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Machine learning predicts 
clinically significant health related 
quality of life improvement 
after sensorimotor rehabilitation 
interventions in chronic stroke
Wan‑Wen Liao1, Yu‑Wei Hsieh2,3,4, Tsong‑Hai Lee5,6, Chia‑ling Chen4,7 & Ching‑yi Wu2,3,4*

Health related quality of life (HRQOL) reflects individuals perceived of wellness in health domains 
and is often deteriorated after stroke. Precise prediction of HRQOL changes after rehabilitation 
interventions is critical for optimizing stroke rehabilitation efficiency and efficacy. Machine learning 
(ML) has become a promising outcome prediction approach because of its high accuracy and 
easiness to use. Incorporating ML models into rehabilitation practice may facilitate efficient and 
accurate clinical decision making. Therefore, this study aimed to determine if ML algorithms could 
accurately predict clinically significant HRQOL improvements after stroke sensorimotor rehabilitation 
interventions and identify important predictors. Five ML algorithms including the random forest (RF), 
k‑nearest neighbors (KNN), artificial neural network, support vector machine and logistic regression 
were used. Datasets from 132 people with chronic stroke were included. The Stroke Impact Scale was 
used for assessing multi‑dimensional and global self‑perceived HRQOL. Potential predictors included 
personal characteristics and baseline cognitive/motor/sensory/functional/HRQOL attributes. Data 
were divided into training and test sets. Tenfold cross‑validation procedure with the training data set 
was used for developing models. The test set was used for determining model performance. Results 
revealed that RF was effective at predicting multidimensional HRQOL (accuracy: 85%; area under the 
receiver operating characteristic curve, AUC‑ROC: 0.86) and global perceived recovery (accuracy: 80%; 
AUC‑ROC: 0.75), and KNN was effective at predicting global perceived recovery (accuracy: 82.5%; 
AUC‑ROC: 0.76). Age/gender, baseline HRQOL, wrist/hand muscle function, arm movement efficiency 
and sensory function were identified as crucial predictors. Our study indicated that RF and KNN 
outperformed the other three models on predicting HRQOL recovery after sensorimotor rehabilitation 
in stroke patients and could be considered for future clinical application.

Health related quality of life (HRQOL) refers to the way an individual feels and reacts to his/her health status 
affected by medical  conditions1. Compared to quality of life that covers all aspects of well-beings of human life, 
HRQOL focuses more on well-beings related to health domains such as physical, functional and mental health 
and it has been regarded as an important outcome of  treatments1,2.

Stroke remains a leading cause of long-term  disability3. It has a wide-ranging impact not only on physical 
and daily function but also on  HRQOL4. Most patients still suffered from deteriorated HRQOL even in the 
chronic phase of stroke, which makes HRQOL an crucial target for stroke  rehabilitation4,5. To improve patients’ 
HRQOL, healthcare professionals have to provide rehabilitation interventions that are most effective for each 
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patient based on his/her responses to that rehabilitation therapy. Building accurate prediction models for fore-
casting patients’ HRQOL improvements after rehabilitation interventions and identifying predictors relevant for 
HRQOL improvements in stroke patients are thus imperative for providing insights to healthcare professionals 
on making accurate clinical decision.

Machine learning (ML) has become a popular prediction analytic approach. Machine learning uses automatic 
computerized algorithms to discover patterns in the data and builds prediction models to forecast future events. 
Machine learning is particularly suitable for predicting health outcomes because it can process large volumes of 
data, analyze the complex relationship between various different features/variables and easily incorporate new 
variables into prediction models without re-adjusting the preprogrammed  rules6. In addition, the feature selec-
tion procedure can be incorporated into machine learning procedures to help identify important  predictors7. 
These advantages make machine learning a potentially ideal tool for realizing accurate outcome prediction in 
patient populations.

In stroke, machine learning has been primarily used for predicting motor and activities of daily living (ADL) 
recovery and has achieved an overall positive  result8–12. However, to our knowledge, only one study to date has 
applied machine learning algorithms in predicting stroke-specific HRQOL  recovery13. In that study, the authors 
incorporated six demographic factors into machine learning models and built a preliminary system to forecast 
HRQOL changes of chronic stroke patients. Small prediction errors (i.e., the root mean square errors) were found 
between the data derived from the prediction model and the actual data collected from the patient, suggesting 
that machine learning might be feasible for predicting HRQOL changes in chronic stroke  patients13.

Despite this positive evidence, the previous study only included demographic attributes into the machine 
learning prediction  model13; nevertheless, HRQOL has been shown to be affected by factors across multiple 
domains including demographic as well as health-related domains such as physical and functional  domains4,5,14. 
Including only demographic attributes in the machine learning model may not be sufficient for optimizing 
prediction accuracy. In addition, the previous study only examined prediction errors (e.g., the mean squared 
error) of the machine learning  model13. Important clinical performance metrics such as prediction accuracy and 
the ability of machine learning models to distinguish between responders and non-responders to rehabilitation 
interventions remain largely  unexplored15. A comprehensive examination of machine learning prediction per-
formance along with factors across health domains is required for determining the efficacy of machine learning 
on predicting HRQOL recovery of stroke patients after rehabilitation interventions.

Stroke sensorimotor rehabilitation interventions including the robot-assisted therapy (RT), mirror therapy 
(MT) and transcranial direct current stimulation (tDCS) have become popular approaches for improving stroke 
recovery in the recent decade. These three approaches (i.e., RT, MT and tDCS) use modern equipment/modalities 
(e.g., robotic arms, mirror boxes and electrical stimulators) to modulate peripheral and/or central sensorimotor 
systems (e.g., visuomotor and sensorimotor systems and cortical areas) to augment stroke  recovery16–18. Several 
studies have demonstrated that these three sensorimotor interventions (i.e., RT, MT and tDCS) not only facili-
tated functional recovery but also improved participation and HRQOL in stroke  patients19–25. The rationale of 
why these three sensorimotor interventions (i.e., RT, MT and tDCS) could improve HRQOL is that these inter-
ventions could reduce arm/hand impairment, restore arm/hand function, which would allow stroke patients to 
participate in daily activities and accomplish essential daily  tasks19–25. Most daily tasks such as bathing, dressing, 
dining and grocery shopping all involve use of the arm/hand to manipulate objects to accomplish tasks. Good 
arm/hand function would lead to successful participation in daily tasks and subsequently may increase stroke 
patients’ subjective feeling of well-beings and satisfaction toward daily  life19–25. Thus, these three interventions 
(i.e., RT, MT and tDCS) may have potentials to be incorporated into current clinical practice to facilitate not only 
functional recovery but also HRQOL in stroke patients. Machine learning may be a potentially useful tool for 
predicting HRQOL changes after these three interventions, which may help identify responders to these three 
interventions and facilitate clinical  application6,7.

Therefore, the purpose of this study was to determine the performance of machine learning algorithms on 
predicting clinically significant HRQOL improvements of chronic stroke patients after stroke sensorimotor 
rehabilitation interventions including the RT, MT and tDCS. We examined the performance of five commonly 
used machine learning algorithms and identified important predictors for building machine learning predic-
tion models.

Methods
Study design. This study was an observational cohort study that used secondary analysis of data from our 
previous randomized controlled or cluster-controlled trials and ongoing  projects24,26–28. Data screening was done 
by three investigators (Liao WW, Wu CY and Hsieh YW). The three investigators determined the eligibility and 
completeness of the data. Patients that completed the interventions and outcome measurements at pre- and post-
intervention were included for analysis.

Participants. One hundred and thirty-two chronic stroke patients (N = 132) were included. Participants 
were recruited from three hospitals in the northern part of Taiwan. Table 1 outlines the characteristics of par-
ticipants. The inclusion criteria were (1) a first-ever unilateral ischemic or hemorrhagic stroke, (2) more than 
6 months post stroke, (3) Fugl-Meyer assessment scale of upper extremity (FMA) scores between 18 and 60, sug-
gesting mild to moderate arm  hemiparesis29, (4) no excessive spasticity in upper limb joints (Modified Ashworth 
Scale, MAS ≤ 3)30, (5) ability to follow study instructions (Mini-Mental State Examination ≥ 22), and (6) no con-
comitant neurological disorders (e.g., brain tumor and dementia). The exclusion criteria were (1) participation 
in any drug or rehabilitation projects/experiments in the past 6 months, (2) had Botulinum toxin injections in 
the past 3 months, (3) severe vision or visual perception impairments (e.g., neglect and poor visual field) as 
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assessed by the National Institutes of Health Stroke Subscale, and (4) any contradictions to non-invasive brain 
stimulation (for participants receiving tDCS)31. The institutional review boards of participating hospitals includ-
ing the Linkou Chang Gung Memorial Hospital and Taipei Tzu Chi Hospital approved the trials. All participants 
provided written informed consents before enrolled into clinical trials. All study procedures were conducted in 
accordance with the Declaration of Helsinki.

Stroke sensorimotor rehabilitation interventions. All participants received interventions for 1.5 to 
2 h per session with a total of approximately 30 h of training across 3 to 4 weeks. The frequency and duration of 
training were similar to those of most rehabilitation interventions  studies19–25. Participants received interven-
tions at the hospitals where they were recruited from. The interventions were administered by certified occu-
pational therapists that were properly trained by the senior therapists and the principal investigators (Wu CY). 
Among these participants, 70 received RT, 32 received MT and 30 received tDCS/MT.

For the RT, participants practiced unilateral paretic movements by using the InMotion robotic systems (the 
InMotion ARM and InMotion WRIST)28. For the MT, participants imagined that the mirror reflection of the non-
paretic arm was the paretic arm and performed bilateral movements as simultaneously as  possible26,27. For the 
tDCS/MT, participants received 2 mA anodal tDCS on the ipsilesional primary motor cortex for 20 min followed 
by another 20 min of  MT24. For all trainings (i.e., RT, MT and tDCS/MT), participants performed an additional 
15–30 min of functional task training in each session. Participants were assessed within 1 week before and after 
interventions by the evaluators that were blinded to the study purpose and treatment allocation of participants.

Table 1.  Clinical characteristics of participants. MOCA Montreal Cognitive Assessment assessing global 
cognitive function (total scores:30), FMA Fugl-Meyer Assessment Scale of Upper Extremity assessing motor 
impairment of the upper extremity (total scores:66), MAS Modified Ashworth Scale assessing muscle tone 
level of the upper extremity (item score range:0–4, the MAS mean scores were the average scores of all parts 
of upper extremity), MRC Medical Research Council Scale for muscle strength assessing muscle strength 
of the upper extremity (item score range:0–5, the MRC mean scores were the average scores of all parts of 
upper extremity), WMFT-TIME Wolf Motor Function Test TIME-representing movement efficiency of the 
upper extremity (WMFT-TIME mean scores are the average time of all test items, Unit = seconds), WMFT-
FAS Wolf Motor Function Test-functional ability scale representing motor function of the upper extremity 
(item score range 0–5; WMFT-FAS mean scores are the average scores of all test items), MAL AOU motor 
activity log-amount of use representing participants’ self-perceived amount of use of the paretic arm (item 
score range:0–5; MAL-AOU mean scores are the average scores of all test item), MAL QOM motor activity 
log-quality of movement representing participants’ self-perceived quality of paretic arm movements (item 
score range:0–5; MAL-AOU mean scores are the average scores of all test item), BBT-Paretic Box and Block 
Test-Paretic representing the paretic hand function (total scores = 150 (150 cubes), RNSA Revised Nottingham 
Sensation Assessment assessing the tactile, proprioception, and stereognosis sensation of the paretic side of the 
body (item score range: 0–2; unable to test = 9), FIM functional independence measure assessing participants’ 
levels of disability (item score range: 1–7; total score:18–126), SIS stroke impact scale. Value is mean ± standard 
deviation.

Baseline variables Participants (N = 132)

Age (years) 55.28 ± 11.66

Gender (male/female) 98/34

Side of lesion (right/left) 73/59

Time since stroke (months) 26.89 ± 22.81

Education (years) 11.29 ± 4.68

MOCA 24.94 ± 4.27

FMA total scores 34.75 ± 9.58

MAS mean scores 0.35 ± 0.6

MRC mean scores 3.83 ± 1.26

WMFT-TIME mean time (s) 11.12 ± 5.58

WMFT-FAS mean scores 2.66 ± 0.6

MAL-AOU mean scores 1.27 ± 0.8

MAL-QOM mean scores 0.91 ± 0.71

BBT-paretic side 9.45 ± 11.3

RNSA-tactile 74.71 ± 28.45

RNSA-proprioception 16.74 ± 5.25

RNSA-stereognosis 13.36 ± 8.65

FIM total scores 111.6 ± 9.63

SIS mean score (%) 65.71 ± 9.94

SIS recovery (%) 50.33 ± 16.48
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Classification of HRQOL improvement. The Stroke Impact Scale (SIS) 3.0 was selected as the major 
outcome for classifying HRQOL  improvements32. It is a self-reported questionnaire used for evaluating HRQOL 
in stroke patients. The reliability and validity of SIS have been well  established33,34. The SIS consists of two parts. 
The first part is the main scale of SIS that assesses multidimensional HRQOL including the strength, hand func-
tion, ADL/instrumental ADL, mobility, communication, emotion, memory/thinking, and social  participation32. 
It has 59 items and each item was scored subjectively by stroke patients based on the difficulty they perceived in 
that item during the past two weeks. The scores of each domain were transformed to a score out of 100 and the 
mean scores of all domains were used to represent multidimensional HRQOL of stroke  patients35,36. The second 
part is a global rating scale that evaluates stroke patients’ self-perceived HRQOL recovery. The scores range 
from 0 (no recovery) to 100 (full recovery). Both parts were included in this study to comprehensively represent 
multi-dimensional HRQOL and global self-perceived HRQOL changes of chronic stroke patients.

To facilitate clinical use of our ML prediction models, the minimal clinical important differences (MCID) 
were selected as the criterion to classify participants into high and low responders. The MCID is the smallest 
change in scores that were considered clinically important and meaningful in health status perceived by the 
 patient37. Previous studies have set the MCID as 10–15% of total scores in patient populations and received 
clinically beneficial  results38–40. As a result, based on the literatures, we defined the MCID as 10% of changes in 
the scores of main SIS scale and global rating scale. Participants that had SIS change scores greater than or equal 
to 10 were classified as high responders and participants with SIS change scores less than 10 were classified as 
low responders to stroke sensorimotor rehabilitation interventions.

Candidate predictors. We selected thirty-two potential predictors based on stroke HRQOL literatures and 
the International Classification of Functioning, Disability and Health (ICF) framework to include “Body function 
and structures”, “Activity” and “Participation”  attributes41–43. These predictors included (1) personal characteris-
tic attributes: age, gender, education, time since stroke and side of hemiplegia, (2) baseline cognitive and motor 
function attributes: The Montreal Cognitive Assessment (MOCA)  scores44, FMA proximal/distal/total  scores45, 
Wolf Motor Function Test (time and functional ability scale)  scores46, Medical Research Council (MRC) muscle 
strength scale scores (paretic shoulder, elbow, wrist, and finger muscle strength scores and MRC mean scores)47, 
MAS scores (paretic shoulder, elbow, forearm, wrist, finger scores and MAS mean scores)47, Motor Activity Log 
(MAL) amount of use (AOU) and quality of movement (QOM)  scores48 and Box and Block test  scores49, (3) 
baseline sensory function attributes: the revised Nottingham Sensory Assessment (RNSA) scores (paretic side 
tactile sensation, proprioception and stereognosis)50, (4) baseline ADL and instrumental ADL attributes: Func-
tional Independence Measure (FIM)  scores51 and the Nottingham Extended Activities of Daily Living (NEADL) 
scale  scores52, and (5) baseline HRQOL attributes: the SIS mean scores and global rating  scores32. These attrib-
utes are commonly used in research and clinical settings to represent the motor/sensory impairment, functional 
ability and participation of stroke patients, and therefore were selected as potential  predictors41–43.

Machine learning algorithms. Five ML algorithms, which were the random forest (RF), k-nearest neigh-
bors (KNN), artificial neural network (ANN), support vector machine (SVM), and logistic regression (LG) were 
used for developing prediction models. The RF uses the ensemble learning method for outcome prediction. 
It combines the results of multiple decision trees and generates a final overall result to augment prediction 
 accuracy53. It is a flexible method that can be used in categorical and continuous data. In addition, the RF has 
a low probability of overfitting and is therefore suitable for use in the clinical  setting53. The KNN is a distance-
based method. It predicts that similar objects would exist in close proximity. As a result, it labels the class of the 
target based on the majority of classes of its surrounding k  neighbors54. The KNN classification pattern is similar 
to the clinical decision-making process made by the clinicians/therapists, where similar treatments would be 
prescribed to patients with similar responses and  characteristics55. The ANN is inspired by the neurological net-
work of the  brain56. It consists of several neurons/nodes in layers including the input, hidden and output layers. 
The input layer receives the data, and transfers it to the hidden layer, where the computations (e.g. the activation 
function) are primarily taken places. After the computations are done, the hidden layer generates the final output 
to the output layer and finishes the prediction model. The ANN can process complex health informatics data and 
is therefore a potentially useful tool for outcome prediction in stroke  patients57. The feedforward back propaga-
tion method was used in this study. The SVM uses the binary classification technique, where it projects data onto 
a high-dimensional plane by using the kernel function first, and then finds the maximum-margin hyperplane 
that best separates data into two  classes58. The SVM is efficient in high dimensional planes and suitable for 
modeling complicated medical data. The LG is a binary classification technique that uses the logistic sigmoid 
function to predict the probability of observed data that would belong to one of the two possible  classes59. It is a 
commonly used algorithm for building prediction models in stroke patients.

These 5 ML algorithms were selected because they are widely used modeling techniques for outcome predic-
tion in patients and have been shown to have good prediction  performance6.

Feature selection procedure. The feature selection procedure was performed to remove redundant 
attributes and identify the essential ones for prediction  accuracy7. A popular feature selection method called 
“information gain ratio” was  implemented11. This feature selection method evaluates the influence (i.e., the 
information gain) of each attribute to the output classes (i.e., the SIS classes) using the ranker search  method60–62. 
A higher gain ratio of the attribute indicates a greater contribution of this attribute to prediction  accuracy62,63. In 
this study, attributes with gain ratio greater than zero were used for developing ML prediction models.
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Model development and testing. Figure 1 shows the model development and testing process. Data were 
randomized and divided into a training data set (70%) and a test data set (30%)64. The training data set was used 
for training and developing the model. The test data set was used for final evaluation of model performance. 
The tenfold cross validation procedure was performed to train the  models65. During the tenfold cross validation 
process, the training data set was split into 10 groups, where 9 of them were used for training the model while 
the remaining one was used for validating the model. This process was repeated until all groups of data had been 
trained and validated. After the model was built, the testing data set was entered into the model to assess the 
model performance.

The hyper-parameters of the prediction models were determined according to the procedures used in the ML 
literatures. For the RF model, the numbers of trees to build were 100 and the numbers of features to consider at 
a node were the first integer less than log2M + 1 (M is the number of inputs)66. For the KNN and ANN models, 
the tenfold cross validation was employed to tune the value of hyper-parameters (i.e., the k value of the KNN; the 
numbers of hidden neurons in the hidden layer of the ANN)10. We found that k = 5 and the numbers of hidden 
neurons = 3 in one hidden layer (the main SIS scale) and k = 9 and the numbers of hidden neurons = 2 in one 
hidden layer (the SIS global rating scale) had the best prediction accuracy. As a result, these hyper-parameters 
were used in the KNN and ANN models. For the SVM model, the polynomial kernel function was employed 
because it provided the best prediction  accuracy58,59.

Model performance metrics. The performance of ML models was evaluated using the standard ML per-
formance metrics including (1) accuracy, (2) recall, (3) precision, (4) F1 scores, and (5) area under the receiver 
operating characteristic curve (AUC-ROC)15. Accuracy is an overall index of prediction performance. Accuracy 
was computed as the sum of true positive (TP) and true negative (TN) divided by the sum of TP, TN, false posi-
tive (FP) and false negative (FN). Recall is the ratio of participants that were correctly identified as positive by 
the model to those whom were actually positive. Recall was computed as the TP divided by the sum of TP and 
FN. Precision is the ratio of participants that were correctly identified as positive by the model to those were 
labelled as positive by the model. Precision was calculated as TP divided by the sum of TP and FP. F1 scores is 
a combined index of precision and recall. It was calculated as the harmonic mean of precision and recall. The 
AUC-ROC is the ratio of area under the ROC curve to the total area. It represents the ability of the model to 
distinguish between classes.

Statistical analysis. The continuous variables were standardized and the categorical variables were coded 
before developing the ML models. The Waikato Environment for Knowledge Analysis (Weka) 3.8.3 developed 
by the University of Waikato, New Zeeland was employed for model development, training and  testing67. The 
Weka has been extensively used for constructing ML prediction models in various fields and in different patient 
populations in the medical  field11,68,69.

Figure 1.  The flow chart of model development and validation process. Subject data were randomized into 
a training set and a test set. The training set was 70% of the data and the test set was 30% of the data. For the 
training data set, the tenfold cross validation procedure was used to train and build 5 machine learning models 
(i.e., the RF, KNN, ANN, SVM and LG) in which the data was randomly split into 10 groups (9 groups for 
training and 1 group for validation). The tenfold cross validation process repeated until all 10 groups of data 
were trained and validated. The tenfold cross validation process was performed for all 5 machine learning 
models. After the 5 models were built, the test data set was entered into the 5 models to determine the model 
performance.
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Results
Five most important attributes were identified by the feature selection procedure for the SIS HRQOL main scale, 
which were the baseline SIS mean scores (gain ratio = 0.1), baseline MRC finger metacarpophalangeal (MP) 
extensors (gain ratio = 0.15) and flexors (gain ratio = 0.06) scores, baseline MAS wrist flexors (gain ratio = 0.1) 
scores and baseline WMFT time (gain ratio = 0.14). The gain ratio of the other 31 attributes was 0. As a result, 
these 5 attributes were used for developing the SIS multidimensional HRQOL prediction model.

Four most important attributes were identified by the feature selection procedure for the SIS global rating 
scale, including age (gain ratio = 0.16), gender (gain ratio = 0.06), baseline RNSA stereognosis (gain ratio = 0.1) 
and proprioception (gain ratio = 0.07) scores. The gain ratio of the other 32 attributes was 0. Therefore, these 4 
attributes were used for developing the stroke global self-perceived HRQOL recovery prediction model.

Table 2 summarizes the performance metrics of the five ML models. For the SIS multidimensional HRQOL 
scale, the prediction performance was the best in the RF model. The accuracy of the RF model was 85%, preci-
sion was 0.88, recall was 0.85 the F1 scores were 0.85 and the AUC-ROC was 0.86. The prediction performance 
was similar between the other 4 models (KNN, ANN, SVM and LG). The accuracy ranged from 72 to 75%, the 
precision was from 0.73 to 0.77, the recall was from 0.73 to 0.75, the F1 scores were from 0.72 to 0.75 and the 
AUC-ROC was from 0.71 to 0.87.

For the SIS global rating scale, the prediction performance was the best and similar between the RF and KNN 
model. The accuracy of the RF model was 80%, the precision was 0.78, the recall was 0.8, the F1 scores were 0.78 
and the AUC-ROC was 0.75. The accuracy of KNN model was 82.5%, the precision was 0.82, the recall was 0.83, 
the F1 scores were 0.81 and the ACU-ROC was 0.76. The prediction performance was similar between the other 
three models (ANN, SVM and LG). The accuracy was all 77.5%, the precision was from 0.77 to 0.78, the recall 
was all 0.78, the F1 scores were from 0.77 to 0.78 and the AUC-ROC was from 0.68 to 0.75.

Discussion
Our results demonstrated that machine learning could accurately predict HRQOL improvements after stroke 
sensorimotor rehabilitation interventions in chronic stroke patients. In particular, the RF and the KNN models 
had better performance than the other three algorithms (i.e., ANN, SVM and LG). The RF model had 85% accu-
racy on predicting multidimensional HRQOL changes and 80% accuracy on forecasting global self-perceived 
recovery. It could also accurately distinguish between high and low responders on the multidimensional HRQOL 
outcome with 86% chances and on the global self-perceived recovery with 75% chances. The KNN model had 
good prediction performance on global self-perceived recovery only, where it had 82.5% prediction accuracy and 
could distinguish between high and low responders with 76% chances. Furthermore, we identified important 
attributes for predicting multidimensional HRQOL improvements, which were the baseline HRQOL, baseline 
paretic finger muscle strength, wrist muscle tone and arm movement efficiency, and also key attributes for fore-
casting global self-perceived recovery including age, gender, baseline hand stereognosis and limb proprioception.

To our knowledge, this study is the first to comprehensively evaluate the performance of ML algorithms on 
predicting HRQOL improvements after stroke sensorimotor rehabilitation interventions in stroke patients. In 
addition, we identified the two more effective algorithms, which were the RF and KNN among 5 commonly used 
ML algorithms. The RF algorithm had good prediction performance on both multidimensional HRQOL and 
global self-perceived recovery. This good prediction performance may be contributed by the unique ensemble 
method that it employed in the modeling process. During the ensemble modeling process, the RF creates as 
many base models (i.e., the decision trees) as many as possible and combines these base models into a final 
 one66. Therefore, instead of creating one model and hoping this model would be the best, the RF takes a myriad 
of multiple models into account to optimize its prediction accuracy. Furthermore, these base models (i.e., the 
decision trees) are designed to be uncorrelated with each other, thus reducing the probability of  overfitting66. 
Our finding of the superior performance of RF was in line with several previous studies demonstrating that ML 

Table 2.  Performance metrics of SIS prediction models. SIS Stroke Impact Scale, RF random forest, KNN 
k-nearest neighbors, ANN artificial neural network, SVM support vector machine, LG logistic regression, AUC-
ROC area under the receiver operating characteristic curve.

Model Accuracy (%) Precision Recall F1 scores AUC-ROC

SIS main scale

RF 85 0.88 0.85 0.85 0.86

KNN 75 0.76 0.75 0.75 0.8

ANN 75 0.77 0.75 0.74 0.87

SVM 72 0.73 0.73 0.73 0.71

LG 72.82 0.73 0.73 0.72 0.77

SIS global rating scale

RF 80 0.78 0.8 0.78 0.75

KNN 82.5 0.82 0.83 0.81 0.76

ANN 77.5 0.77 0.78 0.77 0.75

SVM 77.5 0.77 0.78 0.77 0.68

LG 77.5 0.78 0.78 0.78 0.75
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algorithms with ensemble methods such as the RF and the Adaboost algorithms outperformed other types of 
ML algorithms, for example the decision trees or  LG63,70–73. Future studies could examine the performance of 
ML algorithms with different types of ensemble methods such as the boosting, bagging and stacking on HRQOL 
outcome prediction to determine the best one for use in stroke patients.

To our surprise, the KNN algorithm has similar and slightly better prediction performance than the RF algo-
rithm on predicting global self-perceived HRQOL recovery in chronic stroke patients. Compared to the RF, the 
KNN is a simpler and more straightforward model because it is a distance-based method and does not involve 
ensemble learning  processes54,55. Our study revealed that despite its simplicity, the KNN may be as powerful as 
the RF model when predicting a single-item outcome such as the SIS global self-perceived HRQOL recovery 
scale in stroke patients. In contrast, the KNN may not be the best algorithm for processing multidimensional 
health outcome data due to its weaker prediction performance on multidimensional than single item SIS HRQOL 
outcomes. As a result, we recommend using the KNN model for predicting simple HRQOL outcome changes in 
chronic stroke patients. Future studies could compare and contrast the performance of KNN on single domain 
and multidimensional health outcome data to validate findings of this study.

Our study showed that 5 attributes related to initial HRQOL, muscle function (the muscle strength and 
muscle tone) and movement efficiency were important predictors for forecasting multidimensional HRQOL 
improvements after sensorimotor rehabilitation interventions. Indeed, studies have found that baseline HRQOL 
was associated with HRQOL restoration in stroke  patients74,75. It is thus not surprising to find baseline SIS scores 
important for HRQOL improvements after interventions. In addition, studies have shown that paretic arm/hand 
muscle strength and muscle tone significantly affected functional recovery after  stroke43,76,77. The movement 
efficiency of the paretic arm was also associated with HRQOL recovery post  stroke5. Similarly, in the present 
study, we found that muscle function (i.e., baseline MRC finger MP extensors/flexors, MAS wrist flexors) and 
the movement efficiency (i.e., baseline WMFT time scores) of the arm associated with prediction of HRQOL 
improvements. However, compared to previous studies, we further identified the most important components, 
which were the muscle function of “the wrist/hand” and the movement efficiency of “the whole arm”. These 
components are highly involved in daily routines. For example, stroke patients have to be able to appropriately 
open/close their hands, grasp/release objects and move their arms efficiently in time to perform most essential 
daily tasks such as dressing, bathing and cooking. The inability to accomplish essential daily tasks may result 
in a source of distress and consequently affect participation and life satisfaction after  stroke78. Therefore, even 
though muscle function and movement efficiency are commonly regarded as the basic level (i.e., body functions 
and structures) of the ICF model, they could substantially affect the multi-dimensional HRQOL recovery after 
stroke sensorimotor interventions and therefore should be considered when assigning these interventions to 
stroke patients.

In addition, our study also found another four attributes imperative for forecasting global self-perceived 
HRQOL recovery, which were age, gender and the paretic hand stereognosis and limb proprioception. Age 
and gender have been demonstrated to be associated with HRQOL recovery post stroke in previous  studies5,79. 
Our results support theses previous findings and further suggest that additional somatosensory impairments, 
especially the sensory components including the hand stereognosis and limb proprioception are also impor-
tant for predicting global self-perceived HRQOL recovery. Indeed, reduced sensation has been found to be 
related to slower recovery, decreased motor function (e.g., motor control and activity) and lesser rehabilitation 
 outcomes43,80,81. Sensory deficits, such as impaired hand stereognosis and limb proprioception may cause difficul-
ties in sensing arm/hand position and recognizing objects in the hand and hard to control arm/hand movements. 
This may result in decreased confidence in using the arm/hand in daily activities, fear of safety, thus affecting 
stroke patients’ participation and satisfaction in daily  life80–82. Our results were also in line with one previous 
study that found paretic limb proprioception associated with reduced HRQOL and increased feeling of social 
isolation in stroke  patients14. Nonetheless, most studies did not assess the contributions of sensory impairments 
on HRQOL outcome prediction after rehabilitation interventions in stroke  patients83. Our study suggested that 
sensory impairment may contribute to global self-perceived HRQOL recovery post stroke intervention and could 
be considered in the data collection and HRQOL model building process.

Taken together, we found that attributes in the three major categories: the personal characteristics (i.e., age 
and gender), initial life satisfaction (baseline SIS mean scores) and arm/hand sensorimotor components (i.e., 
muscle function, movement efficiency, hand stereognosis and limb proprioception) were important predictors 
for HRQOL restoration after stroke sensorimotor rehabilitation. Based on our findings, healthcare professionals 
could at least assess these attributes in the three categories before assigning the three sensorimotor interventions 
to stroke patients. In addition, these attributes may have potential to be used as indicators to determine which 
stroke patient may be suitable for receiving stroke sensorimotor rehabilitation interventions to improve HRQOL. 
This may help to improve clinical rehabilitation efficacy and potentially save workload in the hospitals/clinics.

Study limitations. Six limitations should be considered. First, our HRQOL outcome prediction was 
focused on stroke sensorimotor rehabilitation interventions that share similar rehabilitation principles. Future 
studies could examine whether the identified predictors, such as the sensorimotor components could general-
ize to HRQOL outcome prediction in other types of rehabilitation interventions. Second, our predictions were 
based on changes immediately after interventions. Future studies could investigate the prediction performance 
of ML algorithms in the follow-up period. This will help identify patients that could retain improvements after 
sensorimotor interventions. Third, we examined 5 commonly used ML algorithms. Future studies could evaluate 
the performance of other types of ML or deep learning algorithms such as those with ensemble methods (e.g., 
the Adaboost)84 or the deep learning algorithms (e.g., the deep neural network)85 and compare the results to our 
findings to determine the optimal method for predicting HRQOL restoration after rehabilitation interventions in 
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stroke patients. Fourth, this study included thirty-two potential predictors based on the results of previous pre-
diction model studies. Nevertheless, some stroke-related factors were not included, for example, the size/severity 
of lesion, due to the incapability to retrieve those data from some of our patients. Future studies could examine 
if these stroke related factors would also be important predictors for forecasting HRQOL recovery in chronic 
stroke patients, in addition the predictors identified in this study. Fifth, we used SIS to assess multi-dimensional 
HRQOL and self-perceived global HRQOL changes in stroke patients. Although SIS is a widely used HRQOL 
assessment in stroke rehabilitation field, it is an ordinal questionnaire that may still have measurement errors. 
In addition, the SIS may not cover all aspects of HRQOL related factors such as environmental factors (e.g., the 
context and time), personal factors (e.g., personality) and social indicators (e.g., economic status). We encourage 
future researchers to include the above factors into machine learning prediction models and examine whether 
inclusion of these additional factors would optimize prediction accuracy on HRQOL. Sixth, the machine learn-
ing models built in this study were preliminary models that focused on predicting HRQOL recovery. Therefore, 
these models should not be used for excluding patients from receiving the three stroke sensorimotor interven-
tions at this moment. Future studies could include more participants and develop machine learning models that 
comprehensively predict motor, functional and HRQOL recovery in stroke patients.

Conclusion
Machine learning may predict clinically significant HRQOL improvements after stroke sensorimotor rehabilita-
tion interventions in chronic stroke patients. In particular, the RF and the KNN algorithms may be more effec-
tive than the other 3 ML algorithms (DT, LG and SVM) and could be considered for use in clinical settings. We 
suggest including at least three categories of predictors, which are age/gender, initial HRQOL and sensorimotor 
components including sensory function, muscle function and movement time into the ML HRQOL prediction 
model for optimizing prediction accuracy. Future studies with a different sample of stroke patients are warranted 
to validate our findings and improve model generalizability.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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