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Bio-sequence comparators are one of the most basic and significant methods for assessing biological 
data, and so, due to the importance of proteins, protein sequence comparators are particularly 
crucial. On the other hand, the complexity of the problem, the growing number of extracted 
protein sequences, and the growth of studies and data analysis applications addressing protein 
sequences have necessitated the development of a rapid and accurate approach to account for the 
complexities in this field. As a result, we propose a protein sequence comparison approach, called 
PCV, which improves comparison accuracy by producing vectors that encode sequence data as well 
as physicochemical properties of the amino acids. At the same time, by partitioning the long protein 
sequences into fix-length blocks and providing encoding vector for each block, this method allows 
for parallel and fast implementation. To evaluate the performance of PCV, like other alignment-free 
methods, we used 12 benchmark datasets including classes with homologous sequences which may 
require a simple preprocessing search tool to select the homologous data. And then, we compared 
the protein sequence comparison outcomes to those of alternative alignment-based and alignment-
free methods, using various evaluation criteria. These results indicate that our method provides 
significant improvement in sequence classification accuracy, compared to the alternative alignment-
free methods and has an average correlation of about 94% with the ClustalW method as our reference 
method, while considerably reduces the processing time.

One of the most important disciplines in bioinformatics is protein classification, which is used to discover phy-
logenetic and evolutionary relationships amongst species1,2. Furthermore, accurate classification of a protein 
sequence among large protein sequence database is critical while developing pharmaceutical products3, such 
as vaccines, which is becoming increasingly important, particularly in the wake of the coronavirus epidemic. 
Without current redundancy, the protein sequence database contains over 190 million inputs, and the number 
of unique functional domains is much larger4. Any attempt to annotate protein function has many issues due to 
the huge amount of data connected with these proteins. In this manner, protein classification into sequence and 
structural classes has long been used as a means of simplifying the challenge. As a result, a variety of approaches 
are used, as explored below.

The process of obtaining a large number of protein sequences has been made easier for researchers because 
of advances in sequencing technologies5–7. As a result, comparing and phylogenetic analysis of these biological 
sequences becomes a new issue, posing challenges in a variety of areas, including processing time and resource 
management, due to the large number of data to be considered5. Various methods have been proposed up to 
this point, which can be divided into two categories: alignment-based methods and alignment-free methods8. 
For a clear description, Table 1 provides a list of online tools developed for some of the alignment-based and 
alignment-free methods, as well as the summary of their corresponding comparison algorithm. Alignment-
based methods relying on multiple sequence alignment, which commonly uses some sort of evolutionary tools 
including sequence similarity search tools (e.g., BLAST9, FASTA10), multiple sequence aligners (e.g., ClustalW11, 
MUSCLE12, MAFFT13), sequences’ profile search programs (e.g., PSI-BLAST14, HMMER/Pfam15), and whole-
genome aligners (e.g., progressive Mauve, BLASTZ16, TBA17). Although these methods achieve up-to-scratch 
results in evolutionary relationships discovery, they are generally time and resource consuming and rely on 
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multiple assumptions about the evolution of the sequences to be compared (i.e. various parameters should be 
set, such as substitution matrices, gap penalties, and threshold values for statistical parameters which are some-
what arbitrary)2. As a consequence, several alignment-free methods have been presented to prevail over these 
drawbacks. Alignment-free approaches include any method for evaluating sequence similarity/dissimilarity that 
does not apply or produce sequence alignment at any step of the algorithm; instead, they use feature extraction 
to extract the required information from the query sequences2,5. As mentioned before, the alignment-based 
methods provide high accuracy at the cost of being time-consuming and expensive in memory usage. In contrast, 
alignment-free methods are fast in computational speed and have been introduced to overcome the complica-
tion of sequence alignment2,5. However, they confront the obstacle of accurate comparison and classification. 
In other words, one of the outstanding concerns in this field is to develop an accurate alignment-free approach 
that can be utilized in practice, and hence, studies in the field of developing alignment-free methods are mostly 
focused on this.

Feature extraction from a protein sequence is the challenging part of protein classification studies in any of the 
approaches discussed above; as a result, various alignment-free methods have been developed in this area. These 
techniques can extract features in one of two ways25: (1) the protein’s amino acid composition, which includes 
the frequencies of the 20 distinct amino acids within the sequence as well as their physicochemical qualities, or 
(2) the order and positional information of amino acids within the sequence. So, the physicochemical proper-
ties of amino acids can be used to derive features from a protein sequence. As is obvious, a protein sequence 
is made up of amino acids, each of which has its own set of physicochemical properties that influence protein 
structures, functions, folding, protein–protein interactions, and evolutionary patterns26,27. As a result, amino 
acid physicochemical properties play an essential role in protein sequence similarity analysis, protein subcellular 
localization prediction, and protein structural class prediction. Another aspect to consider is that relying solely 
on the amino acids’ physical qualities results in the loss of various information, such as the number of amino 
acids, their location in a string, and so forth25. This positional information, on the other hand, can significantly 
affect the accuracy of similarity analysis between two sequences. As a result, by relying simply on either phys-
icochemical characteristic or positional information, some data is lost, and the information embedded within 
a protein sequence is not fully utilized.

In this regard, many studies have been conducted in this area, each of which has used one of these two meth-
odologies or a combination of them. One of these state-of-the-art methods, DCGR​27, for example, is built upon 
the chaos game model based on the physicochemical features of amino acids. The Energy matrix approach2 is 
another study that is based on physicochemical properties and the position-feature Energy Matrix. Apart from 
these two studies, methods8,25,28, and many others have utilized the physicochemical features in various ways in 
their methods. The main drawback of these studies is that they just use the value of physicochemical properties of 
amino acids in an indirect manner, which results in some information loss. Moreover, there are other concerns, 
such as the high complexity and increasing volume of calculations in these methods, such as DCGR.

On the other hand, other studies, such as natural vector based method29 that is based on the k-mer natural 
vector, fuzzy integral (FI) based method5 that is based on the fuzzy integral and Markov chain, and7 method, 
and many more, do not consider physicochemical properties of the amino acids. Even though these properties 
provide essential factors for predicting the function and structure of protein sequences.

As a consequence, based on the previous studies, it appears that combining physicochemical properties 
of amino acids with other properties of protein sequences can assist to enrich the features derived from the 
sequences2,27. After retrieving the attributes of the protein sequences, numerous methods have been proposed 
to leverage these features to complete the target tasks and perform the desired calculations. These approaches 
either require large memories or are not optimal in terms of algorithm execution time, although they achieve 
acceptable accuracy among various alignment-free methods2,5,27. To build an efficient algorithm for protein 
classification, several tradeoffs between memory requirement, time consumption, and high accuracy, must be 
evaluated, which necessitates effective feature extraction.

Table 1.   A list of online tools developed for some of the alignment-based and alignment-free methods, as well 
as the summary of their comparison algorithm.

Category Tool Algorithm

Alignment-based

ClustalW11 It employs progressive alignment techniques, which begin with the most similar sequences and work their way down to the least 
similar sequences until a global alignment is achieved

Muscle12 It creates a progressive alignment, followed by a horizontal refinement

Clustal Omega18 This multiple sequence alignment tool uses seeded guide trees and HMM profile-profile approaches to produce alignments, and 
is appropriate for medium-to-large alignments

T-Coffee19 It is a multiple sequence alignment technique based on the consistency model that tries to avoid the drawbacks of progressive 
alignment approaches, and it is appropriate for small alignments

Alignment-free

FFP20 It is a whole genome/proteome comparison tool using Feature Frequency Profile-based measurements

CVTree21,22 It utilizes word composition to build phylogenies from the whole genome sequences

NASC23 It is a set of six alignment-free approaches, including 4 word-based measures (e.g. Mahalonobis distance), and 2 Information 
Theory-based measures (e.g. Kolmogorov complexity)

kmacs24 It is a alignment-free sequence comparison tool which uses the k-mismatch average common substring method

Squared Euclidean distance34 It is a combination of word-based encoding and squared Euclidean distance
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Given aforementioned challenges of the available alignment-free methods, including clustering accuracy, 
accuracy of the resultant similarity/dissimilarity scores in comparison to the alignment-based methods, com-
putation speed, considering each protein sequence as a single unit to be processed, and thus, ignoring individual 
indels’ effect, and finally, not involving the physicochemical properties of the amino acids, we propose a simple 
but efficient vector-based method named PCV (PhysicoChemical properties Vector) to numerically characterize 
a protein sequence, utilizing the value of the amino acids’ physicochemical properties, as well as the positional 
information of the letters. In more details, we utilize all physicochemical properties of the amino acids, we split 
each protein sequence into fixed-size blocks, and encode each block of protein applying the proposed encoding 
method. As a result, PCV takes into account both the influential amino acids’ physicochemical properties and the 
local sequence comparisons, none of which have been considered by most of the existing alignment-free meth-
ods. In this work, we also attempt to incorporate the key advantages of the alignment-free methods, including 
increased processing speed and reduced resource utilization, in comparison to the alternative alignment-based 
and alignment-free methods.

The steps of our approach are as follows:

1.	 Extract physicochemical properties from the AAindex.
2.	 Cluster properties into 110 items.
3.	 Split a sequence into fixed-length blocks.
4.	 Calculate statistical or positional characteristics and produce vectors based on the physicochemical proper-

ties.
5.	 Calculate the distance metric between different spices vectors to perform the evolutionary analysis.

Going through above steps, PCV offers several key advantages: (1) simple feature extraction by using the 
value of the amino acids’ physicochemical properties, and (2) preserving more sequence information by using 
the amino acids’ physicochemical properties and moment values as a combination of protein composition and 
positional information, (3) incorporating locational information of amino acids to fully utilize all informa-
tion embedded within a protein sequence, (4) providing computational parallelism as the result of sequence 
partitioning into fixed-length blocks, which facilitates parallel operation on various blocks through iterative 
steps, (5) capable of handling numerous mutations in compared sequence, (6) reduced runtime, compared to 
alternative methods.

As a comparative study, we evaluate PCV on a variety of datasets with diverse sequence lengths and numbers 
of sequences. Also several comparison metrics (e.g. Correlation Coefficient and Robinson Foulds distance) are 
applied to compare our results with those of alternative methods, such as fuzzy integral based method5 and 
ClustalW as the reference method11. The results confirm that PCV offers higher accuracy, provides correct 
evolutionary relationships of different kinds of species, and offers high speed comparison. The rest of the paper 
is organized as follows. Details of the proposed method, i.e. PCV, are introduced in “Method and materials” 
section. The experimental setup, simulation results, and comparative studies are explored in “Results” section. 
Finally, the paper is concluded in “Discussion” and “Conclusions” sections.

Method and materials
As the main target of this paper, we attempt to develop an accurate alignment-free approach to boost the speed 
of protein comparison, while preserving resource efficiency. In this case, we utilize two different types of data: 
(1) physical and chemical characteristics of amino acids, and (2) statistical information of the amino acids, such 
as their spatial frequency within the sequences. For this purpose, as shown in Fig. 1, we present four units to 
utilize and process this information in our proposed method, called as PCV:

1.	 Clustering unit categorizes physicochemical features of the amino acids. This unit categorizes 566 amino 
acid features into 110 classes. As a result, although all features are utilized, the amount of data fed to the 
comparison algorithm is reduced.

2.	 Splitting unit splits protein sequences into fixed-size blocks: Splitting sequences preserves local information, 
while enables indel modeling.

3.	 Calculation unit generates statistical information vector for each block: In this unit, statistical information 
of the amino acids and their order are calculated based on the corresponding physicochemical features.

4.	 Comparison unit computes dissimilarity/similarity metric. This unit computes Euclidean distance of phys-
icochemical and statistical information vectors for each pair of blocks of two sequences, and so, utilizes the 
extracted distance to compute the dissimilarity metric between input sequences.

The process of PCV algorithm is such that first of all, its Splitting unit elongates the input sequences to a spe-
cific length and splits them into pieces of fixed length. Afterwards, the Calculation unit encodes these components 
using the physicochemical properties clustered by the Clustering unit. Finally, the PCV algorithm calculates a 
score as the degree of similarity / dissimilarity between each two sequences. To clarify these functionalities, 
Fig. 1 shows the relationship between various units of the PCV algorithm. In the following, we provide a detailed 
description of each unit of the PCV algorithm.

PCV’s units.  Clustering unit.  The physicochemical properties of amino acids demonstrate the character-
istics of biochemical reactions and have been widely used in bioinformatics research. AAindex is a database 
of numerical indices representing diverse physicochemical and biochemical properties of amino acids26. This 
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database consists of three sections: (1) AAindex1 for the amino acid indices, as we require in this paper, (2) 
AAindex2 for the amino acid substitution matrices, and (3) AAindex3 for the amino acid contact potentials.

AAindex1 includes 566 properties for amino acids26. Although it can be used in various applications, such 
as sequence comparison involving high number of sequences, this massive volume of data arises resource con-
sumption and computational complexity concerns. In this manner, we propose grouping them together to over-
come these challenges. For this purpose, we first calculate the correlation between each pair of 566 properties 
to obtain a 566 × 566 correlation matrix. Then, we use this matrix to calculate a pairwise Euclidean distance in 
a 566-dimensional space to achieve a 1-d array. This array is then used to feed the “linkage method” (this is 
also known as the Farthest Point Algorithm or Voor Hees Algorithm)30,31, as is discussed in more details in the 
supplementary materials section "AAindex1 clustering". Finally, we form flat clusters from the hierarchical clus-
tering defined by the given linkage matrix, provided that each flat cluster has a cophenetic distance not greater 
than 0.2 × max_distance (maximum Euclidean distance from the 1-d array). The details of clustering these 566 
properties into 110 groups can be seen in Table S1 of the supplementary materials.

Once the physicochemical properties are clustered, to use each class, a representative value of all the attributes 
in that class should be determined. In this paper, we employ the average values of all attributes of each class for 
each amino acid, resulting in a 110 × 20 matrix, which replaces the 566 × 20 matrix used by AAindex1 to feed the 
PCV. In addition, these values are normalized by Studentized residual to unify the impact of the physicochemical 
properties. This clustered 110 × 20 matrix is called “level-1 categorization”, which is still a significant amount of 
data to be used through the sequence comparison process. To resolve the issue, we also partition the numerical 
range of each of these 110 classes into four equal ranges, and allocate each amino acid to one of the four ranges 
at which its corresponding numerical value is located. This categorization scheme, called as quadruple classifica-
tion, is utilized in other parts of the PCV as well. It is worth noting that the number of amino acids in each of 
the four categories might be different. Figure 2 depicts an example of this categorization scheme for one sample 
class of the 110 classes.

Splitting unit.  Splitting unit partitions protein sequences into blocks of constant length. This partitioning pre-
serves the locality information of protein sequences through the comparison process, which is also empowered 

Figure 1.   The overall schematic of PVC algorithm with its four units: (a) clustering unit, (b) splitting unit, (c) 
calculation unit, and (d) comparison unit.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11158  | https://doi.org/10.1038/s41598-022-15266-8

www.nature.com/scientificreports/

by the physicochemical characteristics of amino acids. However, due to the different lengths of input sequences, 
first of all, lengths of all sequences are made equal to the length of the longest sequence by appending a meaning-
less substring to their tails.

The occurrence of indels within the sequences and their diagnosis raises some challenges since sequence 
partitioning into fixed length blocks might prevent their appearances. To resolve this issue, as shown in Fig. 3, 
we adopt a sliding window (with fixed size S) with maximum shift of d characters to the right and the left of a 
fixed point, rather than selecting each block from a fixed location. In other words, each initial block is left and 
right shifted by equal or less than d characters, and so, results in a total of 2d + 1 states, all of them are fed to the 
PCV, whose best result, in terms of the distance between the blocks, is reported. It should be noted that block size 
and d value should be pre-determined, as presented in section "Block size and shift analysis" of the supplemental 
materials. Analyzing various datasets, we chose block size of 50 with maximum shift value d equal to 5, as the 
suitable values of parameters.

Calculation unit.  Once the sequences have been split into blocks, they must be encoded and compared with 
each other. For this purpose, the Calculation unit performs the encoding and the comparison unit compares the 
sequences. Each block is encoded as a vector, consisting of two parts: (1) physicochemical vector, representing 
values of the block’s physicochemical attributes collected and preprocessed from AAindex1, and (2) statistical 

Figure 2.   An example of categorizing a sample class into four groups of amino acids.

Figure 3.   An example of sequence splitting into fixed size (S) blocks by various right and left shifts (d as 
maximum shift); in this example S = 5 and d = 2.
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vector, representing statistical information of the block’s amino acid groups. In the following, we describe these 
two parts of the vector in more details.

Physicochemical vector.  As described in the clustering unit, the 566 properties provided for each amino acid 
in AAindex1 are clustered into 110 classes. As a result, for each amino acid in the split block, the calculating unit 
allocates a vector of length 110 to represent its physicochemical properties. In this manner, for a block of length 
|S|, a matrix of size 110 ×|S| is generated. As the next step for each block, the values of each physicochemical 
property for various amino acids are added up. It should be noted that this process is performed for all possible 
shifts of each block. Figure 4 depicts the aforementioned step-by-step procedure.

Statistical vector.  As described in the introduction, in order to extract the most information from a protein 
strand, the statistical and spatial information of amino acids must be analyzed, alongside their physicochemical 
properties. Specifically, quadruple classification as defined in the clustering unit is employed to produce statisti-
cal vectors for each block. For this purpose, 2nd moment of position of each group of quadruple classification is 
used for each block as statistical vector which is derived from the other two concepts as follow: (1) the number 
of repetitions of each quadruple classification group for each property in the block, and (2) the mean position 
of each group for each property in the block. This statistical information can be calculated by Eqs. (1) to (3), 
respectively.

where S represents a block of protein sequence, Ns is the number of repetitions of each quadruple classification 
group for each property in block S, fN is a binary function calculated for each group of quadruple classification of 
each of 110 property classes and assumes that all members (amino acids) of each group are similar. Therefore, for 
each group of quadruple classification, fN equals one if its input character (each amino acid of block S) belongs 
to the intended group, and its zero otherwise, μS is the mean position of each group of quadruple classification 
for each property in block S, DS

2  is the 2nd moment of position of each group of quadruple classification for 
each property in block S. Finally, the calculated statistical vector is normalized using the Studentized residual 
method. Therefore, the statistical vector is a 4 × 110 vector, in which each of the four rows represents the second 
moment of the corresponding group of quadruple classification and 110 columns represent 110 property classes 
of amino acids. For more clarity, Fig. 5 depicts the generation process of a statistical vector for a sample block 
in a more practical manner.

Comparison unit.  The vectors produced by the computation unit for each block, as well as their corresponding 
shifts, are compared in this unit. To accomplish so, it compares ith blocks of two sequences using the Euclidean 
distance, as addressed in Eq. (4).

(1)NS =

|S|
∑

i=1

fN (Si)

(2)µS =

|S|
∑

i=1

i ·
fN (Si)

Ns

(3)DS
2 =

|S|
∑

i=1

(i − µS)
2fN (Si)

NSN

Figure 4.   Producing physicochemical vector for each block.
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where V refers to the encoded vectors of the split blocks, as generated by appending physicochemical and statisti-
cal vectors, and d denotes the maximum shift value for each block. Shifts are accomplished as shown in Fig. 6, 
while all resultant shifts of the two blocks are compared with each other. The minimal distance between two 
blocks is presented by the minimum distance between any pair of their shifted variants. This value is utilized 
for computing dissimilarity score of PCV. Finally, similar to Eq. (5), the dissimilarity score between the two 
sequences is calculated by sum of the Euclidean distance values picked from all pairs of their shifted variants.

Datasets.  The proposed algorithm is tested on 12 different datasets, available at The National Center for 
Biotechnology Information (NCBI), F10 and G11 protein datasets, and other public databases2,5,7,29. Our datasets 
include 9 ND5, 8 ND6, 24 TFs, Coronavirus in two versions, i.e. a) 24 sequences and b) 50 sequences, Betaglobin 
in three versions, i.e. a) 9 sequences, b) 50 sequences, and c) 88 sequences, 27 AFPs, 114 HRV,1163 influenza, 
and 20 xylanases protein sequences. The detailed information of each dataset is provided in Table 2. According 

(4)
EDblock i,shift j and k =

√

√

√

√

|S|
∑

m=1

(

v2,i,j,m − v1,i,k,m
)2
,−d ≤ j, k ≤ d

Vsequence 1,block i,shift j =
(

v1,i,j,1, v1,i,j,2, v1,i,j,3, . . . , v1,i,j,550
)

,

Vsequence 2,block i,shift k =
(

v2,i,k,1, v2,i,k,2, v2,i,k,3, . . . , v1,i,k,550
)

(5)DSeq1,Seq2 =

|Seq|
|S|
∑

i=1

min
(

EDblock i, shift j and k

)

,−d ≤ j, k ≤ d

Figure 5.   Producing statistical vector for each block.
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to this table, these datasets are very diverse in terms of number of sequences and sequence lengths, ranging from 
about 150 to about 2200 in length, and from 8 to more than 1150 sequences. Finally, it should be noted that these 
protein sequences are used as Fasta files. Access information of this data can be found in the "Data" section of 
the supplementary materials.

Results
As mentioned in the data section, we utilized 12 datasets (as listed in Table 2) with substantial variation, in terms 
of the number of sequences and sequence lengths used in earlier studies, to evaluate PCV in terms of correct-
ness and speed. PCV’s applicability and accuracy in comparing sequences can be assessed in a variety of ways, 
including qualitative phylogenetic tree analysis, RF (Robinson–Foulds) distance measurement, CC (Correlation 
Coefficient) similarity measurement, ROC (Receiver Operating Characteristic) diagram, and AUC (Area under 
the ROC Curve), each of which analyzes various aspects of the algorithm, as follows2,5. The qualitative analysis 
of trees can assess the clustering ability and topology of the resultant trees, demonstrating the method’s capac-
ity to appropriately categorize the input data. Analyzing the RF distance and CC similarity metric for the two 
phylogenetic trees or the distance matrices determines their topological dissimilarity/similarity, considering the 
corresponding similarity ratios, by investigating the linear relationship between the corresponding branch lengths 
of the trees (or the distance matrices) produced by the two methods. Finally, the ROC diagram and AUC are 

Figure 6.   The method of comparing blocks in the PCV algorithm’s comparison unit.

Table 2.   Benchmark datasets details.

Datasets Number of sequences Amino acids (approximate lengths) Sources

Betaglobin 9 150 NCBI

Betaglobin 50 150 EM Article2 and fuzzy integral5

Betaglobin 88 150 Natural vector Article29

ND5 9 600 NCBI

ND6 8 175 NCBI

Coronavirus 24 1500 NCBI

Coronavirus 50 1500 EM Article2 and fuzzy integral5

TF 24 700 NCBI

AFP 27 140 EM Article2

HRV 114 2200 Natural vector Article29

Xylanases 20 500 Fuzzy integral Article5

Influenza A 1163 480 Natural vector Article29
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primarily used to qualify data classification, and do not assess an exact numerical relationship between similarity 
scores supplied by the compared methods.

Since each of the aforementioned comparative approaches evaluates PCV from a different perspective, we have 
reported them all to comprehensively analyze the performance of PCV, against the counterpart alignment-free 
methods. It is worth noting that we compare PCV with two alignment-free methods, the fuzzy integral-based 
method and the Euclidean distance method. We chose fuzzy integral-based method, since it is been compared 
to, and shown to be better than, five other alignment-free method, as reported in5. This comparison is achieved 
in terms of RF distance and CC values. In this manner, indirect comparison of PCV with five other alignment-
free approaches, FFP, RTD, CV, NCD, and BBC, can be achieved. For a more comprehensive comparison, ROC 
values of these methods are depicted in the ROC diagrams, as shown in Fig. 19. Moreover, accuracy of the PCV 
method is also compared against that of the Euclidean distance approach, which is a word-based method, since 
it outperforms the reference methods, such as Smith–Waterman, especially in the case of homologous sequences. 
Furthermore, as a key advantage of providing an alignment-free approach, we can enhance the speed of sequence 
comparison, especially for large datasets. In this manner, “Runtime analysis” section compares PCV’s processing 
time to that of alternative methods for various datasets.

It should be emphasized that in this study, ClustalW method is chosen as the reference method, with which 
various alignment-free method have been compared so far. Hence, the outperformance of the PCV approach, 
over the alternative alignment-free methods, is investigated by comparing its performance metrics against those 
of the alternative methods, considering ClustalW as the reference method. For a comprehensive study, we also 
take advantage of two state-of-the-arts alignment-based methods, Clustal Omega and Muscle, as the refer-
ence methods in this study. It should be noted that although we report accuracy of the PCV method alongside 
that of ClustalW and two other references, we do not focus on the accuracy improvement of PCV method 
against the alignment-based approaches. Rather, the main goal is to provide almost the same accuracy of the 
alignment-based method by an alignment-free one. Finally, it is worth noting that although ClustalW is not the 
most accurate alignment-based method proposed so far, it is a popular one and has been used as the reference 
method for evaluating other alignment-free methods2,5. Therefore, for a fair comparison of PCV method with 
the alternative alignment-free methods, we have also chosen ClustalW as the reference method. However, we 
incorporated two other reference methods, Clustal Omega and Muscle, to investigate the efficiency of PCV in 
comparison to the state-of-the-art methods.

Phylogenetic trees analysis.  Studying phylogenetic trees specifies the capability of PCV to properly clus-
ter different samples from various categories. Specifically, this approach, as a qualitative evaluation approach, 
only studies proper placement of the samples within the subtrees. It should be noted that since some methods 
produce their phylogenetic trees by UPGMA (Unweighted Pair Group Method with Arithmetic Mean) and 
some others by NJ (Neighbor-Joining), we have used both methods to produce the trees. All trees produced 
by these methods are accessible in the supplemental materials, however to avoid overlength paper, depending 
on the method being compared with PCV, either UPGMA or NJ is reported in the following section. Finally, it 
should be mentioned that we use MEGAX software version 10.1.7 to produce the trees.

9 ND5 protein sequences.  MT-ND5 is one of the seven mitochondrial genes encoding subunits of the enzyme 
NADH dehydrogenase (ubiquinone). This protein is a section of a large enzyme complex, known as complex 
I, which is active in mitochondria. This enzyme is the largest of the respiratory complexes, and is responsible 
for the first step of the electron transport process, i.e. the transfer of electrons from a molecule called NADH 
to another molecule called ubiquinone5,27,28. This dataset includes 9 protein sequences of ND5, which approxi-
mately has 600 amino acids. The phylogenetic tree (produced by UPGMA method) constructed by our method, 
PCV, is shown in Fig. 7. These 9 sequences are divided into four categories based on their taxonomic families, (1) 
including human, pigmy chimpanzee, common chimpanzee, and gorilla, (2) including fin whale and blue whale, 
(3) including mouse and rat, and (4) including opossum. An opossum is farthest away from other species, hence 
it is clustered separately. Unlike the phylogenetic tree produced by fuzzy integral algorithm5 for this dataset, 
which is shown in Figure S2, pigmy chimpanzee and common chimpanzee are correctly put close to each other 
by our method. To elucidate the effectiveness of our approach, we compared the phylogenetic tree generated 

Figure 7.   The phylogenetic tree of 9 sequences of NADH Dehydrogenase 5 protein constructed by our method 
(UPGMA).
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by our method with the corresponding tree generated by ClustalW11 (as shown in Figure S4). This comparison 
reveals that our method leads to a completely compatible result, although it is an alignment-free method.

8 ND6 protein sequences.  MT-ND6, the only protein-coding gene located on the L-strand of the human mitog-
enome, is one of seven mitochondrial genes encoding subunits of the enzyme NADH dehydrogenase (ubiqui-
none)5. This dataset includes 8 protein sequences of ND6, which approximately has 175 amino acids. The phylo-
genetic tree constructed by our method is shown in Fig. 8. As shown in this figure, these 8 sequences are divided 
into four categories based on their taxonomic family, (1) including human, chimpanzee, and gorilla, (2) includ-
ing gray seal and harbor, (3) including mouse and rat, and (4) including wallaroo. As shown in the phylogenetic 
tree (produced by UPGMA method) generated by PCV, the protein sequences belonging to the four categories 
are correctly separated. Indeed, the similarity between wallaroo and (human, chimpanzee, gorilla) and (gray 
seal, harbor seal) is more than the similarity between (mouse, rat). Therefore, we can conclude that our method 
successfully clustered wallaroo in same clade with (human, chimpanzee, and gorilla) and (gray seal, harbor seal). 
The latter observation illustrates the outperformance of PCV over fuzzy integral algorithm5, which put wallaroo 
in the same clade with (mouse, rat), as shown in Figure S6. Finally, it is worth noting that, as shown in Figure S8, 
the alignment-based approach, ClustalW11, generates a phylogenetic tree with the same topology as that of PCV. 
Hence, we can conclude that PCV can be as accurate as the alignment-based methods.

24 TF protein sequences.  Protein sequences of transferrins (TFs) from vertebrates, with approximately 700 
amino acids, are glycoproteins found in vertebrates that bind to iron (Fe), and consequently, they mediate the 
transport of iron (Fe) through blood plasma. The liver is the main site of transferrin synthesis, but other tissues 
and organs, including the brain, also produce transferrin. Transferrin is also associated with the innate immune 
system. It is found in the mucosa and binds iron, thus creates an environment with low level of free iron that 
impedes bacterial survival in a process called iron withholding5,8. For PCV, both UPGMA and Neighbor-Joining 
tree construction methods show the precise categorization. Figure 9 shows the PCV-UPGMA tree for the TF 
dataset. The 24 sequences are split into four clades, as indicated in this diagram, mammalian TF (light green 
clade), mammalian LF (red clade), actinopterygii (green clade), and amphibians (bluegreen clade). Whereas, the 
tree produced by fuzzy integral-based method5 (Figure S10) clusters the Japanese flounder transferrin sequence 
(which belongs to the actinopterygii class) with the Frog transferrin sequence (which belonge to amphibians 
class). Even the tree produced by ClastalW method (Figure S12) does not correctly classify Possum transferrin 
sequence as a mammalian TF. It should be noted that the NJ tree of the TF dataset produced by PCV also follows 
the similar trend to the produced UPGMA tree.

24 Coronavirus protein sequences.  Coronaviruses are large, enclosed, positive-stranded RNA viruses that 
belong to the Coronaviridae family. Coronaviruses cause respiratory and gastrointestinal disorders in humans 
and other animals. The spike protein, which is found in all coronaviruses, is essential for viral attachment and 
entrance into the host cell, while its sequence and structure differ depending on the host5,7,32. Coronaviruses can 
be classified into four types based on their spike proteins and host types. This dataset contains 24 coronavirus 
protein sequences divided into four classes5: classes I (mammalian coronaviruses), II (mammalian coronavi-
ruses), III (avian coronaviruses), and IV (SARS-CoV samples). As shown in Fig. 10, the phylogenetic tree pro-
duced by PCV almost correctly categorizes samples of this dataset into the four indicated classes. All samples are 
accurately classified by PCV, except two samples from class I (i.e. AAK38656 and NP598310), which are added 
to the top level of class II. However, it should be noted that since they are close to other members of class II and 
also are separated from class I, it might not be considered as a clustering error. For a comprehensive study, this 
dataset is also put to the ClustalW11 method for comparison. Similar to our method, as shown in Figure S15, 
ClustalW properly classifies the samples too. It should be mentioned that all phylogenetic trees for this dataset 
are generated by UPGMA method. This dataset is also used to evaluate other comparison methods, such as the 
intensity-based method7. While this method has not created a phylogenetic tree for this dataset, it uses UPGMA 
for phylogenetics tree construction for two other datasets (i.e. ND 5 and betaglobin). The intensity-based tech-

Figure 8.   The phylogenetic tree of 8 sequences of NADH Dehydrogenase 6 protein constructed by our method 
(UPGMA).
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Figure 9.   The phylogenetic tree of 24 sequences of transferrins protein constructed by our method (UPGMA).

Figure 10.   24 Coronavirus protein sequences constructed by our method (UPGMA).
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nique merely presented the average and standard deviation of the produced intensity vectors (Table S11), claim-
ing that the values for distinct groups of coronaviruses are different. However, the boundaries of these values are 
unclear for each class of this dataset, and hence, a threshold cannot be chosen for classifying this dataset using 
the intensity-based technique.

50 Coronavirus spike protein sequences.  This coronavirus data collection, which includes 50 samples of length 
1500 amino acids, is also divided into four groups: Mammalian coronaviruses are classified into different types 
I and II, avian coronaviruses are found in group III, and SARS-CoVs are found in group IV5,7,32. As shown in 
Fig.  11, the phylogenetic tree produced by PCV properly distinguishes the strings belonging to each group. 
Furthermore, all strings that are closely connected are classified in the same category within a group. For exam-
ple, (TGEV, TGEVG) and (PEDVC, PEDV) from class I are clustered as separate clades, or as another example, 
while the SARS coronavirus group is categorized independently from other coronavirus groups, its subgroups 
are also categorized as two sub-trees, i.e. group IVa from the 03–04 interspecies epidemic and the one contain-
ing all other human-related SARS-CoVs branches29. Furthermore, considering coronavirus protein sequences, 
the classifications achieved by PCV are consistent with those resulted by the ClustalW11 method (as shown in 
Figure S19) and the fuzzy integral based method5 (as shown in Figure S17). It is worth noting that these phylo-
genetic trees are created using the UPGMA approach.

27 Antifreeze protein sequences.  Antifreeze proteins (AFPs) are a group of proteins that bind to macromolecu-
lar ice and prevent it from accumulating. Spruce budworm (Choristoneura fumiferana, CF), yellow mealworm 
(Tenebrio molitor, TM), Hypogastrura harveyi (HH), Dorcus curvidens binodulosus (DCB), Microdera dzhun-
garica punctipennis (MDP), and Dendroides canadensis (DC) are the six species that makeup AFPs2,27. The 
phylogenetic tree11 presented in2 for ClustalW differs from the corresponding trees we generated using NJ and 
UPGMA methods. Specifically, as shown in Fig. 12, by comparing PCV’s generated trees with that of ClustalW 
(Figure S22), reported in2, we can observe that only two elements in the "TM" clade of the NJ’s PCV phylogenetic 
tree are classified incorrectly, so our generated tree outperforms the tree presented in2. On the other hand, the 
phylogenetic trees generated for the ClustalW (Figure S23 and Figure S24) provide better results, with some 
mergers within the three categories "DCB," "MDP," and "TM" visible. Therefore, in comparison with reported 
results in2, PCV achieves more accurate phylogenetic trees. According to the description presented in2 for phy-
logenetic trees analysis (Figure S21), the Energy matrix approach2 accurately performs the classification task, 
while it has not reported any evaluation metric, such as RF distance or AUC, to confirm the accuracy. Finally, 

Figure 11.   50 Coronavirus protein sequences constructed by our method (UPGMA).
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it is should be noted that in this manuscript, the aforementioned phylogenetic trees are created using the NJ 
approach.

9 Betaglobin protein sequences.  The most prevalent haemoglobin in adult humans is beta-globin, which is fre-
quently used to investigate species’ connections. This dataset is the first version of betaglobin, and includes 9 
protein sequences with a maximum length of 147 amino acids from four categories: (1) Hominidae, including 
Chimpanzee, Gorilla, Human, (2) Rodentia, including Rat, mouse, (3) Didelphidae, including Oppossum, and 
(4) Anatidae, including Duck, Gutta, Gallus7,29. The phylogenetic tree constructed by PCV, based on UPGMA 
method, is shown in Fig.  13. According to this figure, our method clustered the sequences as accurate as 
ClustalW11 (as shown in Figure S28). For example, the similarity between Gorilla and Chimpanzee is more than 
that of humans and Chimpanzee, and our method successfully clustered humans after gorilla and chimpanzee. 
Furthermore, as compared to the alignment-free approaches, such as the Intensity method7 (whose generated 
tree is shown in Figure S26), PCV tends to combine comparable groups together. For example, PCV appropri-
ately groups Rodentia and Hominidae, while the Intensity technique fails to do so, or PCV correctly groups 
Oppossum with Rodentia and Hominidae, whereas the Intensity method incorrectly groups it with Anatidae.

50 Betaglobin protein sequences.  According to5, these 50 beta-globin protein sequences, from various spe-
cies taken from GenBank, can be divided into four categories: mammals, birds, reptiles, and aquatic animals. 
However, the categorization does not end here; there are more details, while each of these classes encompasses 
multiple subclasses. Specifically, Primates, Proboscidea, Ungulate, Carnivora, Rodentia, Chiroptera, and Ceta-
cea are all mammals; birds or Aves are both categorized as birds; and, Aquatics consist of Actinopterygii and 
Chondrichthyes2,5. As shown in Fig.  14, PCV precisely categorizes these sequences into the same four main 
categories as previously described. Moreover, PCV has good performance in classifying subclasses while other 
free-alignments methods, such as fuzzy integral based method5 (as shown in Figure S30), lead to some mistaken 

Figure 12.   27 Antifreeze proteins (AFPs) sequences constructed by our method (NJ).

Figure 13.   The Phylogenetic tree of 9 betaglobin proteins constructed by our method (UPGMA).
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categorization within classes or subclasses, such as “Antinopterygii” and “Ungulate”. Consequently, PCV outper-
forms other proposed alignment-free approaches, such as2,20,33. Furthermore, PCV’s phylogenetic tree is closely 
related to the ClustalW’s result11 (as shown in Figure S32), as an alignment-based approach, and even it outper-

Figure 14.   The phylogenetic tree of 50 betaglobin proteins constructed by our method (UPGMA).
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forms the ClustalW in clustering “Ungulate” class as a separate subtree. It should be noted that for this dataset, 
phylogenetic trees are generated using the UPGMA approach.

88 Betaglobin protein sequences.  This dataset is related to beta-globin protein data, but it includes 88 samples 
from 20 distinct categories and a wider range of species, including Carnivora, Primates, Sirenia, Insectivora, 
Perissodactyla, Hyracoidea, Proboscidea, Rodentia, Diprotodontia, Testudines, Columbiformes, Passeriformes, 
Galliformes, Anseriformes, Crocodylia, Anura, Perciformes, Gadiformes, Cypriniformes, and Salmoniformes29. 
There is a relationship between some of these 20 categories at the high levels of evolution, just as there was 
with the previous dataset (i.e. 50 Betaglobin protein sequences). As a result, a classifier strategy with a strong 
performance is expected to bring these categories closer together. This database is created using the natural 
vector approach, and the findings are presented in the form of a phylogenetic tree created by NJ. So, for a fair 
comparison, outputs of PCV for this dataset are used to produce a phylogenetic tree based on the NJ approach. 
PCV clusters all 20 categories appropriately, as well as groups related categories closer together at the order level, 
as shown in Fig. 15. Furthermore, PCV’s outcome is very similar to ClustalW11 (as shown in Figure S35), as an 
alignment approach. Moreover, in comparison with ClustalW, it provides better clustering and does not result 
in any mistake in grouping classes Anseriformes and Rodentia. Finally, the phylogenetic tree produced by the 
natural vector29 (as shown in Figure S34), as a non-alignment method, is as accurate as that of PCV.

20 Xylanase protein sequences.  The 20 xylanases protein sequences, which had roughly 500 amino acids, con-
stitute another benchmark dataset utilized to validate the approach. Sequences of this dataset belong to the two 
classes F10 and G115. As shown in Fig. 16, PCV correctly distinguishes between these two types of samples. It 
should be noted that although the fuzzy integral based method5 (Figure S38), as an alignment-free method, also 
makes such a distinction between the classes, PCV’s phylogenetic tree appears to be more similar to that of the 

Figure 15.   The phylogenetic tree of 88 betaglobin proteins constructed by our method (NJ).
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ClustalW11 (Figure S39), as the reference approach. Discussed later, quantitative comparisons, such as the RF 
distance and the CC measurement, support this claim as well. Finally, it should be noted for Xylanase dataset 
phylogenetic trees are generated using the NJ approach.

113 Human rhinoviruses (HRV) and 3 HEV‑C protein sequences.  Human rhinovirus (HRV) is one of the most 
prevalent causes of respiratory infections and is often associated with the common cold. The HRV dataset29 
contains 113 HRV protein sequences from the RV-A, RV-B, and RV-C Enterovirus genera in the Picornaviridae 
family, as well as three HEV samples as an outgroup. As a result, phylogenetic trees must categorize this dataset 
into four clusters. According to Fig. 17, PCV accurately categorizes three HRV species and HEV-C. It resembles 
the ClustalW’s tree11 (as shown in Figure S43), as well as the phylogenetic tree produced by other methods, such 
as the Natural vector method29 (as shown in Figure S42). The NJ technique has been used to create all phyloge-
netic trees for this dataset.

1163 Influenza A viruses protein sequences.  Influenza A viruses cause influenza in birds and certain mam-
mals, which can result in a range of serious human disorders. Antigenic variation of two surface glycoproteins, 
i.e. hemagglutinin (HA) and neuraminidase (NA), varies substantially across influenza viruses29. As a result, 
subtypes of influenza A viruses are identified by two numbers H and N, where H represents the hemagglutinin 
type, which currently has 18 variants, and N represents the type of neuraminidase, for which currently there are 
11 variants. Thus, diversity of this dataset emphasizes its key role for evaluating classification methods, includ-
ing PCV. For this purpose, we used 1163 influenza A viruses NA protein sequences which are divided into 13 
subtypes: H5N6, H5N1, H7N9, H1N1, H6N2, H3N8, H3N2, H4N6, H5N5, H10N3, and H7N3. As shown in 
Fig. 18, PCV precisely categorizes 13 varieties of influenza A viruses, while the sequences with the same N num-
ber are grouped together. The resultant phylogenetic tree demonstrates that our proposed method is capable of 
accurate categorizing even for enormous datasets. It should be noted that PCV’s categorization is in line with 
ClustalW’s findings11 (as shown in Figure S47) and natural vector method29 (as shown in Figure S46). Further-
more, our phylogenetic tree appears to be a bit better than theirs, with more sequences clustered inside each 
clade and fewer separated samples, compared to phylogenetic trees produced by ClustalW and natural vector 
method. Finally, as shown in Fig. 18, PCV brings related clades together. The NJ technique has been used to cre-
ate all phylogenetic trees for this dataset.

Robinson Foulds (RF) distance results.  The Robinson–Foulds (RF) distance is a commonly used com-
parison metric for analyzing the linear relation between two phylogenetic trees. The RF distance of zero indicates 
that the trees are identical; as the distance increases, the trees become less similar5. As presented in this section, 
we built phylogenetic trees using both the UPGMA and NJ methods, and for each method, we reported RF dis-
tance between the phylogenetic trees produced by our method (i.e. PCV) and three alignment-based method, 
the ClustalW11, Clustal Omega18, and Muscle12, as the reference method. Furthermore, while some other stud-
ies, such as the fuzzy integral-based technique5, provide RF distances for their proposed methods, we have also 
included those information in Table 3 as well, so we can compare our proposed method to some other align-
ment-free methods. According to this table, for all provided datasets, PCV outperforms fuzzy integral-based 
approach and also outperforms the squared Euclidean distance approach except for one of them (Xylanase) with 
small differentiate, and its resultant trees are more compatible with those of ClustalW approach. More detailed 
discussions of this table are provided in the "Discussion" section.

Figure 16.   The phylogenetic tree of 20 Xylanase proteins constructed by our method (NJ).
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Figure 17.   The phylogenetic tree of 113 Human rhinoviruses (HRV) and 3 HEV-C proteins constructed by our 
method (NJ).

Figure 18.   The phylogenetic tree of 1163 Influenza A viruses proteins constructed by our method (NJ).
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Correlation Coefficient (CC) results.  Another well-known metric for measurement of linear relation-
ships between two vectors is the Correlation Coefficient (CC)5,28. The value of this metric is in the range of 
[− 1,1], where the greater the linear relationship between two vectors, the closer CC value is to 1 or − 1, and the 
weaker the relationship, the closer it is to zero. The direct and indirect connection of the two vectors, respec-
tively, is presented by positive and negative values. In this manner, for each of the 12 datasets, we utilized CC 
to examine the linear relationship between the distance matrix of PCV and three alignment-based methods 
ClustalW11, Clustal Omega18, and Muscle12; Table 4 shows these results. According to this table, the average CC 
metric for all datasets is above 94%, indicating that our suggested approach has been able to largely conform 
to alignment-based methods and outperforms the fuzzy integral-based method5 for the given datasets and also 
outperforms ED for most of datasets. More detailed discussions of this table are provided in the "Discussion" 
section.

Receiver Operating Characteristic (ROC) and AUC results.  The ROC (Receiver Operating Charac-
teristic) curve is a graphical representation of the diagnostic capabilities of a binary classifier system when its 

Table 3.   Comparison of PCV (both UPGMA and NJ trees), ED and Fuzzy integral based method based on 
Robinson Foulds (RF) distance for 12 benchmark datasets. Significant values are in bold.

Dataset/
method

PCVUPGMA 
and ClustalW

PCVNJ and 
ClustalW

FI5 and 
ClustalW

EDNJ
34 and 

ClustalW

PCVNJ and 
Clustal 
Omega

FINJ and 
Clustal 
Omega

EDNJ 34 and 
Clustal 
Omega

PCVNJ and 
Muscle

FINJ and 
Muscle

EDNJ
34 and 

Muscle

ND5 0 2 2 (Fitch-Mar-
goliash) 4 0 2 4 0 2 4

ND6 0 4 2 (Fitch-Mar-
goliash) 2 4 4 2 4 4 2

TF 8 12 20 (Fitch-
Margoliash) 16 10 20 14 10 20 14

Coronavirus 
(24) 4 6 – – 10 – – 8 – –

Coronavirus 
(50) 28 40 46 (Fitch-

Margoliash) – 36 46 – 40 46 –

AFP 34 34 – – 34 – – 32 – –

Beta globin (9) 2 2 – 2 2 – 2 2 – 2

Beta globin 
(50) 30 32 64 (UPGMA) – 32 64 – 32 64 –

Beta globin 
(88) 68 60 – – 72 – – 72 – –

Xylanase 18 16 18 (Fitch-
Margoliash) 12 18 22 14 16 20 14

HRV 24 30 – – 38 – – 38 – –

Influenza A 1550 1578 – – 1666 – – – – –

Table 4.   Comparison of PCV, Fuzzy integral based method, and ED method based on Correlation Coefficient 
(CC) distance with ClustalW, Clustal Omega, and Muscle for 12 benchmark datasets. Significant values are in 
bold.

Dataset/
method

PCV and 
ClustalW

FI5 and 
ClustalW

ED34 and 
ClustalW

PCV and 
Clustal Omega

FI5 and Clustal 
Omega

ED34 and 
Clustal Omega

PCV and 
Muscle FI5 and Muscle

ED34 and 
Muscle

ND5 0.984 0.738 0.9250 0.984 0.801 0.986 0.984 0.918 0.986

ND6 0.979 0.598 0.9583 0.978 0.896 0.969 0.979 0.899 0.970

TF 0.981 0.745 0.9878 0.983 0.938 0.989 0.982 0.938 0.988

Coronavirus 
(24) 0.986 – – 0.955 – – 0.989 – –

Coronavirus 
(50) 0.983 0.956 – 0.986 0.875 – 0.987 0.875 –

AFP 0.857 – – 0.873 – – 0.867 – –

Beta globin (9) 0.955 – 0.9888 0.955 – 0.988 0.955 – 0.988

Beta globin (50) 0.914 0.729 – 0.907 0.875 – 0.907 0.875 –

Beta globin (88) 0.943 – – 0.943 – – 0.943 – –

Xylanase 0.909 0.700 0.8863 0.932 0.941 0.911 0.919 0.937 0.902

HRV 0.973 – – 0.780 – – 0.780 – –

Influenza A 0.912 – – 0.977 – – – – –
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discrimination threshold varies. It can, however, be used for a multi-class classifier as well. The ROC curve is 
produced by the true positive rate (TPR), also known as sensitivity, recall, or probability of detection, against the 
false positive rate (FPR), also known as the probability of false alarm and computed as (1—specificity). In addi-
tion, the AUC (Area under the ROC Curve) measure is one of the most prevalent interpretations based on the 
ROC curve. AUC is in the range of [0, 1], while the closer value to 1 indicates the classification approach with 
the greater accuracy. Generally, an approach with an AUC above 0.9 is considered as a high accurate classifier, 
while AUC between 0.7 and 0.9, and between 0.5 and 0.7 represent classifiers with average and low accuracy, 
respectively5,35. More information about this curve can be found in the "ROC" section of the supplementary 
materials.

To evaluate the proposed algorithm, for all 12 datasets, we generated ROC curves and computed their AUC 
values for PCV, ED34, and three alignment-based methods ClustalW11, Clustal Omega18 and Muscle12. Moreover, 
all ROC curves and AUC values reported for fuzzy integral based method5 are also considered in Table 5. It is 
worth noting that the ROC curves of five other methods, including FFP, RTD, CV, NCD, and BBC, are also pro-
vided in5. Based on all information reported in Fig. 19 and Table 5, considering AUC as an interpretable metric, 
PCV is one of the most accurate clustering algorithms, except for two datasets AFP and Xylanase, even more 
accurate in some datasets like Coronavirus (24) than alignment-based methods, Muscle and Clustal Omega. 
Moreover, PCV has an AUC value of more than 0.9 representing its clustering capability. AUC value of the fuzzy 
integral based approach5, which in most datasets is greater than the AUC values of ClustalW and PCV methods, 
should be discussed. As a key point to be noticed in this section is that the classification matrix used to calculate 
AUC has a high impact on its value, while these matrices are identical for both ClustalW and PCV methods. As 
a result, their AUC values confirm the trend of other metrics, such as the CC between PCV and ClustalW, as 
expected. However, the classification matrix of fuzzy integral based approach is ambiguous, and it most likely 
differs from the matrix we utilize, resulting in a higher AUC score, compared to the ClustalW method, while 
other metrics indicate that it is inferior to ClustalW.

To resolve the aforementioned issue, considering the distance matrix provided by the fuzzy integral based 
method at5, we constructed ROC curves for this method using our classification matrix. In this manner, we 
achieved two ROC curves for the fuzzy integral approach (the one published at5 and the other one we generated 
from the provided matrix). As reported in Table 5, AUC values for these two curves are computed. It should be 
noted that the classification matrix reported at5 is still used for the other five alignment-free methods. Given 
the ROC curves and the repetition of the ROCs production for the fuzzy integral based method and their AUC 
values, we can conclude that our classification matrices are more rigid and reliable, and hence, it is possible that 
the computed AUC values based on our classification matrix for five alternative alignment-free methods be lower 
than the corresponding reported values at5. Finally, as a key advantage of our proposed method, it should be 
noted that PCV provides better classification results for large datasets, such as influenza A and betaglobin (88), 
and HRV, compared to the alternative alignment-free methods as well as alignment-based methods, ClustalW, 
Clustal Omega, and Muscle. As analysis of quantitative metrics confirm this superiority, the latter achievement 
is also obvious from qualitative study of the corresponding phylogenetic trees. More detailed discussions of this 
table are provided in the "Discussion" section.

Runtime analysis.  Considering 12 aforementioned datasets with different number of sequences and var-
ying sequence lengths, in this section, we evaluate the execution time of PCV. For a comparative study, the 
implementations of ClustalW11, as an alignment-based algorithm, and the fuzzy integral based approach5, as a 
free-alignment method, have been presented as well. The corresponding execution times are listed in Table 6. 
It should be noted that due to the lack of access to FI tool, we only report the execution times reported in5, and 
so, the execution times for the datasets not examined by FI tool are not applied. It should be mentioned that, in 
addition to the method’s execution time, the system’s specifications executing the algorithm should be presented 

Table 5.   Comparison of PCV, ED, Fuzzy integral based method and three alignment-based methods 
ClustalW, Clustal Omega, and Muscle based on AUC values for 12 benchmark datasets. Significant values are 
in bold.

Dataset/method PCV FI5 FI5 (based on our classification matrices) ED34 ClustalW Muscle Clustal Omega

ND5 0.9636 0.97 0.9124 0.9312 0.9636 0.9636 0.9636

ND6 0.9549 0.98 0.9180 0.9549 0.9549 0.9549 0.9549

TF 0.9242 0.85 0.9481 0.9262 0.9294 0.9294 0.9294

Coronavirus (24) 0.9631 – – – 0.9945 0.8711 0.8884

Coronavirus (50) 0.9549 0.96 0.9929 – 0.9620 0.9620 0.9620

AFP 0.7892 – – – 0.9536 0.9581 0.9431

Beta globin (9) 0.9646 – – 0.9646 0.9646 0.9646 0.9646

Beta globin (50) 0.9468 0.91 0.9009 – 0.9398 0.9385 0.9385

Beta globin (88) 0.9672 – – – 0.9605 0.9608 0.9608

Xylanase 0.8086 0.89 0.8941 0.7894 0.9554 0.9643 0.9566

HRV 0.9997 – – – 0.9772 0.9997 0.9997

Influenza A 0.9939 – – – 0.9912 – 0.7034



20

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11158  | https://doi.org/10.1038/s41598-022-15266-8

www.nature.com/scientificreports/

as well. Saw et al. 5 uses a Linux server with 24 dual-core processors, 384 GB RAM, and two threads to run its 
fuzzy integral based technique. While execution times of PCV and ClustalW are measured on a Windows system 
with a 4-core CPU running at 3.6 GHz and 12 GB of RAM. Considering above specifications, assuming execu-
tion of fuzzy integral based technique on a similar system implementing PCV and ClustalW methods, its runt-
ime would be several times higher. Moreover, it should be noted that in order to report the ClustalW’s execution 
time, we ran it 20 times on the system and averaged their results. According to Table 6, for large datasets, either 
in terms of sequence length or number of sequences, the superiority of PCV’s speed over alignment-based and 
alignment-free methods is obvious, even for a non-optimized implementation in MATLAB. Figure 20 does a 
better job of addressing this point. The execution time of the PCV method, as well as those of the Muscle and 
ClustalW methods36, is depicted in this diagram for a various numbers of input sequences. As depicted in this 
figure, the priority of PCV in terms of execution time for a large number of sequences is crystal clear. For exam-
ple, PCV can compare around 5000 input sequences in about 28 h, while the other two approaches take more 
than 84 h to accomplish this comparison. It should be noted that the sequences in this database are around 330 
characters long, and execution times are measured on a system with a 4-core CPU running at 2.4 GHz and 12 GB 

Figure 19.   ROC of 12 benchmark datasets.
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of RAM. Finally, in section "time estimates" of the supplementary materials, we provided a runtime estimation 
formula of PCV, based on the implementing system’s specification and maximum sequence length.

Discussion
As discussed in this paper, it is critical to provide an accurate and high-speed tool, as a means of protein sequence 
comparison, which provides sequence categorization, particularly for large datasets with a significant number 
of sequences. Proteins are sequences whose folded structures have a direct effect on their functions, and their 
structures are influenced by physicochemical qualities on the one hand26,27. As a result, effective physicochemi-
cal qualities combined with sequence information can be utilized to increase the accuracy of comparison tools 
and form the basis for their application in other tools, such as predicting the second and third structures and 
the protein function. PCV is created and developed with these scenarios in mind.

As previously stated, evaluations and comparisons with current acceptable tools are required to assure PCV’s 
performance, and these are carried out at several levels. We employed numerous comparison methods, since each 
method offers a distinct comparison approach. In comparison to the fuzzy integral based technique and ED34, 
the phylogenetic trees of PCV offer substantially much similarity with those of ClustalW11, Clustal Omega18, 
and Muscle12 based on the RF distance. For this comparison, the topology and branch lengths of the trees are 
addressed for similarity measurement of phylogenetic trees, assuming that the reference tree is completely cor-
rect. On the other hand, since alignment-based metrics are still being studied, it is not definitive to choose an 
alignment-based method as the reference one. As a result, for some datasets, such as Influenza A and HRV, due 
to the large number of samples and the less likely exact similarity of the phylogenetic tree of PCV to the refer-
ence one, PCV results in large values of RF distance for some datasets. Since no other approach has supplied RF 
distance for these challenging datasets, PCV evaluation for these datasets is impossible.

Table 6.   Running time of PCV, ClustalW, and fuzzy integral based method. Significant values are in bold.

Dataset Max Seq. Len No. of seq PCV (s) ClustalW (s) Speed up (PCV/ClustalW) FI(s)5 Speed up (PCV/5)

ND5 610 9 0.2928 0.4802 1.6399 1 3.4153

ND6 175 8 0.0221 0.0682 3.0865 1 45.2489

TF 717 24 1.0784 2.6070 2.4175 4 3.7092

Coronavirus (24) 1447 24 4.3662 8.9456 2.0488 – –

Coronavirus (50) 1447 50 9.1214 28.5361 3.1285 16 1.7541

AFP 138 27 0.0472 0.2308 4.8894 – –

Betaglobin (9) 147 9 0.0177 0.0615 3.4765 – –

Betaglobin (50) 148 50 0.1026 0.7146 6.9648 15 146.1988

Betaglobin (88) 148 88 0.193 1.8662 9.6693 – –

Xylanase 484 20 0.4115 0.5040 1.2249 3 7.2904

HRV 2214 114 49.0252 303.7247 6.1953 – –

Influenza A 472 1163 158.7319 1409.5072 8.8798 – –

Average 678.9167 132.1667 – – 4.4684 – 34.6028

Figure 20.   Execution time comparison of three sequence comparison methods, PCV, ClustalW2, and Muscle, 
for various numbers of input sequences. The sequences in this database are around 330 characters long, and 
execution times are measured on a system with a 4-core CPU running at 2.4 GHz and 12 GB of RAM.
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We performed a comparative study of PCV and three alignment-based methods, ClustalW, Clustal Omega, 
and Muscle using the CC similarity metric. For this purpose, we eased the similarity conditions of phylogenetic 
trees by examining the linear relationship between our method’s distance matrix and that of the reference method. 
In comparison to the fuzzy integral-based method5, PCV is improved greatly in terms of this parameter, with an 
average CC value of 95%. Another measure for evaluating classification capability of a method is the ROC curve. 
Regarding this measurement, PCV showed to be an accurate classification approach for most datasets. In addi-
tion to all these achievements in accuracy comparison, our method is also able to determine the local similarity 
for each pair of blocks, as well as the overall similarity of the sequences indicated by the final dissimilarity score.

It should be noted that most studies addressing the protein sequence alignment-free comparison2,5, with no 
explicit statement, involve customized datasets containing a number of sequences from specific categories, often 
at the taxonomy levels of family, genus, or species. In other words, to prepare a customized dataset, an extensive 
search is performed within a large database to select the proper sequences and create the required datasets. It 
should be mentioned that for the alignment-free methods, the initial assumption is that the input sequences do 
not include large structural variations; in other words, they are homologous, so that a one-way comparison can 
be performed from the beginning to the end of the sequences. Moreover, the assumption can be equated with the 
proposition that along with the alignment-free methods, a simple sequence search method is required to detect 
the homologous data. Therefore, we can conclude that generally, the alignment-free methods can process the 
datasets of homologous sequences, unless joined with some preprocessing tools. To validate the aforementioned 
statement, for each alignment-free comparison tool, we determined its best response assuming the least identity 
of the input sequences and the minimum degree of sequence alignment. In this manner, we obtained Table 7 by 
analyzing the identity matrix of datasets used by each comparison tool. As reported in this table, each dataset 
is evaluated using three reference methods (i.e. ClustalW, Clustal Omega, and Muscle), and the minimum, 
maximum, mean, and standard deviation values of each dataset are reported. It should be noted that due to the 
large number of sequences in the Influenza A dataset, the aforementioned values for this dataset could only be 
calculated by the Clustal Omega method. Finally, based on the values reported in Table 5, which provides the 
AUC value of the PCV method for each dataset, we can conclude that the PCV method leads to the accurate 
classification results for all these datasets, and therefore, it is applicable for the wide range of minimum identity 
values, reported in Table 7 (i.e. greater than 5% based on Muscle as the reference method). However, choosing 
the 90% threshold value of AUC, according to the Table S9, we can conclude that the PCV method provides the 
best sequence comparison output for mean identity values greater than 60% (based on Muscle as the reference 
method) with the standard deviation of less than 23%.

In addition to the issue of accuracy, high speed processing is one of our main goals in designing a suitable 
method for comparing protein sequences. Examining the speed of our method compared to those of ClustalW, 
ClustalW2, Muscle and fuzzy integral based method5, we can conclude that in the case of large datasets, either 
in terms of sequence lengths or number of sequences, we can offer a higher processing speed.

Finally it should be mentioned that the alignment-based methods, such as ClustalW, are known as the accu-
rate comparison tools, and have been used for many years. Therefore, in this study, ClustalW was chosen as a 
reference method to assess the accuracy of the PCV and the alternative alignment-free methods. ClustalW, as 
mentioned in "Runtime analysis" section, performs calculations for small and medium datasets in an acceptable 
period of time, and produces auxiliary outputs, like alignment output, in addition to the comparison score. How-
ever, it should be noted that in many applications, such as clustering input sequences or searching them within 
the databases, these auxiliary outputs are not required, and only the comparison score is taken into account. 
Moreover, in cases when the datasets are particularly large, execution of the alignment-based approaches are not 
feasible or reasonable for everyone, as seen in Fig. 20, and this is where speeding up the comparison task with an 
alignment-free method, like PCV, becomes very significant. Furthermore, PCV can outperform the ClustalW 
by offering hierarchical methods that require separation of distinct kinds of input sequences in the early phases.

Conclusions
Due to the growing need for development of sequence comparison tools, especially protein sequences, in this 
work, we presented an alignment-free method that uses sequence information and physicochemical proper-
ties of amino acids. This method estimates the similarity of the protein sequence in whole by determining 
local similarity of fixed length blocks. As a result, although it is an alignment-free method, it can resemble the 
behavior of alignment-based methods for protein comparison. We compared this method, known as PCV, to 
some well-known alignment-based and alignment-free methods in a variety of ways. Specifically, we evaluated 
the PCV approach for 12 benchmark datasets considering various conditions, which is a superior of datasets 
compared to alternative studies. It should be mentioned that like other alignment-free methods, these datasets 
include classes with homologous sequences which may require a simple preprocessing search tool to select the 
homologous data. Assuming ClustalW11 as the reference method, in addition to improving the comparison 
speed compared to the other methods, Correlation Coefficient (CC) metric, RF distance, ROC curve, and the 
corresponding AUC metric indicate greater improvement for PCV method than the alternative alignment-free 
methods. Specifically, we reported an average CC of 94% between PCV and ClustalW methods, as well as more 
accurate classifications at the different levels of evolution. In this way, we can conclude that PCV is accurate and 
fast, while providing local similarity information which is not considered by other alignment-free methods. As 
the future works, PCV can be developed to display pseudo-dot plots and reduce the required amount of memory. 
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Furthermore, due to its structure, employing repetitive operational units, PCV method can be implemented on 
widely available hardware platforms, such as FPGA, which can assist speeding up this approach, compared to its 
current CPU-based version. In addition, we would like to make PCV method available as a public online tool.

Table 7.   Degree of sequence alignment of each dataset, as calculated by the means of sequence identity metric. 
Three different methods, ClustalW, Clustal Omega, and Muscle, are used to calculate identity matrices.

Dataset ClustalW (%) Clustal Omega (%) Muscle (%)

ND5

Min 60.46 60.54 60.87

Max 96.53 96.53 96.53

Mean 70.3613 73.7072 73.7316

Standard deviation 11.5634 14.3868 14.3661

ND6

Min 54.49 41.1 40.85

Max 100 97.14 97.14

Mean 72.8013 63.9891 64.2753

Standard deviation 15.7091 21.0188 20.8307

TF

Min 41.94 43.73 43.54

Max 96.23 96.24 96.24

Mean 57.64 60.8482 60.8940

Standard deviation 16.7344 17.4347 17.418

Coronavirus (24)

Min 19.22 25.29 21.94

Max 100 100 100

Mean 49.2039 54.1814 54.232

Standard deviation 34.9317 33.4833 33.4804

Coronavirus (50)

Min 18.38 25.07 24.11

Max 100 100 100

Mean 58.125 61.1693 61.6433

Standard deviation 36.1938 34.2589 33.797

AFP

Min 8.73 11.46 5.88

Max 100 100 100

Mean 59.6171 64.1205 64.0066

Standard deviation 27.2835 25.6215 26.8949

Beta globin (9)

Min 63.26 63.27 63.27

Max 99.17 100 100

Mean 75.3489 78.5212 78.5212

Standard deviation 10.5410 12.6448 12.6448

Beta globin (50)

Min 35.46 33.33 33.33

Max 100 100 100

Mean 71.1996 71.6962 71.6962

Standard deviation 15.5849 16.13405 16.13405

Beta globin (88)

Min 34.24 34.25 34.25

Max 100 100 100

Mean 65.4936 65.8985 65.8985

Standard deviation 16.7106 17.0113 17.0113

Xylanase

Min 5.74 8.57 5.33

Max 100 100 100

Mean 25.0495 32.9813 32.6394

Standard deviation 21.359 24.1594 24.1607

HRV

Min 46.68 13.13 47.51

Max 99.9 99.91 99.91

Mean 66.2275 65.9223 66.9712

Standard deviation 15.4414 16.6548 15.4171

Influenza A

Min – 5.66 –

Max 100

Mean 63.2029

Standard deviation 22.628
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Data availability
The datasets generated and/or analysed during the current study are available in the “PCV-method” repository, 
https://​github.​com/​SAkba​ri93/​PCV-​method.
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