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Robust 3D lane detection 
in complex traffic scenes using 
Att‑Gen‑LaneNet
Yanshu Jiang, Qingbo Dong & Liwei Deng*

Robust 3D lane detection is the key to advanced autonomous driving technologies. However, complex 
traffic scenes such as bad weather and variable terrain are the main factors affecting the robustness 
of lane detection algorithms. In this paper, a generalized two-stage network called Att-Gen-LaneNet 
was proposed to achieve robust 3D lane detection in complex traffic scenes. The Efficient Channel 
Attention (ECA) module and the Convolutional Block Attention Module (CBAM) were combined in this 
network. In the first stage of the network, we improved the semantic segmentation network ENet 
and proposed the weighted cross-entropy loss function to solve the problem of ambiguous distant 
lane segmentation. This method improved Pixel Accuracy to 99.7% and MIoU to 89.5%. In the second 
stage of the network, we introduced the interpolation loss function to achieve accurate lane fitting. 
This method outperformed existing detection methods by 6% in F-score and Average Precision on 
the Apollo Synthetic dataset. The proposed method achieved better overall performance in 3D lane 
detection and was applicable to broader and more complex traffic scenes.

In recent years, with the rise of autonomous driving technology, the transportation industry is developing rap-
idly in the direction of intelligence and autonomy. One of the prerequisites for these directions is the automatic 
detection and identification of various elements in the traffic scenes. Lanes are essential traffic signs, so accom-
plishing robust detection of lanes in complex traffic scenes is the key to implementing advanced autonomous 
driving technologies1–3.

Most of the current lane detection methods only stay at the 2D level, and the emergence of 2D lane detection 
datasets such as Tusimple4 and Culane5 make this research direction develop more rapidly. Researchers were 
committed to improving the detection accuracy of lane, and attention modules such as Dual Attention and 
SAD6–10 were added to semantic segmentation networks. These methods used spatial or channel correlation 
to assist in accurate lane fitting. 2D lane detection algorithms usually perform semantic segmentation of the 
image first5, 11–13 and then convert the driver’s view image into the bird’s eye view using the inverse perspective 
transformation14, 15. Curve fitting uses polynomials in the bird’s eye view16, 17 and the output detection results are 
approximate curves of the 3D lane in the real scenes. Real-time performance is an essential metric for evaluat-
ing lane detection algorithms. The CondLaneNet proposed by Liu et al.18 achieved a detection rate of 220 FPS 
on the Culane dataset, and the PolyLaneNet proposed by Lucas Tabelini et al.19 achieved a detection rate of 115 
FPS on the Tusimple dataset. These lane detection algorithms used many assumptions on lane properties such 
as flat roads and uniform lighting. Due to the above assumptions, the existing lane detection technologies have 
poor robustness and provide false perceptions when the vehicle is driving up and down hills, curve lanes, and 
complex traffic scenes such as rain or snow, in general lack adaptive capabilities compared to drivers.

In recent years, scholars have started to research 3D lane detection, which mostly relies on the geometric 
relationship between the in-vehicle camera settings and the road surface, as shown in Fig. 1. 3D-LaneNet20 was 
one of the first end-to-end network frameworks proposed in this research direction, which implemented IPM 
transformation internally and introduced the concept of anchor representation. 3D-LaneNet implemented end-
to-end training with image views and bird’s eye views in parallel, and achieved superior results in complex traffic 
scenes such as lane merging and splitting. Netalee Efrat et al.21 proposed a camera-based DNN method. This 
method followed the parallel structure in 3D-LaneNet and decomposed the lanes into the lane line segments 
using grids in the bird’s eye view. In this approach, adjacent grids will have overlapping perceptual fields, so the 
lane line segments of adjacent grids can be clustered into complete lanes. The two-stage network proposed by Guo 
et al.22 computed 3D lane point coordinates using the geometric transformation between the in-vehicle camera 
coordinate system and the vehicle coordinate system. This method was beginning to be applied to unseen scenes.
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Although existing lane detection algorithms have been extended to the 3D level, there are still many prob-
lems. When segmenting lane images, we will face the problem of ambiguous distant lane segmentation due to 
complex traffic scenes such as hills and curve lanes. In addition, the great difference in the number of lane and 
background pixels lead to unclear lane edge segmentation. When predicting 3D lane structure, the model has 
poor generalization ability in unseen scenes and complex weather. Therefore, we designed a two-stage network 
that focused on segmentation of 3D lane and 3D lane coordinates prediction. In the first stage, we improved the 
lightweight semantic segmentation network ENet23 and introduced the ECA attention module24 in the decoder 
part of ENet to improve the segmentation effect by enhancing the lane and background discrimination ability of 
the model. The CBAM attention module25 was introduced between the top view encoding layer and the prediction 
head of the second stage geometric encoding subnetwork to aggregate more global information to enhance the 
model’s generalization ability. We designed the weighted cross-entropy loss function to constrain the problem of 
the unbalanced number of lane and background pixels in the semantic segmentation process. We also introduced 
the interpolation loss function26 to solve the problem of poor local fit of the lanes.

The contributions of this paper are summarized as follows:

A two-stage 3D lane detection network was designed with superior generalization performance of the model 
for a wider range of traffic scenes.
The ECA attention mechanism and the CBAM attention mechanism were introduced in the two stages, which 
improved the segmentation effect and prediction accuracy of the network accordingly.
The weighted cross-entropy loss function and the interpolation loss function were improved in the two stages 
to enhance the model’s generalization ability.

The main goal of this research is to design a 3D lane detection algorithm with more robust performance to 
provide a model for more advanced autonomous driving techniques. In this paper, the second section describes 
the network architecture and the main methodology, the third section shows the experimental data and result 
plots, and last section illustrates our conclusions.

Methods
Attention mechanism.  ECA attention module.  In the first stage of the network, we introduce the ECA 
attention module24 to assist the 3D lane segmentation. The structure of the ECA attention module is shown in 
Fig. 2. The overall structure after adding the ECA attention module is shown in Fig. 6. This module contains only 
nine parameters, which not only learns the correlation between different channels of the feature maps and im-
proves the sensitivity of the network to the 3D lane structures. The ECA attention module first performs global 
average pooling of the input feature and then performs a one-dimensional convolution operation with a con-
volution kernel of k . The generated feature maps through the sigmoid activation function to obtain the weights 
of each channel, and the weights are multiplied with the corresponding elements of the input feature maps to 
obtain the output feature maps. The value of k is determined adaptively by the channel dimension in the input 
feature maps, and the equation is as follows.

(1)k = ψ(C) =

∣∣∣∣
log2(C)

γ
+

b

γ
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Figure 1.   In-vehicle camera position and vehicle coordinate frame. This figure was drawn by author Qingbo 
Dong.
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where |n|odd indicates the nearest odd number n . The parameters of γ and b are set to 3 and 2, and C is the number 
of channel dimensions.

CBAM attention module.  In the second stage of the network, we introduce the CBAM attention module25 to 
assist the 3D lane prediction. We add it between the Top-view Segmentation encoder and the lane prediction 
head. The overall structure after adding the CBAM attention module is shown in Fig. 7. The CBAM attention 
module consists of a spatial attention module and a channel attention module in series. The overall structure of 
the CBAM attention module is shown in Fig. 3. The outputs of the convolutional layer will first pass through the 
channel attention module to get the weighted results and then will pass through the spatial attention module to 
get the final weighted results. The CBAM attention module extracts more global information in both channel 
and spatial dimensions to predict 3D lane structures better.

The channel attention module performs the input feature’s global max pooling and global average pooling 
to obtain two one-dimensional vectors. These two vectors will pass through the shared multi-layer perceptron 
(MLP) and be summed, and finally the channel attention feature maps are generated using the sigmoid activa-
tion function. The channel attention feature maps are element-wise multiplied with the input feature maps to 
generate the input feature maps of the spatial attention module. In the spatial attention module, we first perform 
global max pooling and global average pooling operations on the channel dimension and concatenate the two 
results. The generated results are reduced to one channel through a convolutional layer and then through the 
sigmoid activation function to generate the spatial attention feature maps. The spatial attention feature maps are 
multiplied with the channel-refined feature maps to obtain the final refined feature maps. The following equations 
describe the channel attention module and the spatial attention module.

Figure 2.   The structure of the ECA module.

Figure 3.   The structure of the CBAM attention module.
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where σ denotes the sigmoid activation function, W0 and W1 denote the weight matrix in the MLP , and Fcavg and 
Fcmax denote the average pooling feature and max pooling feature in the channel attention module.

where f 7∗7 denotes the convolution operation with a filter size of 7× 7 , Fsavg and Fsmax denote the average pooling 
feature and the max pooling feature in the spatial attention module.

Geometric transformation and anchor representation.  In this paper, the 3D lane is represented in 
the vehicle’s coordinate system consisting of X,Y ,Z axes and the origin O . We use the height Hcam and the pitch 
angle θ to indicate the camera’s pose. The camera coordinate system is represented by Xc ,Yc ,Zc and the origin 
C . Z denotes the real height of a 3D lane. The 3D lane can be projected onto the image plane by projection trans-
formation and then the lane image can be projected onto a flat road surface by planer homography to generate 
a bird’s eye view. Due to the camera parameters are involved, the lanes in the bird’s eye view have different X,Y  
values compared to the 3D lanes in the vehicle’s coordinate system. We set the bird’s eye view as a special coor-
dinate system defined by the x, y,Z axes and the origin O . The geometric transformation between the coordinate 
system of the bird’s eye view and the vehicle’s coordinate system can be expressed by the following equation:

The 3D lane coordinates are represented as the x, y in the bird’s eye view coordinate system and the real height 
Z . Since the geometric transformation is independent of the camera parameters, the geometric transformation 
holds whether the vehicle is driving on the uphill or downhill scenes. Using this geometric transformation, the 
lane coordinates in the bird’s eye view can be mapped back to the real road coordinates. The geometric trans-
formation is shown in Fig. 4.

We use the anchor representation22 combined with the geometric transformation to compute real 3D lane 
coordinates, enabling our method to predict 3D lane structures in unseen scenes. The anchor representation as 
shown in Fig. 5. In this method, we predefine n equidistant vertical lines on the x-axis to determine the position 
of the anchors and define k fixed y positions. When the predicted lane crosses the Yref  location, the ground-truth 
lane is associated with the nearest anchor based on the x value. An anchor vector can be expressed as (x, z, v) , 
where x denotes the horizontal offset distance between the predicted lane and the ground-truth lane, z denotes 
the height, and v denotes the visibility of every lane point.

Att‑Gen‑LaneNet network architecture.  In this section, Figs. 6 and 7 show the two subnetwork archi-
tectures of Att-Gen-LaneNet, and the two stages of the network need to be trained separately. The first subnet-
work focuses on lane image segmentation. The second subnetwork focuses on predicting the 3D lane structure 
from the segmentation outputs of the first subnetwork.

We choose the improved ENet as the first subnetwork for semantic segmentation of images. The asymmetric 
ENet network contains a large encoder and a small decoder. The whole network consists of 6 blocks. Block1 is 
the initial block for generating feature maps and fusing the feature maps generated by pooling and convolution 
operations. Block2 and block3 are downsampling blocks, and block4 repeats the structure of block3 to increase 
the depth of the network. Block5 and block6 are upsampling blocks and blocks 2–6 all have bottleneck as the 
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Figure 4.   Geometric transformation.
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Figure 5.   Anchor representation.

Figure 6.   The architecture and composition of the improved ENet framework.
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base structure. We use skip connection to lead the shallow features to the deeper layers of the network so that 
the decoder has more detailed information to obtain better segmentation and accelerate the model training. We 
apply the ECA attention module in the decoder to strengthen the network’s ability to focus on the information 
of relevant channels. Figure 6 shows the first subnetwork architecture.

In the second subnetwork, the segmentation results are input to the top-view segmentation encoder and 
projected to the bird’s eye view through inverse perspective mapping. The segmentation results are encoded 
in the feature maps through a series of convolution operations. The lane prediction head will use the anchor 
representation to predict the properties of the 3D lanes and calculate the real coordinates of the 3D lanes based 
on the geometric transformation. The architecture of the geometric encoding subnetwork is shown in Fig. 7.

Loss functions of Att‑Gen‑LaneNet.  In the first subnetwork, we use the standard cross-entropy loss 
function. To solve the problem of unbalanced sample distribution where the lane pixels are much less than the 
background pixels, we weight the loss. The equation is as follows:

The weights are bounded when the probability of the lane class is close to 0 . c is an additional hyperparameter, 
which we set to 1.06. It makes the class weights restricted to the interval [1,50].

In the second subnetwork, the proposed loss function consists of the cross-entropy loss function, geometric 
distance error in x and z directions. The cross-entropy loss function is used to evaluate the predicted lanes pres-
ence probability p and visibility v correctness. The following equation can express the cross-entropy loss function:

The formula p′i = 1− pi , and v′i = 1− vi.
In previous studies, researchers only used the two ends of the fitted lane and the ground truth lane for error 

estimation, which resulted in a large amount of valuable ground truth information being ignored. To solve 
this problem, we insert more points in the x-direction to reflect the quality of the fit for the whole lane. Sparse 
sampling and dense sampling on each anchor are denoted as {yj1, y

j
2, . . . , y

j
m−1, y

j
m} and {yj1, y

j
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j
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j
M} , 

respectively. Where M = km , and m can be chosen a suitable integer. Xj
pred is the original output anchor vector 

of the network, and Xj
inter is the anchor vector obtained by interpolation of Xj

pred . The ground truth anchor values 
X̂
j
gt and X̂j

gt(dense) sampling at different intervals can be computed from raw ground truth 3D lane curves acquired 
from the synthetic environment. After interpolating the predicted 3D lanes and comparing them with the x̂ 
and ẑ  values of the ground truth 3D lanes. The following equations can express the interpolation loss function:

where f (·) denotes the interpolation rule, and the parameter of n is set to 0.6. The total loss function can be 
expressed as:

(5)Wclass =
1

ln(c + pclass)

(6)
Lcls = −�N

i=1

(
p̂i log pi + p̂

′i log p
′i
)

−�N
i=1p̂

i ·

∥∥∥v̂i log vi + v̂
′i log v

′i
∥∥∥
1

(7)X
j
inter = f (X

j
pred)

(8)Lreg = �N
j=1p̂

j ·
[
v̂
jT
dense v̂

jT
dense

]([
x
j
inter

z
j
inter

]
−

[
x̂
j
dense

ẑ
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Figure 7.   The architecture and composition of the Geometric encoding subnetwork.
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Experiments
Dataset selection.  In this research, we choose the Apollo Synthetic dataset22 for 3D lane detection. There 
are 10,500 images from virtual scenes such as highways, cities, rural roads, and hills. These virtual scenes are cre-
ated using the Unity 3D engine. The most significant advantage of the Apollo Synthetic dataset is that it provides 
ground truth data, including semantic/instance-level segmentation, depth and 3D lane data. The farthest dis-
tance labeled in the 3D lane label is 200 m ahead of the vehicle, the camera height is randomly set to 1.4− 1.8 m , 
and the pitch angle is set to 0◦ − 10◦ . Another benefit is more environmental variations, such as different times 
of the day, different weather conditions, different obstacles and different complex terrains.

Dataset division strategy.  The dataset is divided according to the following three strategies to evaluate our 
model in different aspects.

1.	 We divide the unbiased images into the training set and test set according to the ratio of 5:1, as a way to 
perform a basic test of our algorithm.

2.	 The above ratio is still used to divide the number of images in the training and test sets. The training set uses 
unbiased data, but the test set is chosen from the traffic scene images that do not appear in the training set. 
We use this approach to verify the generalization ability of our method when encountering unseen scenes.

3.	 Many images of the same scene in the Apollo Synthetic dataset are taken at different times of the day. We 
store images of the same scene taken at different times of the day into the training set and test set to verify 
the generalization ability of our method when the scene changes visually.

Evaluation method.  We use Pixel Accuracy (PA) and MIoU as the main evaluation metrics when train-
ing the first subnetwork. Pixel Accuracy is used to calculate the ratio of the number of correctly predicted lane 
category pixels to the total number of pixels. For explanation, we count the lane categories as β . Pnm indicates 
the number of pixels that belong to class n but are mistakenly detected as class m , Pmn denotes the number of 
pixels that belong to class m but are mistakenly detected as class n , and Pnn denotes the true number. MIoU is the 
result of the model first finding the ratio of the intersection and concatenation of the predicted and real values 
for each category, then summing and averaging them. β+1 denotes the sum of the number of lane categories and 
background categories. The following equations can express Pixel Accuracy and MIoU:

In the second subnetwork, we use Average Precision (AP) and F-score as the primary metrics to evaluate 
the prediction results. Precision is the percentage of matched predicted 3D lanes, and recall is the percentage of 
matched ground truth 3D lanes. The following equation can express Average Precision:

where N indicates the number of all images in the test set, p(k) indicates the precision value when k photos can 
be recognized and �r(k) indicates the change in recall value when the number of recognized images changed 
from k − 1 to k.

The following equation can express F-score:

We adjust the value of α by weighing the two metrics, precision and recall. If we think that precision is more 
critical than recall, we adjust the value of α to be less than 1. If we think that recall is more critical than precision, 
we adjust the value of α to be greater than 1.

In addition, we use 40 m as the benchmark, define 40–100 m as the far distance and define 0–40 m as the 
near distance. We use the anchor representation to calculate the lane fitting error in the x and z directions of the 
far distance and near distance. At the predefined y positions with Xj = {x
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where vi indicates whether the current lane reach the predefined y position.

Parameters setting.  Our improved approach was compared to the three primary current baselines, where 
Gen-LaneNet was the primary baseline. We trained the improved ENet network and geometric encoding sub-
network separately using the Adam optimizer. The learning rates of the first and second sub-networks were set 
to 0.001 and 0.0005, respectively. The model was trained and tested on an NVIDIA Quadro RTX 6000 GPU. We 
implemented our method with Python (Version 3.7, URL https://​www.​python.​org/​downl​oads/​relea​se/​python-​
3713/) and PyTorch (Version 1.4.0, URL https://​downl​oad.​pytor​ch.​org/​libto​rch/​cu101/​libto​rch-​shared-​with-​
deps-1.​4.0.​zip). The first and second sub-networks were trained for 100 and 50 epochs, respectively. The whole 
training process took about 9 h.

Ablation study.  Due to excessive ablation experiments, we only show the segmentation results of UNet27, 
SegNet28, ERFNet29, and ENet23 after adding the ECA attention module and the weighted cross-entropy loss 
function. The results in Fig. 8 show that the improved ENet’s performance well in complex traffic scenes and 
solves the problem of ambiguous distant lane segmentation very well.
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Figure 8.   Visualization of lane semantic segmentation for complex traffic scenes. The modeling results of (b) 
UNet, (c) SegNet, (d) ERFNet and (e) ENet performed by Python 3.7 and PyTorch 1.4.0.

https://www.python.org/downloads/release/python-3713/
https://www.python.org/downloads/release/python-3713/
https://download.pytorch.org/libtorch/cu101/libtorch-shared-with-deps-1.4.0.zip
https://download.pytorch.org/libtorch/cu101/libtorch-shared-with-deps-1.4.0.zip
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We choose UNet, SegNet, ERFNet, and ENet to conduct many ablation experiments. In Table 1, "ECA" 
indicates the addition of the ECA attention module, "ECA/Wclass" indicates the addition of the ECA attention 
module and the weighted cross-entropy loss function. We verify the performance improvement of each part by 
the above method.

Benefits of the ECA attention module.  When adding only the ECA attention module to the original networks, 
the Pixel Accuracy can be improved by 0.6% on average, and the MIoU can be improved by 4.6% on average.

Benefits of the weighted cross‑entropy loss function.  When adding the ECA attention module and the weighted 
cross-entropy loss function to the original networks, the Pixel Accuracy can be improved by 0.8% on average, 
and the MIoU can be improved by 6.1% on average.

The 3D lane prediction results in Fig. 9a,b show that our model has superior generalization ability in com-
plex traffic scenes such as uphills and downhills, unseen scenes, and visual changes. Figure 9c,d show that our 
model has superior generalization ability in complex traffic scenes such as curve lanes, unseen scenes, and visual 
changes.

In Table 2, "CA" indicates the addition of the CBAM attention module, and "CA/IL" indicates the addition 
of the CBAM attention module and the interpolation loss function. The increasing trend of the data in Table 2 
fully illustrates that our improvements have improved the model performance in all scenes.

Benefits of the CBAM attention module.  When adding only the CBAM attention module to 3D-LaneNet and 
Gen-LaneNet, the F-score can achieve an average of 5% improvement in the three scenes, especially in the 
Unseen scenes, 3D-LaneNet achieves 10.2% improvement. AP achieves an average of 5% improvement in the 
three scenes, especially in the Visual variations, and 3D-LaneNet achieves 8.2% improvement.

Benefits of the interpolation loss function.  When adding the CBAM attention module and the interpolation 
loss function to 3D-LaneNet and Gen-LaneNet, F-score achieves an average of 1.3% improvement in the three 
scenes compared to adding the CBAM attention module only. AP achieves an average of 1.5% improvement in 
the three scenes.

Most importantly, our improved Att-Gen-LaneNet shows the best results in the three scenes.

Conclusions
In this paper, the proposed two-stage network Att-Gen-LaneNet perfectly solved the problem of ambiguous 
distant lane segmentation and achieved robust 3D lane structure prediction in complex traffic scenes. The model 
had strong generalizability and could be extended to unseen scenes. This work is beneficial to the combination 
and development of deep learning and autonomous driving technologies. The method proposed in this paper 
achieves excellent results, but it is very demanding on data. This method not only requires a large number of 3D 
scene images but also these images need to provide accurate annotation information, so the weakly supervised-
based method will be a development direction.

Table 1.   Comparison of different improvements in the course of ablation experiments. Significant values are 
in bold.

Method PA MIoU Epochs

UNet 97.6 71.7 50

UNet(ECA) 97.8 72.2 50

UNet(ECA/Wclass) 98.4 74.6 50

SegNet 98.2 78.9 50

SegNet(ECA) 98.8 82.2 50

SegNet(ECA/Wclass) 99 85.1 50

ERFNet 97.6 70.4 50

ERFNet(ECA) 98.8 81.4 50

ERFNet(ECA/Wclass) 98.4 80.4 50

ENet 98.8 84.1 100

ENet(ECA) 99.2 87.9 100

ENet(ECA/Wclass) 99.7 89.5 100
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Figure 9.   Examples of 3D lane detection prediction. The modeling results of Att-Gen-LaneNet performed by 
Python 3.7 and PyTorch 1.4.0.
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Figure 9.   (continued)
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Data availability
All data included in this study are available upon request by contact with the corresponding author.
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