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Limit cycles and chaos in the hybrid 
atom‑optomechanics system
Xingran Xu1, Tanjung Krisnanda1 & Timothy C. H. Liew1,2*

We consider atoms in two different periodic potentials induced by different lasers, one of which is 
coupled to a mechanical membrane via radiation pressure force. The atoms are intrinsically two‑level 
systems that can absorb or emit photons, but the dynamics of their position and momentum are 
treated classically. On the other hand, the membrane, the cavity field, and the intrinsic two‑level 
atoms are treated quantum mechanically. We show that the mean excitation of the three systems 
can be stable, periodically oscillating, or in a chaotic state depending on the strength of the coupling 
between them. We define regular, limit cycle, and chaotic phases, and present a phase diagram 
where the three phases can be achieved by manipulating the field‑membrane and field‑atom coupling 
strengths. We also computed other observable quantities that can reflect the system’s phase such as 
position, momentum, and correlation functions. Our proposal offers a new way to generate and tune 
the limit cycle and chaotic phases in a well‑established atom‑optomechanics system.

The hybrid atom-optomechanics system has been exploited due to its rich physics that allows for many oppor-
tunities, from theoretical proposals to experimental implementations. The frequent configuration of the system 
consists of a mechanical membrane (oscillator) and a Bose-Einstein condensate (BEC) that are mutually coupled 
to cavity field  modes1–4. Applications resulting from this system have been valuable. For example, the mechani-
cal oscillator can be cooled down by enhancing the effective coupling strength between the membrane and the 
 atom1,2,5–8. At the same time, the BECs can have a nonequilibrium phase transition from the normal phase to 
the self-organized super-radiant  phase9–14 due to the Z2 symmetry  breaking15. The system is also applicable for 
 metrology16–18 and quantum  simulations19,20. Last but not least, it provides a new platform to create new states 
of many-body physics, such as the spontaneous crystallization of atoms and light into a structure that features 
phonon-like excitations and bears similarities to a  supersolid21–25. This motivates the further study of this system 
to potentially realize marvelous dynamical phases such as time crystal and chaos.

The time crystal phase breaks the time-translation  symmetry26,27, which is beyond the strict thermal 
 equilibrium28–31. Indeed, while quantum time crystals were originally defined as systems whose lowest energy 
state undergoes periodic motion, the definition has been extended to include nonlinear driven-dissipative 
 systems32,33. Time crystals have been observed in many nonequilibrium experiments such as driven disordered 
dipolar spin impurities in  diamonds34, the interacting spin chain of trapped atomic  ions35, quantum computing 
 processors36, etc. On the other hand, the chaotic phase represents unpredictable results after a long evolution 
time, which are sensitive to initial  states37. In this case, chaotic attractors may arise, leading to orbits that con-
verge to the corresponding chaotic region in the phase-space  diagram38,39. For optomechanical system, chaotic 
dynamics appears in the bad-cavity limit and is described by the semiclassical equations of  motion40–42. Limit 
cycles have been studied extensively in the atom-membrane setup, and observed  experimentally8,43. Also for 
similar setups, limit cycles and the onset of chaos have been studied, for instance including  work44–46. The hybrid 
atom-optomechanics system can be conditioned such that it satisfies the requirements for both limit cycle and 
chaotic phases, which urges  a proposal for their realization and transition.

Experimental implementations have been reported for the atom-optomechanics system with 87 Rb atoms and 
Si3N4 or SiN  membrane1,47, where the position of the membrane displaces the lattice potential for the  atoms48–51. 
Meanwhile, the center-of-mass motion of the atoms will experience a restoring optical dipole force due to the 
absorption and stimulated  emission9,10,47,52. The optical lattice for the atoms can be highly engineered with differ-
ent potentials. The depth of the potential can be adjusted by the power of the laser, while the period can be tuned 
by changing the wavelength of the laser or the angle between two  beams19,48,53. The effective coupling between 
the atoms and the membrane can be long-distance interaction mediated by the laser field. The field interacts 
with the atoms via light-matter coupling, with an effective strength enhanced by the number of atoms ( ∼ 1010)1,7.
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In this paper, we consider the atoms trapped in a double well-like potential created by two lasers, where 
the wavelength of one is half of the other. One of the lasers is filtered and enters a cavity where it couples to a 
membrane, which in turn affects its optical path. This way, the atoms will have both time-dependent and fixed 
potentials. In this configuration, relevant interactions include optomechanical coupling between the field and the 
membrane as well as light-matter coupling between the field and the atoms. The position and momentum of the 
atoms are treated classically, with their dynamical equations coupled to a quantum master equation characterizing 
the membrane, the cavity field, and the intrinsic degrees of freedom of the atoms (two-level systems). We show 
that by tuning the strength of the optomechanical and light-matter coupling, the system can be in regular, limit 
cycle, or chaotic phases. We also computed experimentally familiar quantities such as the first and second-order 
correlation functions in different phases.

Model
Consider two-level atoms moving in an adjusted gauge field optical lattice, which is coupled to a membrane 
through the coherently driven cavity field as shown in Fig. 1. The cold atoms are trapped by two lasers with dif-
ferent wavelengths, giving two optical lattice potentials with different periods. The Hamiltonian ( � = 1 ) describ-
ing the membrane, cavity field, and two-level atom, in a frame rotating with the driving frequency ωl and with 
rotating-wave approximation, is written as

where ωm is the frequency of the membrane, �c = ωl − ωc and �a = ωl − ωa are the detuning for the cavity and 
atom, respectively. ωc denotes the cavity frequency, ωa the atomic transition frequency and ωl the frequency of 
the laser driving the cavity with strength η . The atom couples to the cavity (Jaynes-Cummings type) with strength 
gac , while the optomechanical  coupling18 between the membrane and cavity is denoted by gmc . The optical lattice 
has a mode function sin(2x) , where x is the atomic position, which is in units of the inverse cavity wave number. 
The annihilation operators for the cavity, atom, and membrane are denoted by â , σ̂− , and b̂ , respectively.

The decays in the system are modelled by the Liouvillians and can be considered as Lindblad terms

where γµ is the dissipation rate of the membrane ( µ = m ), cavity field (c), and two-level atom (a). Note that Ô 
denotes the corresponding annihilation operator of each system. As the initial state, we use uncorrelated states 
of the form ρ = ρm ⊗ ρc ⊗ ρa , where ρm , ρc , and ρa represent the density matrix for the membrane, cavity field, 
and atom. The evolution follows the quantum master equation:

In addition, we have classical differential equations of the atomic motion obtained from the Ehrenfest theorem: 
ẋ = ∂�H�/∂p and ṗ = −∂�H�/∂x , where the observables x and p are treated simply as numbers in the classical 
regime. For this classical motion, the atom is situated in two potentials such that its Hamiltonian reads

where m is the mass of the atom, V0 is the depth of the optical lattice, and V1 sin(x) is the external periodic 
potential. We stress that only one of the potentials ( V0 ) ends up being coupled to the membrane. The equations 
of motion for the atom, taking into account the Hamiltonians H and Ha , are written as

(1)H =ωmb̂
†b̂−�câ

†â−�aσ̂
+σ̂− + η(â+ â†)− gmc(b̂

† + b̂)â†â+ gac sin(2x)(â
†σ̂− + âσ̂+),

(2)Lµ[ρ, Ô] = γµ(2ÔρÔ
† − Ô†Ôρ − ρÔ†Ô),

(3)ρ̇ = −i[H , ρ] + 1

2

(

Lm[ρ, b̂] +Lc[ρ, â] +La[ρ, σ̂−]
)

.

(4)Ha =
p2

2m
+ V0 sin(x)

2 + V1 sin(x),

(5)
ẋ =2ωrp,

ṗ =− 4gac cos(2x)ℜ
{

�â†σ̂−�
}

− [V1 cos(x)+ V0 sin(2x)],

Figure 1.  The scheme of the hybrid atom-optomechanics system. The cold atoms are trapped by two lasers and 
only one of them is filtered to enter a cavity where it is coupled to a mechanical membrane.
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where ωr = 1/(2m) is the recoil frequency. As initial conditions, we take x(0) = −1 and p(0) = 0 . We note 
that the quantum observable ℜ

{

�â†σ̂−�
}

 updates the classical dynamics, while the latter affects the quantum 
dynamics via the change in the optical path, and hence, the mode function sin(2x) . We show below with suitable 
parameters, that this quantum-classical coupled dynamics can produce regular, limit cycle, and chaotic phases. 
See also the Appendix for calculations of the dynamics using the quantum trajectory method.

Different dynamical behaviors
The hybrid system has quantum and classical parts that are treated differently but are coupled to each other. For 
the quantum part, all three systems are also coupled, and consequently, we note that a particular phase in one 
system is an indication of the same phase in others. In what follows, we define three phases based on the dynami-
cal behavior of mean excitations (either of the membrane 〈nm〉 , cavity field 〈nc〉 , or two-level atom �σ̂+σ̂−� ): 

1. Regular phase. The excitation of each system will have a stable value after a long evolution time, as shown in 
Fig. 2a1–a3. In this case, the motion of the atom and the membrane will converge to a point in the phase-
space diagram, as shown in Fig. 3a1,b1.

2. Limit cycle phase. The excitation of each system will oscillate periodically around a certain value, as shown 
in Fig. 2b1–b3. Here, after a certain time, the motion of the atom and the membrane will continue to orbit 
a point in the phase-space diagram, see Fig. 3a2,b2.

3. Chaotic phase. The excitation of each system will show random oscillation, as shown in Fig. 2c1–c3. The 
motion of the atom and the membrane in the phase-space diagram will exhibit random orbits around two 
attractors, see Fig. 3a3,b3.

Remarkably, the quantum-classical coupled dynamics can produce all three phases, by simply tuning the strength 
of the optomechanical ( gmc ) and light-matter ( gac ) coupling, see Fig. 2.

Furthermore, the atomic motion (x, p) and expectation value of quadratures, e.g., for the membrane (xm, pm) , 
where xm = �b̂+ b̂†�/

√
2 and pm = �b̂− b̂†�/(i

√
2) are plotted in phase-space diagrams in Fig. 3. For the atom, 

as the period of one potential is twice the other (see Eq. (4)), the depths V0 and V1 allow for a double well-like 

Figure 2.  The mean excitation of the membrane mode (first column), the cavity mode (second column) and 
the atom (third column). The parameters used are γc/γa = 0.5, γm/γa = 2, η/γa = 5, V0/γa = 20, V1/γa = 40, 
ωr/γa = 1, �c/γa = − 1, and �a/γa = − 2. Specific coupling parameters for different phases are given by (a1)–
(a3) gac/γa = 0.5, gmc/γa = 2; (b1)–(b3) gac/γa = 2, gmc/γa = 2.5; and (c1)–(c3) gac/γa = 2, gmc/γa = 2.
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potential shape, which consequently gives three optimum points, two of which are stable. The position of the 
two stable points are symmetric with respect to, e.g., x = −π/2 where the stronger potential V1 sin(x) has the 
lowest energy. Thus, the steady momentum is always zero in the regular phase, whereas it is oscillating around 
zero in other phases. The atomic motion will converge to one of the stable points in the regular phase while the 
trajectory will form a closed circle in the limit cycle phase. When the system is in the chaotic phase, there are 
two attractors in the phase-space diagram and the motion of the atom is unpredictable. At the same time, the 
behaviors of the quantum degrees of freedom reflect that of the classical ones (x, p) of the atom, see the second 
column of Fig. 3 for the membrane’s quadratures. The motion of the membrane will have non-zero momentum 
in the steady-state regime. Below we shall introduce quantities to indicate the phase of the system, and finally, 
obtain a phase transition diagram for varying values of the optomechanical and light-matter coupling strengths.

We also computed the first and second order correlation functions G(1)(τ ) and G(2)(τ ) that are standardly 
measured in experiments. See the Appendix for details. As expected, the behaviors of these correlation functions 
follow that of the mean excitation in the corresponding phases.

Quantification and classification of the phases
Here we shall present a way to numerically classify the phases previously described. In particular, we used two 
quantities, where one is recognizing the regular phase and the other the chaotic phase. Consequently, this method 
classifies all three possible phases in the phase transition diagram, which we will present below.

The regular phase transition. Recognizing the regular phase is straightforward as the mean excitation 
of all the systems will go towards a constant value, see Fig. 2. Here, after a long evolution time, one can choose a 
time range and compute R = max (�nµ�)−min (�nµ�) . The regular phase is given for R < ǫ , where ǫ is a small 
constant.

The 0‑1 test for the chaotic phase transition. The system in the chaotic phase will have a very different 
dynamical behavior, which can be tested by the regression or correlation  method54. Here, relevant functions are 
defined such that we can apply the above tests to our system. First, we take new translation components ( xac , 
pac) and θc as follows

Figure 3.  The motion of the atom (first row) and the membrane (second row) in the phase-space diagram. 
The parameters are given by γc/γa = 0.5, γm/γa = 2, η/γa = 5, V0/γa = 20, V1/γa = 40, ωr/γa = 1, �c/γa = − 1, 
and �a/γa = − 2. For panels (a1,b1): gac/γa = 0.5, gmc/γa = 2; (a2,b2): gac/γa = 2, gmc/γa = 2.5; and (a3,b3): 
gac/γa = 2, gmc/γa = 2.
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where n = 1, 2, . . . ,N denotes the time index, φ(n) is a dynamical quantity, here taken as x(n)+ p(n) , and ν is 
a fixed constant [0,π ] . The initial state of pac , xac and θc are zero and they are updated by the position and the 
momentum of atoms. The quantities qac and pac are bounded if the dynamical behavior is regular, while in the 
chaotic phase they will behave asymptotically. The translation components resulting from the hybrid atom-
optomechanical system are shown in Fig. 4. The regular and limit cycle phases have bounded states for ( xac , pac ) 
as shown in Fig. 4a,b. However, they become unbounded in the chaotic phase, see Fig. 4c,d, showing the pattern 
of fractals.

Given dynamical components ( xac , pac ), the mean square displacement is defined as

where n ≪ N is required. The test for chaos is based on the growth rate of Mc(n) as a function of n. A modified 
mean square displacement Dc(n) that exhibits the same asymptotic growth as Mc(n) , but with better convergence 
properties is given by

where the oscillation term Vosc is defined as Vosc = (Eφ)
2(1− cos(nν))/(1− cos(ν)), and the expectation Eφ 

is given by Eφ = limN→∞ 1
N

∑N
j=1 φ(j) . Note that the cut-off index ncut needs to be large enough such that the 

error of Dc(ncut) is close to zero.
The 0-1 test via regression method is calculated following the quantity Kc = limn→∞ logMc(n)/log n , whose 

value is near zero (one) for non-chaotic (chaotic) phase. An alternative test, that we also consider, is via the cor-
relation  method54 and it is determined by the mean square displacement Dc as follows

(6)
pac(n+ 1) =φ(n) cos(θc)+ pac(n),

xac(n+ 1) =φ(n) sin(θc)+ xac(n+ 1),

θc(n+ 1) =ν + θc(n)+ φ(n),

(7)Mc(n) = lim
N→∞

1

N

N
∑

j=1

[

pac(j + n)− pac(j)
]2 +

[

xac(j + n)− xac(j)
]2
,

(8)Dc(n) = Mc(n)− Vosc(ν, n),

Figure 4.  The dynamics of the translation components (xac , pac) . The parameters used are γc/γa = 0.5, 
γm/γa = 2, η/γa = 5, V0/γa = 20, V1/γa = 40, ωr/γa = 1, �c/γa = − 1, and �a/γa = − 2. We also used (a) 
gac/γa = 0.5, gmc/γa = 2; (b) gac/γa = 2, gmc/γa = 2.5; (c) gac/γa = 2, gmc/γa = 2; and (d) gac/γa = 4, gmc/γa = 2.
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where X̄ and Ȳ  are the mean values of the vectors X and Y with length q. We take the vectors ξ = (1, 2, . . . , ncut) 
and � = (Dc(1),Dc(2), . . . ,Dc(ncut)).

The phase transition diagram. The three phases are characterized by the two tests described above (regu-
lar and chaotic phase transition tests). The phase diagram for the two tests are plotted separately, see the Appen-
dix. Here, we combine the diagrams, see Fig. 5, which shows the three phases for different coupling strengths. 
When the atom-cavity coupling is close to zero, only the regular phase exists with the balance of the rates of the 
decay and the drive. With the increase of gac , the limit cycle phase will appear with periodic evolution of the 
interaction strength gacℜ

{

�â†σ̂−�
}

 . For further increase of gac the system reaches the chaotic phase. Remark-
ably, the coupling between the cavity and the membrane gmc also plays an important role in the limit cycle and 
chaotic phases. If gmc is too small compared to gac the model can be simplified to an atom cooling model and 
the membrane’s oscillations can be ignored. On the contrary, if gac is too small, the system can be transformed 
to an optomechanical model and the atoms can be ignored. The competition of the coupling strengths allows 
the system to have a rich phase diagram. The regular-limit cycle transitions start to happen at gmc/γa ∼ 0.8 and 
gac/γa ∼ 1 , see Fig. 5. In other words, exemplary parameters for obtaining the regular phase are gmc/γa < 0.8 
and gac/γa < 1 . For observing the other two phases, exemplary parameters are given as follows. For the limit 
cycle: gmc/γa = 3 and gac/γa = 2 , while for the chaotic phase: gmc/γa = 1 and gac/γa = 3.

Conclusion
We theoretically considered a hybrid atom-optomechanics system to realize different dynamical phases by 
exploiting the competition of the coupling strength of the cavity and atoms, and that of the cavity and membrane. 
The atoms experience two potentials, including one that may be static, periodically oscillating, or randomly 
oscillating. The coupling of the cavity mode and the membrane allows them to have similar behavior, where 
the whole system can exhibit a regular, limit cycle, or chaotic phase. These three phases are distinguished after 
evolving quantities from the system for a sufficiently long time, where we performed regular and chaotic phase 
transition tests. Our study motivates possibilities such as indirect measurements or inference of the states of the 
membrane from the states of the atoms, or vice versa. It is also interesting to study the dynamics of quantum cor-
relations (e.g., entanglement) between different subsystems in different phases for potential quantum information 
applications such as quantum state transfer and metrology similar to what has been achieved in  optomechanics18.
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cov(X,Y) ≡1

q

q
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