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Assessing the rainfall infiltration 
on FOS via a new NSRM for a case 
study at high rock slope stability
Tianbai Zhou1,2, Lingfan Zhang3,4*, Jian Cheng1,2, Jianming Wang5, Xiaoyu Zhang1,2 & 
Maoyuan Li6

Assessing the stability characteristics of high rock slope under rainfall via theoretical research, 
numerical simulation, and field monitoring is of great implications for safety construction in open-pit 
mine engineering. Thus, based on the Hoke-Brown criterion, instantaneous internal friction angle and 
cohesion of high-slope rock mass under high stress conditions were deduced, and a nonlinear strength 
reduction method for high rock slope was established. The safety factors of the open-pit mine were 
calculated by COMSOL Multiphysics, which considering the high rock southwest slope and detected 
rainfall in Dagushan Open-pit Mine, China. The results showed that high rock slope stability could be 
more accurately analyzed by the proposed method due to its full consideration of slope stress state 
effect compared with the equivalent Mohr- Coulomb method. When the slope is low, the difference 
between the calculation results of the equivalent Mohr- Coulomb method and the proposed method 
is small, but with the increase of the slope height, the difference between the two calculation results 
gradually increases. When the transient saturated is formed in the slope surface layer and gradually 
increases, the reduction rate of the factor of safety (FOS) gradually increases. When the total rainfall 
is the same, the effect of short-term heavy rainfall on slope stability is less than that of long-term 
ordinary rainfall. The results obtained form this work provided important insights into the stability of 
high rock slope and rainfall infiltration in open-pit mine, and the safety factor is crucial for guiding the 
mining process design.

As China’s “the belt and road” strategy is implemented, a new upsurge in construction of hydropower stations, 
mines, highways and railways in China is in the making. These projects will inevitably face high and steep slope 
problems. High rock slope has the characteristics of large scale, complex geological conditions and high geostress, 
and its stability is the key for the engineering construction. According to the statistics of landslides in open-pit 
mines in China in recent 30 years, there are more than ten landslides with large scale, which lead to serious 
economic and personnel losses. It is found that most of the large-scale landslides in these mines are directly 
related to the action of water, and most of them occur in the rainy  season1–4. The direct reason is that the rainfall 
infiltration forms a transient saturation zone in the slope body, which reduces the safety factor. Therefore, the 
stability analysis of high rock slope under rainfall has become a key issue in the open-pit mine  engineering5,6.

Rainfall has a greater influence on slope stability. The shear strength of the weak surface will be reduced 
by water immersion and infiltration, leading to an increase in sliding force, which will result in slope damage. 
Rainfall is the main factor that induces landslides on slopes, and the study of rainfall infiltration theory has 
been one of the research focuses in the field of slope engineering. Rainfall infiltration will cause changes in the 
seepage field of slope rock, which will change the stress field and eventually lead to slope instability and dam-
age. The evolution of slope seepage field and slope seepage characteristics under rainfall infiltration are the 
basis for studying the impact of rainfall infiltration on slope  stability7,8. Several studies have been conducted for 
rainfall infiltration-induced slope landslides. Rezaur et al.9 studied the influence of rainfall infiltration on the 
slope stability when the saturated permeability coefficient changes. Alonso et al.10 considered the influence of 
rainfall duration, rainfall intensity, soil type, shape of soil water characteristic curve and soil permeability on 
slope stability. Zhang et al.11 studied the influence of different water characteristic curve shapes on the pore-water 
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pressure distribution of slope. Rahimi et al.12 studied the influence of water characteristic curve parameters on 
slope stability with different drainage effects.

In recent decades, with the rapid development of computer technology, numerical analysis method has been 
widely used in slope  engineering13–16. On this basis, the strength reduction method has gradually become the 
main method to study the stability of rock slope. Compared with other methods, the rock stress–strain relation-
ship could be considered by this method and that obtain the critical sliding surface and the minimum safety 
factor without assuming the shape and position of the sliding  surface17–20. In the meantime, the progressive 
failure process of slope could be simulated by the strength reduction method. The generalized Hoek–Brown 
has been proved to be effective in the empirical calculation of shear strength of rock  mass21,22. Therefore, it is 
necessary to combine the strength reduction method with Hoek–Brown  criterion23–25. Many researchers have 
worked on the study and implementation of strength reduction method (SRM) with the nonlinear generalized 
Hoek–Brown (GHB) criterion, referred to as the nonlinear strength reduction method (NSRM)26–29, as shown 
in Table 1. Hammah et al.30 proposed a global GHB shear strength reduction method by lowering the GHB shear 
envelopes. Benz et al.31 established a mathematical expression for the relationship between the GHB criterion 
and the MC criterion, and used the MC criterion reduction factors to determine the strength reduction based on 
GHB criterion. Wu et al.32 concluded that for intact rock, only uniaxial compressive strength and rock hardness 
should be used as strength indicators for GHB strength reduction. Fu et al.33 introduced the Mohr–Coulomb 
instantaneous friction angle as a variable, used the instantaneous Moore-Coulomb friction angle and cohesive 
strength to describe the shear strength of rock mass, and proposed a nonlinear shear strength reduction technique 
for slope stability calculations. Sun et al.34 calculated the factor of safety (FOS) by combining slope geometric 
parameters, rock mass property parameters and GHB parameters, and proposed a simplified method to realize 
nonlinear strength reduction based on GHB criterion.

In summary, the nonlinear strength reduction methods have been proposed by previous researchers from 
different perspectives, but a strong focus on the slope stress state is missing. In practical engineering, especially 
in the application of high rock slope, the stress variation range is large, and the strength parameters of rock mass 
need to be reasonably determined for strength reduction. For high rock slope, the high stress state of rock mass 
is the most critical factor for strength reduction. Therefore, a nonlinear strength reduction method considering 
high stress state should be proposed for the FOS calculation. These knowledge gaps are seen as the main objec-
tives in this work of stability analysis on the high rock slope. Aiming at the high stress of high rock slope, the 
instantaneous internal friction angle and instantaneous cohesion of rock mass under different stress states are 
deduced, and the new nonlinear strength reduction method for high rock slope is established according to the 
relationship between normal stress and shear stress of rock mass under the Hoke-Brown criterion. Taking the 
southwest slope of Dagushan Iron Mine as the research background, the safety factors of high rock slope under 
different rainfall conditions are calculated by the proposed nonlinear strength reduction method on COMSOL 
Multiphysics. The influence of rainfall infiltration on the stability of high rock slope in open-pit mine is analyzed.

A new nonlinear strength reduction method
Hoek–Brown yield criterion. Hoek–Brown (HB) strength criterion is an empirical formula of rock failure 
based on the theoretical research results of rock mechanics by evert Hoek and E.T. Brown. They have analyzed 
a large number of engineering field data. The theory scientifically sums up a large number of in-situ test results, 
solves many practical engineering problems, and is widely used in open-pit mining and slope engineering.

Hoek et al.14 introduced the geological strength index GSI and disturbance coefficient D of the rock mass into 
the theory. The modified generalized HB expression is as follows:

Table 1.  The most important nonlinear strength reduction methods used in slope stability analysis.

Method Characteristic Application References

Equivalent Mohr–Coulomb method
Equivalent strength parameter equation is solved 
for the equivalent cohesion and internal friction 
angle, and the safety factor is solved by the Mohr–
Coulomb criterion

Basic nonlinear strength reduction method Hoek and  Brown14

Material parameters reduction method Hoek–Brown material parameters  mb, s are directly 
discounted

For Finite Element calculation of slope failure 
examples Lin28

Global reduction of GHB envelopes method Directly shear strength reduction by GHB Combining GHB with SSR analysis for the Finite 
Element simulation Hammah30

Local linearization method
Instantaneous internal friction angle and cohesion 
are solved by Newton’s iterative method based on 
the relationship between normal stress and shear 
stress

Computing combined with  FLAC3D Lin29

Extended HB criterion reduction method Strength reduction based on the extended HB 
criterion

For Finite Element calculation of slope failure 
examples Benz31

Dual factoring strategy strength reduction method Strength reduction based on uniaxial compressive 
strength and rock hardness Numerical tests for a homogeneous, simple slope Wu32

Nonlinear shear strength reduction technique Introduced the Mohr–Coulomb instantaneous fric-
tion angle as a variable A slope example is selected to verify the technique Fu15
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where σ1 and σ3 are the maximum and minimum principal stresses when the rock mass yields; σci is the uniaxial 
compressive strength of the complete rock; mb, s and α are the characteristic parameters of the rock mass.

mb, s and α can be given as functions related to GSI and disturbance coefficient D of rock mass:

where mi is Hoek Brown constant of complete rock; GSI is geological strength index of rock mass, which is 
selected according to rock mass structure and surface characteristics of structural plane; D is disturbance coef-
ficient, which is 1.0 for conventional blasting, 0.7 for mechanical excavation and 0.8–0.9 for controlled blasting.

Equivalent Mohr–Coulomb strength parameters. Because most of the geotechnical engineering soft-
ware is still based on Mohor-Coulomb (MC) failure criterion, few has been studied on non-linear shear strength 
reduction  techniques35–40. It is necessary to determine the cohesion and internal friction angle of rock mass by 
HB criterion. HB criterion is non-linear, while MC criterion is linear, so cohesion and internal friction angle 
cannot be calculated  directly41–45. Therefore, the strength curve of HB criterion is fitted as equivalent MC straight 
line to obtain cohesion and internal friction angle of rock mass, as shown in Fig. 1.

In the fitting process, the upper and lower difference areas of MC straight line are balanced to obtain the 
equivalent MC parameters.

According to the actual situation of slope engineering, Hoke et al. made specific provisions for the parameters 
in Formula (5)–(7):
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Figure 1.  Relationships between HB and equivalent MC criteria.
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where σcm is the compressive strength of rock mass, σ3max is the maximum confining pressure, H is the height of 
slope and γ is the weight of rock mass.

As shown in Fig. 2, in the coordinate space with normal stress σ as the horizontal axis and shear stress τ as the 
vertical axis, the equivalent MC strength envelope curve is a straight line and HB strength envelope is a kinked 
line. The instantaneous cohesion ci and internal friction angle φi can be obtained by making a tangent line on 
the HB strength envelope  curve33,35. It can be seen from the Fig. 2 that with the increase of stress, the cohesion ci 
increases gradually, then it will be equal to the equivalent cohesion at a certain stress, while the internal friction 
angle φi decreases gradually, then it will also be equal to the internal friction.

In slope engineering, the stress is relatively small in the shallow part of the slope as shown in point 1 in 
Fig. 2, the cohesion and internal friction angle can be C1 and φ1 by tangent line, C1 is smaller than C, and φ1 is 
larger than φ. However, in the deep part of the slope, the stress is relatively large as shown in point 2 in Fig. 2, 
the cohesion and internal friction angle can be obtained by tangent line, which are C2 and φ2 respectively, C2 is 
larger than C, and φ2 is less than φ.

Therefore, in view of the high stress characteristics of high rock slope, the establishment of the relationship 
between cohesion, internal friction angle and minimum principal stress is the key of slope strength reduction 
calculation.

Nonlinear strength reduction method. The equivalent MC strength parameters are fitted in the range 
of σt < σ3 < σ3max. When the minimum principal stress is small, the calculated strength parameters are relatively 
accurate, but the larger the minimum principal stress is, the lower the calculation accuracy is. Because of the 
high and steep rock slope in open pit, it is necessary to determine the strength parameters of rock mass in case 
of large stress.

Under the condition of complex stress, the stress state of yield point in rock mass can be represented by limit 
Mohr circle on the coordinate space with normal stress σ as horizontal axis and shear stress τ as vertical axis. 
Whether the strength envelope is a straight or kinked line, only one point of the limit Mohr circle is tangent to 
the envelope curve, as shown in Fig. 3.

The cohesion and internal friction angle corresponding to any point on the HB strength envelope curve are 
expressed by ci and φi respectively. The normal stress σ and shear stress τ on this point can be expressed by MC 
theory as follows:

(9)σ3n =
σ3max

σci

Figure 2.  The relationship between the equivalent MC strength envelope curve and HB strength envelope 
curve.

Figure 3.  Relationships between the Mohr circle and the damage envelope.
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The generalized HB expression Formula (1) is substituted into Formula (10) and Formula (11) yields:

For HB failure criterion, because the failure envelope curve is a kinked line, φi changes with the change of 
minimum principal stress state, that is, φi = φ(σ3).

Taking the derivative of Formula (12) and Formula (13) with respect to σ3 yields:

On the τ-σ coordinate space:

Substituting Formula (14) and Formula (15) into Formula (16) and simplifying yields:

The equation of MC failure envelope curve on τ—σ coordinate space can be expressed as follows:

Substituting Formula (12), (13) and (17) into Formula (18) yields:

It can be seen from Formula (17) and (19) that the values of ci and φi are related to the minimum principal 
stress in the limit state, the HB characteristic parameters of rock mass and the uniaxial compressive strength 
of rock. The HB characteristic parameters and uniaxial compressive strength of HB rock mass are known. The 
stress state of the slope rock mass is calculated by the finite element method, and the minimum principal stress 
σe3 is obtained. As shown in Fig. 4, ci and φi of each point in the rock mass can be obtained by substituting σ3 = σe3.

Implementation of nonlinear strength reduction method based on HB criterion. Using COM-
SOL multiphysics software, this paper embeds the calculation method of instantaneous equivalent MC strength 
parameters into the strength reduction calculation program, so as to realize the application of HB criterion 
finite element strength reduction method in slope stability analysis. The calculation flow is shown in Fig. 5. The 
calculation process consists of three parts: establishing models, parameters calculation and strength reduction. 
In the calculations, the instantaneous internal friction angle and instantaneous cohesion are derived according 
to Hoek–Brown criterion, while the elastic–plastic finite element calculation of slope and minimum principal 
stress are calculated according to Mohr–Coulomb criterion. The proposed method includes the following steps:

Step 1 The solution area is determined according to the geometric parameters of slope, and the material 
parameters of rock mass are inputted. Mesh generation is carried out according to certain laws in the solution 
area, and the triangular element with three nodes is selected. The loading and boundary conditions are set, 
and the initial slope stability can be calculated.
Step 2 The initial value of reduction coefficient K is set to 1, the stress state of slope rock mass is calculated by 
FEM. The minimum principal stresses for each element are obtained as the initial conditions for the elasto-
plastic calculations. Substituting the known Hoek–Brown parameters and the minimum principal stress into 
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Formulas (17) and (19), the instantaneous cohesion ci and internal friction angle φi of each element of the 
slope model are calculated.
Step 3 According to the reduction coefficient K, ci and φi are reduced. Judge whether the slope model con-
verges. If the model converges, end the calculation and output the reduction coefficient K. Otherwise, accord-
ing to the reducted parameters, the Mohr–Coulomb criterion is used for the elastic–plastic finite element 
calculation of slope to obtain the minimum principal stress of each element, and then instantaneous strength 

Figure 4.  Reduction calculation sketch.

Figure 5.  Flow chart for calculation of strength reduction method.
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parameters are continuously adjusted in Step 2. The calculation procedure in Steps 2–3 is repeated until slope 
failure occurs.

Case study and verification
In order to verify the effectiveness of the new nonlinear strength reduction method proposed in the previous 
section, a simple slope model is established using COMSOL multiphysics software, with a slope height of 200 m 
and a slope gradient of 1:1, as shown in Fig. 6. The model boundary conditions are set as followed: the left and 
right boundaries of the slope are set as roller support constraints, and the bottom boundary is set as fixed con-
straints. Case A adopts the new nonlinear strength reduction method proposed in the previous section, and case 
B adopts the equivalent MC strength parameter reduction.

The strength parameters of slope rock mass are based on the data in Table 2, and the strength parameters of 
equivalent MC criterion are calculated according to Formula (5) and Formula (6). The stress state in the slope 
is calculated using COMSOL multiphysics software, and the calculation result of the minimum principal stress 
σ3 is shown in Fig. 7.

The calculated minimum principal stress σ3 and HB strength parameters are substituted into Formula (17) 
and Formula (19) to obtain the non-linear MC strength parameters ci and φi in the slope. The calculation results 
are shown in Fig. 8.

Figure 6.  Slope model establishment and grid division.

Table 2.  Strength parameter.

HB strength parameters

Equivalent 
MC strength 
parameters

σci /MPa GSI D mi mb S α c /KPa φ

70 30 0.8 10 0.155 2.476E-5 0.522 456.7 23.14°

Figure 7.  Minimum principal stress (N/m2).
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From the calculation results shown in Fig. 8, it can be seen that the cohesion of case A decreases gradually 
from the inside out, and the cohesion at the upper part is less than the equivalent cohesion, while the change of 
internal friction angle is opposite to the cohesion, they are non-linear.

For the case A, the strength reduction calculation is carried out by using the nonlinear MC strength param-
eters ci and φi based on HB criterion. The safety factor of the slope is 1.24. For the case B, the equivalent MC 
criterion strength parameters are directly used for strength reduction calculation. The safety factor of the slope 
is 1.30. The plastic strain distribution and total displacement diagram of the two cases in the limit state are 
shown in Fig. 9.

It can be clearly observed from Fig. 9 that the potential sliding surface of case A is closer to the slope surface 
than case B, and the landslide body of case A is smaller than case B. And the factor of safety (FOS) calculated in 
case A is less than that calculated in case B and the stability of slope in case B is overestimated. Obviously, the 
simulation results of case A are more closer to the actual situation. Therefore, the proposed nonlinear strength 
reduction method is more reasonable in numerical calculation.

The equivalent MC strength parameters are estimated by fitting, and their accuracy depends on the range 
of the minimum principal stress. However, the nonlinear strength parameters derived in the previous section 
are related to the minimum principal stress, the characteristic parameters of HB rock mass and the uniaxial 

Figure 8.  The distribution of cohesion and internal friction angle.

Figure 9.  The plastic strain distribution and total displacement.
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compressive strength of rock. For the strength reduction of high rock slope in open pit mines, the stress state 
should be considered to propose the reduction method. The results show that it is more reasonable to simulate 
and calculate high rock slope with the proposed nonlinear strength reduction method, which can be effectively 
applied to the stability analysis of high rock slope.

In order to further explore the rationality and practicability of the proposed nonlinear strength reduction 
method for the stability calculation of high rock slope, the authors established rock slope with different height in 
the COMSOL multiphysics software, and analyzed the difference of the factor of safety (FOS) calculated using the 
two methods with the change of slope height, as shown in Fig. 10. Figure 10 shows the relationship between safety 
factor and slope height. It can be seen from the figure that as the height increases, the safety factor of the whole 
slope decreases gradually. In the meantime, when the slope is low, the difference between the two safety factors 
is small, but with the increase of the slope height, the difference between the calculation results of the equivalent 
Mohr- Coulomb method and the nonlinear strength reduction method gradually increases. The characteristics 
of high rock slope with a wide range of stress variation is not fully considered in the equivalent Mohr- Cou-
lomb method and the slope stability calculation results may be overestimated. Therefore, the nonlinear strength 
reduction method based on HB criterion could be effectively applied to the stability analysis of high rock slope.

Application on southwest slope of Dagushan Open-pit Iron Mine
The effect mechanism of rainfall infiltration. Rainfall infiltration is the process of rainwater infiltra-
tion through the surface into rock mass, which is essentially the movement process of rainwater in the porous 
medium constantly displacing air. The saturated zone is below the water table, and the shallow surface layer will 
evolve into a transient saturated zone under the influence of rainfall. The unsaturated zone is between transient 
saturated zone and water table, as shown in Fig. 11. Overall, the effect mechanism of rainfall infiltration on the 
stability of rock slope includes two aspects. On the one hand, rainfall can cause the groundwater level to rise, 
leading to a transient saturated zone in the surface layer of slope and raising the pore-water pressure in the 
corresponding area. On the other hand, rock mass can be affected by the softening effect of rainwater. Rainfall 

Figure 10.  Relation curve between slope height and safety factor.

Figure 11.  Rainfall infiltration of slope.
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will lead to a decrease in the rock strength and reduce the effective stress inside rock, thus inducing geological 
disasters such as landslides and mudslides.

Geological conditions of Dagushan Iron Mine. Dagushan Iron Mine is located in Anshan City, Liaon-
ing Province, China. The mine is located in the edge of Qianshan Mountain and the branch of Changbai Moun-
tain. Its landform is mainly hilly. Because the southeast is Qianshan Mountain area and the northwest is mainly 
plain, the terrain is low in the northwest and high in the southeast. According to the regional geological data and 
survey report, the strata from top to bottom in the mining area are mainly: Quaternary eluvium of Cenozoic, 
quartz layer of Diaoyutai formation of Qingbaikou system of Upper Proterozoic, qianmei layer of Langzishan 
formation of Liaohe Group of Lower Proterozoic, chlorite quartz sheet layer and iron quartz layer of yingtaoyuan 
formation of Anshan Group of Archaean. The pit of Dagushan Iron Mine is located in the west of the mining 
area. The mining technology is high and steep slope mining, and the open pit mining extends to the under-
ground in a ladder shape. The southwest side of Dagushan iron mine pit is a typical high rock slope. Previous 
landslides were caused by sliding along the weak structural plane caused by precipitation. The annual rainy 
season is the most frequent period of landslide disasters.

The establishment of geometric model. Based on the field investigation of Dagushan Open-pit Iron 
Mine and the collection of relevant geological data and monitoring data, the southwest slope area is selected as 
the research object, which is a typical high rock slope. The main rock layers of the slope in this area are migma-
tite, porphyrite, granite and magnetite quartzite. The distribution of the rock layers in the section is shown in 
Fig. 12. The stratum in this area is composed of many kinds of rock strata, and the joint fissures are relatively 
developed. Through communication with the site staff, there has been a small-scale slide on the slope in the 
area, which causes the deformation of the upper part of the slope and damages the corresponding facilities and 
buildings. According to the microseismic monitoring data, a large number of microseismic events occurred in 
this area due to rainfall.

In this work, COMSOL multiphysics multi physical field simulation software is used for numerical calcula-
tion, and Richards equation model is used for seepage field calculation. The selected calculation profile of the 
southwest slope of Dagushan open-pit iron mine is shown in Fig. 12. The whole calculation grid area is 411,500 
square meters, the unit type is triangle unit, the number of units is 3245, and the number of grid vertices is 1719.

Initial conditions and parameters. Permeability tensor and hydraulic characteristic parameters of frac-
tured rock mass. Through the field sampling and investigation of the joints and fissures in the slope rock mass 
of Dagushan open-pit mine, and then statistical analysis, the fracture geometric parameters of the southwest 
slope rock mass are obtained as shown in Table 3.

Figure 12.  Strata and Calculation model of the slope.

Table 3.  Fracture geometric parameters.

Rock type Fracture group Average hydraulic clearance width (mm) Fissure distance (m) Dip angle (º)

Migmatite

1 3.0 3.8 115

2 2.0 6.7 48

3 0.8 8.4 158

Porphyrite
1 4.0 5.2 121

2 2.0 7.8 67

Granite
1 0.5 4.9 28

2 0.9 11.2 81

Magnetite quartzite
1 0.3 6.0 50

2 0.6 8.9 113
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According to the fracture geometric parameters in Table 2, the equivalent permeability tensor of the cor-
responding rock mass is calculated by the fracture sampling measurement method, and the calculation results 
of the equivalent permeability tensor of each rock layer are shown in Table 4.

The water retention curves are fitted by the Van Genuchten model, which can be expressed as:

where � is the saturation; θw is the moisture rate of rock mass; θs is the saturated moisture rate of rock mass; θr 
is the residual moisture rate of rock mass; ψ is the matrix suction; α , n and m are characteristic parameters, and 
m = 1− 1

/

n.
The fitted hydraulic characteristics of rock slope are shown in Table 5.

Mechanical parameters of rock mass. Through field investigation and data collection, the development of joint 
fissures, dominant joint occurrence and structural plane distribution characteristics of slope rock mass can be 
obtained. According to the rock mechanics indexes obtained from various rock mechanics tests conducted 
before in Dagushan, the calculation parameters of slope stability are obtained based on HB strength theory. The 
adopted values of relevant calculation parameters are shown in Table 6.

Rainfall schemes. The change of rainfall conditions will affect the distribution of seepage field in the rock slope, 
and the seepage field will affect the stability of the slope. In this work, we will study the change of slope seep-
age field and then calculate the change of slope stability under different rainfall conditions. According to the 
relevant meteorological data, the daily maximum precipitation of Dagushan open-pit mining area is 236.8 mm. 
On this basis, to analyze the influence of rainfall intensity, rainfall duration and total rainfall on slope stability, 
we designed four different schemes as shown in Table 7.

(20)� =
θw − θr

θs − θr
=

[

1

1+ (αψ)n

]m

Table 4.  Equivalent permeability tensor of rock mass.

Rock type Equivalent permeability tensor (m/s)

Migmatite
[

1.516× 10
−6

1.755× 10
−6

1.755× 10
−6

5.312× 10
−6

]

Porphyrite
[

2.794× 10
−6

4.136× 10
−6

4.136× 10
−6

8.095× 10
−6

]

Granite
[

1.754× 10
−8

−1.685× 10
−8

−1.685× 10
−8

5.645× 10
−8

]

Magnetite quartzite
[

4.544× 10
−9

5.319× 10
−9

5.319× 10
−9

1.895× 10
−8

]

Table 5.  Fitted hydraulic characteristics.

Rock type θs θr α  (kPa−1) n m

Migmatite 0.17 0.03 4.2 ×  10–3 1.9 0.4737

Porphyrite 0.14 0.05 8.5 ×  10–3 1.7 0.4118

Granite 0.09 0.02 11.3 ×  10–3 2.3 0.5652

Magnetite quartzite 0.07 0.01 14.0 ×  10–3 2.0 0.5000

Table 6.  Parameters for stability calculation.

Rock type Density (kg/m3)
Uniaxial compression stress 
(MPa) Elastic modulus (GPa) Poisson’s ratio

Hoek–Brown 
strength 
parameters

GSI D mi

Migmatite 2600 62.29 38.72 0.33 35 0.9 12

Porphyrite 2700 79.61 41.19 0.28 45 0.8 15

Granite 2700 83.55 54.13 0.20 50 0 18

Magnetite quartzite 3000 109.32 77.42 0.11 50 0.9 20
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Initial conditions. The boundary of the left and right sides of the slope numerical model is set with a given water 
head boundary, the water head is equal to the height of the groundwater level at the boundary. In the meantime, 
the bottom boundary is set as flux boundary due to hydraulic conduction. The boundary conditions of the slope 
surface are set according to the rainfall intensity: when the rainfall intensity is less than the saturated perme-
ability coefficient of the slope rock, the surface boundary is set as a given flow boundary, and the flow size is 
rainfall intensity; if not, the boundary is set as the given water head boundary, and the surface runoff formed at 
this time is relatively small, so the water head height is the elevation of this place, that is, the surface of the slope 
is the zero-pressure surface.

The initial conditions are obtained from the hydrogeological conditions of the region according to the back 
analysis of the stable seepage field, and the pore water pressure distribution in line with the actual situation is 
obtained by continuously adjusting the flow flux at the bottom boundary. The calculated initial pore water pres-
sure distribution is shown in Fig. 13, in which the blue solid line is the groundwater level line, the pore water 
pressure in the area below the groundwater level line is positive, and the pore water pressure in the area below 
the groundwater level line is negative, and the negative value represents the matrix suction in the area.

Seepage simulation analysis of high rock slope under rainfall infiltration. The four rainfall 
schemes above are numerically simulated by COMSOL Multiphysics. Within the solution area, 1–1 characteris-
tic profile, 2–2 characteristic profile and 3–3 characteristic profile are selected at the top, middle and bottom of 
high rock slope for analysis, and the locations of characteristic profiles are shown in Fig. 14. And the calculation 
results are shown in Fig. 15, 16, 17, 18, 19, 20, 21, 22.

The simulation results of the four rainfall schemes show that: (1) Under continuous rainfall, unsaturated zone 
on the surface layer of slope gradually evolves into a transient saturated zone and a positive pore-water pressure 

Table 7.  Rainfall schemes.

Scheme Scheme I Scheme II Scheme III Scheme IV

Rainfall intensity (mm/h) 10 10 20 40

Rainfall duration (h) 12 24 12 6

Duration after rain stops (h) 24 24 24 24

Total rainfall (mm) 120 240 240 240

Figure 13.  Initial pore water pressure and groundwater level.

Figure 14.  Locations of characteristic profiles.
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appears. When the rainfall intensity is constant, the longer the rainfall time is, the larger the transient saturation 
zone and the hydraulic conductivity depth is. (2) During rainfall, the pore-water pressure of the surface layer of 
slope gradually increases, and the wetting front evolves to the deeper part. After the rainfall stops, the pore-water 
pressure gradually decreases in the area above a certain depth; in the area below this depth, the pore-water pres-
sure gradually increases, and the wetting front continues to evolve to a deeper part. (3) When the total rainfall is 
constant, the greater the rainfall intensity, the greater the growth rate of pore-water pressure in the surface layer 
of slope, and the greater the maximum pore-water pressure. The longer the rainfall duration, the greater the 
hydraulic conduction depth. After the rainfall stops, the increase of hydraulic conduction depth is basically the 
same. (4) During the calculation time, the rainfall infiltration has little effect on the groundwater level because 
the hydraulic conductivity has not reached the water table surface of groundwater.

Figure 15.  The pore-water pressure distribution (Scheme I).

Figure 16.  The variation of pore-water pressure in characteristic profiles(Scheme I).
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Stability analysis of high rock slope under rainfall infiltration
The proposed nonlinear strength reduction method based on Hoek Brown criterion is used to calculate the safety 
factor of slope. The minimum principal stress in the slope is calculated so that the cohesion and internal friction 
angle of the slope rock mass can be obtained. The pore water pressure of slope at the initial time of rainfall (0 h) 
is substituted into the calculation model, and the strength reduction calculation is carried out for the cohesion 
and internal friction angle calculated above. Based on the non convergence of calculation, the factor of safety 
(FOS) at the initial time of rainfall is calculated to be 1.544. The distribution of plastic strain and total displace-
ment at the initial time are shown in Fig. 23.

Figure 17.  The pore-water pressure distribution (Scheme II).

Figure 18.  The variation of pore-water pressure in characteristic profiles (Scheme I).
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Influence of rainfall duration on slope stability. The rainfall intensity of Scheme I and Scheme II is 
10 mm/h. The rainfall duration of Scheme I is 12 h, the rainfall duration of Scheme II is 24 h, and the calculated 
duration after the rainfall stops is 24 h. According to the calculation results of the slope safety factor of Scheme 
I and Scheme II, the change diagram of the slope safety factor with time can be obtained, as shown in Fig. 24.

It can be seen from Fig. 24 that the safety factor of the slope is 1.544 at the beginning of the rainfall. When the 
rainfall intensity remains unchanged, the safety factor decreases gradually with the increase of rainfall duration. 
The safety factor is 1.443 and decreases by 0.101 in 12 h of rainfall. The rainfall of Scheme I stops at this time. Then 
the safety factor starts to rise gradually, and it rises to 1.504 at 24 h after stopping the rainfall. This is because the 
increment of water load is large, the pore water pressure is increasing and the matrix suction is decreasing when 
it rains. It leads the safety factor of slope to decrease. When the rainfall stops, there is no rainwater supply, and 

Figure 19.  The pore-water pressure distribution (Scheme III).

Figure 20.  The variation of pore-water pressure in characteristic profiles(Scheme III).
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the previously infiltrated rainwater continues to infiltrate under the effect of gravity. Then the pore water pressure 
on the upper part of the slope surface gradually decreases. It leads the safety factor to increase. But because the 
dissipation speed of pore water pressure is relatively slow, the safety factor gradually tends to be stable but less 
than the safety factor at the initial time.

In Scheme II, the rainfall continues for 24 h and the safety factor decreases to 1.412 at 24 h after raining. 
After 16 h, the decrease rate of safety factor increases, which is due to the formation of transient saturated zone 
(TSZ) on the surface of the slope. TSZ has a great impact on the stability of the slope. After the rainfall stops, 
the safety factor of Scheme II rises gradually to 1.483 at 24 h which is smaller than the safety factor of Scheme 
I at 24 h after rain.

Figure 21.  The pore-water pressure distribution (Scheme IV).

Figure 22.  The variation of pore-water pressure in characteristic profiles(Scheme IV).
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Influence of rainfall intensity on slope stability. 

(1) The same rainfall duration

The rainfall intensity of Scheme I is 10 mm/h, and that of Scheme II is 20 mm/h. The rainfall duration of the 
two schemes is the same, both of them are 12 h, and the calculated time length after the rainfall stops is 24 h. 
According to the calculation results of the slope safety factor of Scheme I and Scheme III, the change diagram 
of the slope safety factor with time can be obtained, as shown in Fig. 25.

It can be seen from Fig. 25 that the changes in safety factor of Scheme I and Scheme III are similar, both of 
them reach the lowest level in 12 h of continuous rainfall, and the safety factor of Scheme III is lower than that 
Scheme I. In the meantime, in the duration of rainfall and the time after the rainfall stopped, the safety factor 
of Scheme III is always lower than that of Scheme I. For Scheme III, the decrease rate of safety factor increases 

Figure 23.  Distribution of plastic strain and total displacement at the initial time.

Figure 24.  Slope safety factor with time (Scheme I and Scheme II).

Figure 25.  Slope safety factor with time (Scheme I and Scheme III).
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after 8 h, mainly because the formation of TSZ has a greater impact on slope stability. Overall, the comparison 
of Scheme I and Scheme III shows that when the rainfall duration is the same, the greater the rainfall intensity 
is, the lower the slope safety factor is

(2) The same total rainfall

The total rainfall of Scheme II, Scheme III and Scheme IV is 240 mm, the rainfall intensity is respectively 
10 mm/h, 20 mm/h and 40 mm/h, the duration is respectively 24 h, 12 h and 6 h, and the calculated duration 
after the rainfall stops is 24 h. According to the calculation results of the slope safety factor of Scheme II, Scheme 
III and Scheme IV, the change diagram of the slope safety factor with time can be obtained, as shown in Fig. 26.

It can be seen from Fig. 26 that the safety factors of the three schemes gradually decrease with the continuous 
rainfall. All of the safety factors become the smallest at the end of the rainfall, and then they gradually recover 
and increase in a period of time after the rainfall stops. In the process of continuous rainfall, the safety factor of 
Scheme IV decreases the fastest, followed by Scheme III. This is due to the large rainfall in a short time, the large 
increment of water load in the slope and the large change of safety factor. Although the total rainfall of the three 
schemes is equal, the minimum safety factors of the three schemes are different. The minimum safety factor of 
Scheme IV is the largest, Scheme III is the second, and Scheme II is the smallest. When the rainfall stops (24 h), 
the safety factor of Scheme 4 is also the largest among the three schemes. The main reason for this phenomenon 
is that for heavy rainfall in a short time, although the water load increment is large, due to the short infiltration 
time of rainwater into the slope, the shallow hydraulic conduction depth, and some rainwater will form surface 
runoff. Although the rainfall intensity for a long time is smaller, the rainwater has sufficient time to continuously 
infiltrate, the infiltration depth into the slope is greater, the area of rainfall infiltration is larger, and the impact 
on slope stability is greater. The comprehensive analysis of the three schemes shows that when the total rainfall 
is the same, the impact of short-term heavy rainfall on slope stability is less than long-term ordinary rainfall, 
that is, the longer the rainfall duration, the greater the impact on slope stability.

At the end of rainfall, the plastic strain distribution of slope are shown in Fig. 27. In the figure, (a), (b), (c) and 
(d) represent the plastic strain of Scheme I at 12 h, Scheme II at 24 h, Scheme III at 12 h and Scheme IV at 6 h 
respectively. Comparing Fig. 23 with Fig. 27, it can be seen that the overall plastic zone does not change much, 
but there is a through plastic zone on some single steps of the slope, especially in Scheme II, which shows that 
the impact of rainfall infiltration on the stability of some single steps is greater than that of the overall slope. In 
the process of rainfall, the pore water pressure on the slope surface increases continuously, forming a transient 
saturation zone, and the rock mass of some steps reaches a transient saturation state. At this time, the water 
content of rock mass increases, the shear strength decreases, and the sliding force increases, resulting in a sig-
nificant reduction in the stability of some single steps. This situation often occurs in practical engineering, and 
long-term rainfall could cause the deformation and failure of a single step or several adjacent steps of the slope.

As mentioned above, a comparative analysis of the four schemes reveals that the FOS will decrease with the 
increase of rainfall duration. Under the same rainfall duration, the higher the rainfall intensity, the lower the FOS 
of slope. And under the same total rainfall, the effect of short-term rainstorm on slope stability is smaller than that 
of long-term ordinary rainfall, and the longer the duration of rainfall, the greater the impact on slope stability.

Discussion
The high rock slope stability analysis of Dagushan Mine under rainfall infiltration is studied and simulated by 
the proposed nonlinear strength reduction method. By comparing with the equivalent Mohr- Coulomb method, 
it is found that high rock slope stability could be more accurately calculated by the proposed method due to its 
full consideration of slope stress state effect. The seepage characteristics and stability of high rock slope under 
rainfall infiltration are simulated, and it is found that the effect of short-term heavy rainfall on slope stability 
is less than that of long-term ordinary rainfall under the same rainfall amount. Model applicability to stability 
studiy of high rock slope in open-pit mine is confirmed, and its simulation in high rock slope should be applied 

Figure 26.  Slope safety factor with time (Scheme II, Scheme III and Scheme IV).
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more widely. In this paper, the equivalent continuous medium model is used as the seepage model. However, 
the actual fracture yield, spacing and size are randomly distributed. It is necessary to determine the permeability 
tensor according to the fracture distribution characteristics to make the calculation more realistic. The numerical 
model is selected as a two-dimensional characteristic profile, while the geometry and rock structures of slope 
in engineering are anisotropic. The main limitation of the model is that it is only applicable to two-dimensional 
conditions. It is necessary to optimize the proposed model so that it can be applied to the analysis under three-
dimensional conditions in further research.

Conclusion

(1) According to the characteristics of high rock slope with large stress variation range, the instantaneous 
cohesion and internal friction angle of each slope element under different minimum principal stresses are 
derived based on Hoek–Brown strength criterion by considering the influence of slope element stress state. 
On this basis, the nonlinear strength reduction method for high rock slope is proposed.

(2) By comparing with the equivalent Mohr- Coulomb method, it is found that the proposed method calcu-
lates a smaller landslide body and the potential sliding surface of slope is closer to slope surface. When the 
slope is low, the difference between the calculation results of the equivalent Mohr- Coulomb method and 
the proposed method is small, but with the increase of the slope height, the difference between the two 
calculation results gradually increases.

(3) Under continuous rainfall, the pore- water pressure gradually rises and the matrix suction gradually 
decreases, causing the FOS to gradually decrease. When the rainfall stops, the pore- water pressure in 
the upper of slope surface layer gradually decreases, and FOS gradually increases but is smaller than the 
initial FOS. The transient saturated zone has a greater influence on the slope stability. When the transient 
saturated is formed in the slope surface layer and gradually increases, the reduction rate of FOS gradually 
increases.

(4) Keeping the rainfall intensity, the greater the rainfall duration, the smaller the FOS; keeping the rainfall 
duration, the greater the rainfall intensity, the smaller the FOS. When the total rainfall is the same, the 
effect of short-term heavy rainfall on slope stability is less than that of long-term ordinary rainfall.

(5) The proposed model could be widely used in the stability analysis of high rock slope, transient saturated 
zone and long-term ordinary rainfall should be treated as important concerns in policy implications of slope 
stability analysis. However, the main limitation is that it is not applicable to three-dimensional condition 
and simplifies the calculation of infiltration tensor, more simulation studies will be presented in our further 
work.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Figure 27.  Distribution of plastic strain at the end of rainfall.
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