slightly different region of the rate function (Eq. 9). Eventually, the three development time 
distributions emerge as shown in Fig. 2c.

We found that the output of ρH is skewed towards longer durations compared to what we would otherwise 
obtain if we simulated the process under constant conditions with the mean of ρH . The impact of variation in the 
middle range, ρM , is similar to that of ρH , but less pronounced. Conversely, the output of ρL is skewed towards 
shorter durations. Our results suggest that, when development is already highly efficient, variation in temperature 
causes frequent encounters of longer (but not shorter) development durations, eventually extending the overall 
duration of the process. In the low efficiency range, development takes long to complete, but frequent encounters 
of relatively short durations—especially as the process approaches its optimum duration—triggers completion 
earlier than in the case of no variation.

Figure 1.   Response to change in development time. The number of developing individuals is simulated by 
using the cumulative development process and compared to (a) the age-dependent development process, (b) 
an ODE representation, (c) an LCT representation, and (d) a DDE representation. Solid dark lines show the 
cumulative development and thick blue lines show the alternative models. Dashed gray lines mark the two target 
trajectories before and after the shift in development time (marked with red crosses).
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Overall, our model predictions are in agreement with the rate summation effect, which states that the differ-
ent outcomes obtained under constant and varying temperatures is due to the non-linear relationship between 
temperature and development rate (the Kaufmann effect)16. Furthermore, acceleration of development in insects 
subjected to varying high temperatures, its retardation at varying low temperatures, and low variability of devel-
opment time in the linear range of the rate curve have been widely discussed69. Several groups have reported 
evidence in support of this effect, which is also in agreement with our results. For instance, Vangansbeke et 
al. (2015) reported for three insect species, Phytoseiulus persimilis, Neoseiulus californicus, and Tetranychus 
urticae, that varying temperatures with a lower mean yields faster development compared to the yield at mean 
constant temperatures70. However, observations of this phenomenon might result in different responses for differ-
ent species at similar temperatures due to the difference in rate curves. Identification of the optimum temperature 
range may facilitate comparison. For instance, Carrington et al. (2013) assumed 26oC as optimum based on the 
high dengue incidence in Thailand, and showed that large variations around 26oC increases development time 
for the dengue vector, Aedes aegypti71. Wu et al. (2015) demonstrated that development is faster at around 26oC 
compared to 23oC for the fly, Megaselia scalaris, and found that varying temperatures at around 23oC accelerates 
the process47. Finally, in a modelling study employing DDs, Chen et al. (2013) reported that larger diurnal tem-
perature ranges relate to additional DD accumulation and faster development in grape berry moth, Paralobesia 
viteana72. Under the realistic non-optimum field conditions, where these simulations had been performed, a 
decrease in development time is expected in response to varying temperatures according to our results.

We note that the variation in development times is due to temperature since we ignore intrinsic stochasticity 
to demonstrate the impact of ρ in isolation. The deterministic setup removes the upper limit in the number of 
distinct pseudo-stage indicators: a different q emerges from each k, and a different k emerges from each ρ . Since 
the number of pseudo-stages quickly exhausts the computational resources, we set the precision of q to the nearest 
100th decimal point, effectively capping the number of pseudo-stages at 100 (see Accuracy of the pseudo-stage 
approximation). As shown in Fig. S2, the approximation has a negligible impact on accuracy.

Environmental dependency extracted from life tables under constant conditions.  Having dis-
cussed the importance of environmental variability in development, in this section, we employ a well-established 
experimental method to unravel the relationship between temperature and development time in a common 
mosquito species. In contrast to invasive vectors, which effectively render new territories suitable for disease 
transmission, Culex species pose an imminent threat with their wide distribution and ornitophilic (Cx. pipi-
ens biotype pipiens), mamophilic (Cx. pipiens biotype molestus), and intermixed (their hybrids) blood feeding 
behaviour. Here, we investigate the temperature dependencies of mortality and development of Cx. quinquefas-
ciatus, the southern house mosquito, which is an important disease vector, widely distributed across the tropics 
and sub-tropics73,74.

To infer the dependencies, we used a generic temperature-driven insect development model, described in 
Methods, and the life history observations performed at five constant temperatures (15, 20, 23, 27, and 30 ◦ C) 
under laboratory conditions60,61. As a result of the inverse modelling procedure, detailed in Methods, we found 
that the generic model yields an overall match between the simulations and observations. In Fig. 3a, we present 
a comparison of observed and simulated maximum production and the stage-emergence times for pupae and 
adults. Here, we define the stage-emergence time as the time taken from the beginning of an experiment to the 
time when half of the maximum production of a stage (pupa or adult) is observed. In addition, in Fig. S3, we 
present the comparison of time trajectories separately for each temperature.

We found that the generic model faithfully replicates the observed development times of larvae and pupae. 
On the other hand, stage mortalities are predicted well at three temperatures, but are overestimated at 20 or 
27 ◦ C. The impact of temperature on mortality might be more complex than it is captured by the quartic equation 
(Eq. 11). Optimum survival seen at 27 ◦ C suggests that the relationship might be non-symmetrical or multimodal. 

Figure 2.   Development under environmental variation. In (a), development rate (Eq. 9) is shown with 
α = 1.5× 10−5 , TL = 0oC , and TH = 50oC . In (b), mean development time is shown together with the 
probability densities of three temperature regimes ( ρL , ρM , and ρH ). In (c), the number of individuals 
completing development at each step are shown with respect to the three temperature regimes. Solid lines 
indicate the median, shaded areas indicate the 90% range of 1000 simulations, and thick lines indicate 
simulations with the expected values of each regime.
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In addition, the observed variability in mortality suggests that the mismatch could also be due to experimental 
error or the intrinsic stochasticity of the biological processes.

We extracted the functional forms of temperature dependence from the posterior samples, shown in Fig. 3b, c, 
and found that the data inform the model as expected within the temperature range of the experiments ( 15−30 ◦

C). Stage durations are well informed, and reflect the low variability seen in the data (the standard deviation 
is less than 1.5 days at all temperatures for both stages). Accordingly, pupae develop in less than 4 days, which 
is much shorter than the larva development time (between 10 and 20 days above 20 ◦C). The model predicts 
that the minimum temperature at which development occurs (from the larva stage) is 10.5 ◦ C, which is close to 
10.9 ◦ C, reported in Grech et al.75.

The observed variability in pupa and adult production suggests that survival is a highly stochastic process 
regardless of the controlled laboratory conditions. A deterministic model, such as the one used in this context, 
represents the mean of such processes but does not capture their variability. The simulated variability is a result 
of the uncertainty in parameter estimates. Model parameters contribute unequally to the output as a result of the 
model structure and the functional forms of temperature dependence, and the data inform certain parameters 
better than others76,77. For instance, daily mortality, shown in Fig. 3c, is more constrained for larva than pupa, 
which is likely due to the short duration of the pupa stage—changes in daily mortality have larger consequences 
as development time increases.

We note that a well-informed model yields predictions in the form of verifiable hypotheses; however, these are 
not necessarily accurate predictions. Model accuracy is assessed when such hypotheses are experimentally tested 
as part of the cyclic process of model development78. Here, we demonstrated that our modelling framework can 
be used to derive biologically meaningful inferences and to help improve the understanding of the temperature 
dependence of Cx. quinquefasciatus.

Greater information content of semi‑field experiments.  The number of experiments required to 
test a range of conditions, including different combinations of multiple drivers, may quickly exhaust availa-
ble resources. Moreover, variable conditions may have a previously unaccounted impact on development and 
mortality. In this section, we demonstrate that observations performed under variable conditions are valuable 
sources of information for our modelling framework, which is capable of representing the dynamics under such 
conditions.

Cx. pipiens, the northern house mosquito, is a competent disease vector, widely distributed across the tem-
perate countries in North America, Europe, Asia, and North and East Africa74,79. Unlike Cx. quinquefasciatus, 
Cx. pipiens biotype pipiens is known to enter a reproductive diapause phase, where adult females arrest oogenesis 
during harsh winter conditions80,81. When larvae are exposed to short photoperiods and low temperatures dur-
ing development, they emerge as adults destined to diapause. Although Cx. pipiens biotype molestus has lost the 
ability to diapause, its immature stages have been reported to retain metabolic sensitivity to photoperiod82,83.

To reveal the environmental dependence of the molestus biotype, we exposed its eggs to variable temperatures 
in semi-field conditions until adult emergence (or loss of cohort). The numbers of viable larvae, pupae, and adults 
observed in different experimental batches are given in Fig. S4. We employed the extended model with both 
temperature and photoperiod dependence (see Methods), and calibrated the model against seven of the semi-field 
experiments, performed in March, May, June, July, August, and September (Fig. S4(a), (b), (d), (f), (g), (i) and (j)).

As a result, we found that the model replicates the patterns of abundance emerging in the observations, e.g. 
stage timing and maximum adult production, reasonably well in most of the experiments, regardless of the times 
during which they were performed (Figs. S5 and S6). Quantitative evaluation of the agreement reveals that the 
observed and simulated adult emergence times are less than a week apart (Table 1).

On the other hand, we found that egg and larva mortalities, and also, pupa and adult production are highly 
variable in the observations (see Fig. S4(c), (f), and (g)). Spikes of larva mortality are seen in Spring and Autumn 
(especially in May, September, and October). Despite this variability, the difference between the predicted and 

Figure 3.   Inverse modelling of Cx. quinquefasciatus environmental dependency. The comparison of observed 
and simulated maximum pupa (P) and adult (A) production and the corresponding stage-emergence times 
is given in (a). Observations are represented with dots and simulations with box plots. The environmental 
dependency of larva and pupa development time (b) and mortality (c), derived by the posterior mode sample 
�q , is shown in (b,c). Solid lines represent the median and shaded areas represent the 90% range.
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observed adult production was around 11 or less, except in the case of the experiment E7, which unexpectedly 
yielded only one pupa and no adults.

We obtain relatively large mismatches when predicting larva abundances, specifically where egg mortality 
is not predicted well (E5, E7, E8, E10, E11, E12). We hypothesise that the stress associated with rearing lab-
grown specimens under variable conditions might elevate egg mortality, induce premature hatching, or affect 
the survival of the larvae produced. Since egg development starts inside gravid females, i.e. under the optimum 
conditions of the laboratory, the observable part of development subjected to variable conditions remains mainly 
the hatching behaviour. Consequently, we observed rapid and synchronous completion of the egg stage in all 
experiments (see Figs. S5 and S6). Being exposed to a narrow range of temperatures, relatively less information 
can be obtained on the environmental dependency of the egg stage. As a potential improvement, we recommend 
that future adaptations of the semi-field experiments consider using field-captured adult female mosquitoes as 
the source of eggs.

In addition to egg mortality, we observed spikes of larva mortality in May (E3), July (E8), and in Autumn (E14, 
E15, and E16). A likely cause of such transient high mortality is brief temperature shifts towards the extremes. 
However, the rarity of such events prevents the inverse modelling procedure from adequately capturing their 
impacts on life processes. As a potential improvement, we recommend that the experiments are performed in 
overlapping time frames, increasing the likelihood of observing the impact of an extreme event at different 
times during development. We note that the early decline in larva abundance seen in Autumn could be a result 
of insufficient food supply due to the increased nutritional requirements. According to the proposed metabolic 
response to short photoperiods, larvae would require additional food to accumulate fat reserves in preparation 
for diapause, the state where adult females endure several months without feeding. This implies that development 
takes longer than it would at long photoperiods when subjected to similar temperature regimes.

Using the extended model and the semi-field data, we identified the environmental dependencies shown 
in Fig. 4. The data informed about the temperature dependency of each life stage as well as the photoperiod 
dependency of larvae. As expected, the overall variability in the inferred dependencies is higher for Cx. pipiens 
compared to Cx. quinquefasciatus (Fig. 3). We found that the larva and pupa development times closely match 
the observations reported by Spanoudis et al.62 at long photoperiods (see Fig. S7). However, the development 
times reported in Kiarie-Makara et al.84 at short photoperiods and moderate temperatures do not suggest a sig-
nificant impact of daylight, which could be due to the particular strain of Cx. pipiens used in these experiments. 
As expected, the temperature dependency of egg development was not well informed by the data in the current 
configuration of the model and the functional forms of environmental dependence.

We found that the photoperiod dependency is significantly non-linear with an average threshold of 13.7 
hours of daylight (Fig. 4c). Photoperiod-driven extension in development time (about 1.7 times more at 13:11 
h L:D than at 15:9 h L:D) contributes to improving the accuracy of predictions at the end of the high season 
(Fig. S8). The critical photoperiod (CPP) agrees well with the ones identified for Cx. pipiens biotype pipiens85,86. 
For instance, Sanburg and Larsen reported that there is an exponential relationship between follicle sizes in 
adult females (signifying commitment to diapause) and the photoperiods they were exposed to during immature 
stages85. We inferred a similar (but reverse) gradient between photoperiod and the extension of larva develop-
ment time from 15 to 12 hours of daylight (Fig. 4c).

Table 1.   Comparison of observed and simulated adult emergence time and the total number of adults 
produced. Simulation output is given in terms of the median and 90% range. *Observation within range **Used 
for model calibration.

Adult emergence Adult production

Id Date Simulation Observation Difference Simulation Observation Difference

E1** 2017-03-16 – – – 0.00 (0.00–0.00) – –

E2 2017-03-23 – – – 0.00 (0.00–0.00) – –

E3** 2017-05-09 23.50 (22.00–24.52) 26.00 2.50 9.76 (6.51–13.84) 5.00 − 4.76

E4 2017-06-12 15.00 (14.25–15.75) 13.00 − 2.00 29.21 (26.65–32.26) 39.00 9.79

E5 2017-06-12 15.00 (14.25–15.75) 14.00 − 1.00 18.53 (16.90–20.46) 9.00 − 9.53

E6** 2017-06-12 15.00 (14.25–15.75) 15.00* 0.00 32.06 (29.25–35.40) 37.00 4.94

E7 2017-07-07 14.50 (13.50–15.75) – – 19.16 (13.12–22.56) – –

E8** 2017-07-11 15.25 (14.24–16.25) 19.00 3.75 7.17 (5.95–8.60) 10.00 2.83

E9 2017-07-11 15.25 (14.24–16.25) 16.00* 0.75 13.89 (11.52–16.65) 4.00 − 9.89

E10 2017-07-11 15.25 (14.24–16.25) 18.00 2.75 5.82 (4.83–6.98) 6.00* 0.18

E11 2017-08-04 14.25 (13.00–15.50) 13.00* − 1.25 8.10 (4.67–10.67) 19.00 10.90

E12 2017-08-04 14.25 (13.00–15.50) 11.00 − 3.25 10.04 (5.80–13.24) 2.00 − 8.04

E13** 2017-08-06 16.00 (13.74–17.25) 13.00 − 3.00 25.11 (18.18–31.03) 17.00 − 8.11

E14** 2017-08-25 39.25 (32.25–41.60) 45.00 5.75 5.86 (4.55–7.23) 11.00 5.14

E15 2017-08-28 46.25 (44.20–49.25) 41.00 − 5.25 2.86 (2.03–3.79) 3.00* 0.14

E16** 2017-08-28 46.25 (44.20–49.25) 42.00 − 4.25 5.96 (4.24–7.90) 6.00* 0.04
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Risk assessment with annual development profiles.  We extrapolated the development dynamics of 
Cx. pipiens over the calendar year by setting up a hypothetical experiment at the beginning of each week. We 
simulated the subsequent development dynamics and obtained the annual development profile as shown in 
Fig. 5. Accordingly, the immature stages begin development from late February and the first adults emerge in 
May (adults emerging late in May start developing in the experiments set up late in March). The profile is con-
sistent with the regular Cx. pipiens high season in the region.

As seen in Fig. 5, predicted adult emergence times agree well with the observations throughout the high 
season. However, there is a greater variation in the maximum number of adults than the times of emergence 
(extending to almost 40% of the possible outcomes in early August). A greater variability (almost 80% in August) 
is seen in the corresponding observations, which we transformed into the percentage of eggs emerging as adults 
(where available) to facilitate comparison. According to the model, variation in adult production is associated 
with the variation in both development times and mortality during immature stages. We recall that the uncer-
tainty in the informed environmental dependencies is high around relatively less frequently encountered val-
ues—especially the lower and higher temperature extremes (Fig. 4). Specifically, egg development times cannot 
be identified precisely, but immediate hatching of the larvae is predicted between 20 and 25 °C. Consequently, 
we found that frequent exposure to temperatures outside the well-informed range have a significant impact on 
the variation in adult production (Fig. S9).

We adopt the time of first adult emergence as a proxy of the first generation of adults in the season. Accord-
ing to our model, early adult emergence is a result of shorter development times and higher success rates, which 
indicates that the temperature conditions allow for an early first generation of adults. An early first generation 
greatly contributes to an early peak of adult abundance, which may increase the risk of vector-borne disease 
transmission in humans. For instance, an early peak of abundance may cause an early start of West Nile virus 
circulation and amplification in Culex pipiens and their avian hosts, which increases the likelihood of virus spillo-
ver to humans51,87. Anecdotal evidence shows that the anomalously hot April and May that occurred in 2018 in 
Serbia shifted the peak of Cx. pipiens abundance forward by more than one month (Petrić et al., unpublished). 

Figure 4.   Environmental dependency of Cx. pipiens development and mortality inferred from semi-field life 
table experiments. Solid lines represent the median and shaded areas represent the 90% range.

Figure 5.   Annual development profile of Cx. pipiens in Petrovaradin, Serbia, in 2017. The outcome of each 
hypothetical semi-field experiment is plotted vertically along the y-axis at the date when the experiment is 
initiated. The maximum number of adults produced is given in blue, and the time it takes (from the date 
indicated on the x-axis) to produce half of the maximum is given in green. Solid lines represent the median and 
shaded areas represent the 90% range of model predictions. Outcomes of the semi-field experiments (dots) are 
plotted together with the model predictions. The time points marked with circles indicate the experiments used 
to calibrate the model. Estimated time of first adult emergence is given in the inset.
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Similarly, 2018 was the year with the largest number of autochthonous West Nile virus infections throughout 
Europe (more than the total of the previous seven years together)88,89.

In summary, our results showed that the semi-field experiments, when used in combination with our dynamic 
pseudo-stage-structured MPM, help to develop predictive models and inform over a wide range of environmental 
conditions. We developed a predictive model of Cx. pipiens biotype molestus development and gained insights 
into the specifics of temperature and photoperiod dependencies by reducing the need of extensive laboratory 
data. We used life history observations from 7 experiments performed under semi-field conditions and employed 
a generic model structure, largely uninformed on the specific environmental dependencies of the species. The 
cumulative development framework we introduced applies broadly to poikilotherms subjected to highly vari-
able environmental conditions. Although the generic model structure helps to develop exploratory models and 
identify potential environmental dependencies, accuracy can be improved by customising the models for the 
known dependencies of particular species. With a straightforward extension of the development model to cover 
the complete life cycle (with egg laying and density dependence), it is possible to incorporate field observations 
of eggs or adult mosquitoes, and develop an environment-driven population dynamics model.

Conclusions
There is an urgent need to unravel the intricate physiological links between mosquitoes and their environment to 
quantify the impact of climate warming and control the future spread of disease. Here, we described an inverse 
modelling approach combining a pseudo-stage-structured population dynamics model and a semi-field design 
of life table experiments. The model allows for variability in development rate during the process, and is suitable 
for representing insect life cycles, subjected to highly variable environmental conditions. The combination can 
be used to accurately characterise a wide range of external drivers without the need to collect large amounts of 
data. Consequently, our approach complements the analytical and experimental methods needed for develop-
ing predictive large-scale climate-driven models for many insect species, such as those important for disease 
transmission, species conservation, and forensic investigation.

Code availability
The data generated and the code for analysis are available in the GitHub repository https://​doi.​org/​10.​5281/​
zenodo.​66453​55.
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