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Predictive capability evaluation 
and mechanism of Ce (III) 
extraction using solvent extraction 
with Cyanex 572
Ebrahim Allahkarami1, Bahram Rezai1*, Rama Rao Karri2* & Nabisab Mujawar Mubarak2

Owing to the high toxicity of cerium toward living organisms, it is necessary to remove cerium from 
aqueous solutions. In this regard, the extraction of cerium (Ce (III)) from nitrate media by Cyanex 
572 under different operating conditions was examined in this study. The effect of contact time, 
pH, extractant concentration, and nitrate ion concentration were investigated to characterize the 
extraction behavior of cerium and based on these outcomes, an extraction mechanism was suggested. 
The analysis of infrared spectra of Cyanex 572 before and after the extraction of cerium indicated 
that cerium extraction was performed via a cation-exchange mechanism. Then, the predictive models 
based on intelligent techniques [artificial neural network (ANN) and hybrid neural-genetic algorithm 
(GA-ANN)] were developed to predict the cerium extraction efficiency. The GA-ANN model provided 
better predictions that resulted higher  R2 and lower MSE compared to ANN model for predicting 
the extraction efficiency of cerium by Cyanex 572. The interactive effects of each process variable on 
cerium extraction were also investigated systematically. pH was the most influential parameter on 
cerium extraction, followed by extractant concentration, nitrate ion concentration and contact time. 
Finally, the separation of cerium from other rare earth elements like La (III), Nd (III), Pr (III), and Y (III) 
was conducted and observed that the present system provides a better separation of cerium from 
rare heavy earth than light rare earths.

Cerium, one of the most abundant elements in the lanthanide series, has been widely used in many applica-
tions, such as catalysts, fluorescent powders, alloys, solar panels, and many  more1,2. Given the physicochemical 
properties of cerium, the world consumption of cerium has been increasing during the last decades. Its increased 
demand has led to high public contact with it. Therefore, more cerium has entered the ecosystem and accu-
mulated in the environment, and this will eventually result in increased concentration of cerium in animals, 
human body, aquatic creatures, and soil  particles3. A high concentration of cerium can cause lung embolisms, 
necrotic changes in the liver, negative effects in reproduction, and alters nervous system  activities1. The toxicity 
range of cerium compounds is found to be in the range of low to moderate. To protect public health from severe 
environmental problems, the Occupational Safety and Health Administration [OSHA (PEL)] recommends the 
optimum cerium extent of 15 mg/m3 in safe  water4. To ensure the proper quality of treated effluent for various 
purposes, it is necessary to remove cerium from aqueous solutions effectively. There are different methods such 
as membrane  separation5,6, solvent  extraction7,8, ion  exchange9, and  adsorption10 that can be applied to extract 
cerium from an aqueous solution. Precipitation is a useful method for the separation of Ce (IV) from the aque-
ous solution. Furthermore, the other disadvantageous of precipitation method are sludge production, accurate 
control of the solution pH during the process, extra cost for sludge disposal. The advantages and disadvantages of 
these methods for cerium extraction/removal were discussed in the  literature1. Among them, solvent extraction 
is the most versatile commercial method for separating Ce (III) because it can handle many diluent pregnant 
 liquors11,12. For this purpose, different solvents such as acidic organophosphorus  extractants13,14, neutral organo-
phosphorus  extractants15, high molecular weight  amines16,17, and  others18,19 have been used for the extraction 
of cerium from aqueous solutions.

For instance, the extraction behavior of Ce (III) and Sm(III) from different aqueous media (nitric acid, sul-
furic acid, and hydrochloric acid) using 2-ethyl hexyl phosphonic acid mono-2-ethyl hexyl ester (PC88A) was 
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 investigated20. These studies indicated that HCl and  HNO3 were suitable aqueous media for the extraction of 
these metals. Mishra and  Sahu21 reported the synergistic extraction of Ce (III) from dilute nitric acid medium 
with a mixture of tri-octyl phosphine oxide (Cyanex 921) and PC88A. They found that the extracted species 
contain two molecules of PC88A and one molecule of Cyanex 921. Khodakarami and  Alagha22 synthesized two 
novel functionalized ionic liquids and used them to extract rare earth elements from aqueous solutions.

Stripping studies showed that HCl was found to be favorable for both FILs. However, organophosphorus 
extractants have attracted great attention in recent years due to suitable loading and stripping characteristics, 
fast kinetics, and their chemical  stability11,12. Cytec Industries has released a new extractant called Cyanex 572, a 
mixture of phosphonic and phosphinic  acids23,24. Nie et al.24 studied the solvent extraction of Sc (III) from a leach-
ing solution of tungsten residue using Cyanex 572, Cyanex 923 [a mixture of tertiary octyl and hexyl phosphine 
oxides, i.e., dioctyl-monohexyl phosphine oxide (40–44%), mono-octyldihexyl phosphine oxide (28–32%) and 
tri-n-octyl phosphine oxide (12–16%)], tri-n-butyl phosphate (TBP), and 2-ethylhexyl phosphonic acid mono-
2-ethylhexl ester (P507). They applied the mentioned solvents for the extraction of Sc (III) from the leaching solu-
tion of tungsten residue ([Sc] = 9.9 mg/L, [Th] = 8.9 mg/L, [Ti] = 30.7 mg/L, [Zr] = 1.3 mg/L, [Fe] = 13,091.4 mg/L, 
[Mn] = 9530.9 mg/L, [Res] = 40.5 mg/L, [Al] = 506.5 mg/L, [Ca] = 5591.1, and [Mg] = 221.1 mg/L). The extraction 
of Sc (III) from leaching solution of tungsten residue by each extractant was examined at different extractant 
concentration (0.04–0.28 mol/L) and the solution acidity of 1.38 mol/L  H+. Their results indicated that Cyanex 
572 performed better than P507, Cyanex 923 and TBP because of its better extraction and stripping  properties24.

Increasing the overall REE production to meet the highest demand of any REE and to stockpile the other REEs 
with lower demand, can create a balance between REE demand and the production and cost of REE. The market 
of REE is preferentially driven by the demand for abundant elements such as cerium and lanthanum because it 
will resulted in less problems with stockpiling of the elements that are available in  excess25,26. Due to the increas-
ing demand for cerium, applying a technique for managing this metal is of great importance. For this purpose, 
automatic control for the quality control of chemical processes and the optimization of energy and material 
by online measurements is  necessary27. The online measurement of parameters in chemical processes requires 
high-cost instruments. Also, the investments require a significant amount of maintenance and calibration work. 
Therefore, statistical and artificial intelligence methods have been developed for monitoring purposes. These 
methods have been effectively applied in many  processes28,29, especially in chemical  engineering30. It has been 
proved that artificial intelligence methods outperform statistical techniques to predict process  outputs31. The use 
of artificial intelligence methods such as artificial neural network (ANN)32, support vector machine (SVM)33, and 
adaptive neural-based fuzzy inference system (ANFIS)34 for modeling and simulation of chemical processes has 
attracted great attention in recent years. Among them, ANNs have been successfully applied in chemical processes 
such as  flotation28, liquid–liquid  extraction35,36,  adsorption32, and so  on29,37. Usually, the neural network training 
is done using random initial weights. This can result in trapping into the local minima and slow convergence 
speed in the training  phase38. Therefore, this research contributes to the combination of genetic algorithms and 
artificial neural networks for improving the neural network’s performance for the prediction of process outputs.

There is no systematic report about the cerium extraction from nitrate media by Cyanex  572®. The present 
research objectives are to extract Ce (III) from nitrate media by Cyanex  572® and to develop the process for the 
separation of Ce (III) from other rare earths using this extraction system. The influence of operating parameters, 
i.e., pH, contact time, extract concentration, and nitrate ion concentration on cerium extraction, was investigated. 
The possible mechanism between Ce (III) and Cyanex 572 was investigated using graphical analysis and validated 
by Fourier Transform Infrared Spectroscopy (FTIR) analysis. After that, operating parameters were applied to 
develop predictive models based on artificial neural networks (ANN) and hybrid neural-genetic algorithms (GA-
ANN). The developed models’ accuracy was evaluated using mean square error (MSE) and coefficient of deter-
mination  (R2). Finally, Ce (III) separation from other rare earths using this extraction system was investigated.

Materials and methods
Experimental procedure. Aqueous solutions containing rare earths were prepared by dissolving their cor-
responding nitrates (99.99%, Sigma Aldrich) in double-distilled water. Cyanex 572 extractant (chemical struc-
ture not reported) was kindly supplied by Cytec industries and used without further purification. Kerosene, from 
Fluka (Honeywell research chemicals), was used in the experiments as a diluent. All chemicals used were of 
analytical grade. A series of experiments was carried out via Cyanex 572 extractant to investigate the influence of 
operating parameters on the extraction of cerium. Aqueous (A) and organic (O) solutions (total volume = 10 ml 
and A/O = 1) were mixed at room temperature using a magnetic stirrer (300  rpm). The pH of the aqueous 
solution was adjusted to the desired value by dropwise addition of 0.1 M  NH4OH and 0.1 M  HNO3 solutions. 
After the separation phases using a separatory funnel, the concentrations of metals in the aqueous solutions 
were determined with an Agilant ICP-AES spectrometer. The organic solution was analyzed by Shimadzu FTIR 
spectrometer (500–3500  cm−1). The extraction efficiency (E%) and distribution coefficient (D) is calculated as 
follows:

(1)E% =
[Ce]init − [Ce]eq

[Ce]init
× 100

(2)D =
[Ce]org

[Ce]aq
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where  [Ce]init and  [Ce]eq represent cerium ion’s initial and equilibrium concentration in the aqueous solu-
tion. Also,  [Ce]org and  [Ce]aq represent the concentration of cerium metal in the organic and aqueous phases, 
respectively.

To evaluate the selectivity of the extraction system, the separation factor (β) as an important parameter was 
used, which its equation could be expressed  as39:

where  DREEA and  DREEB are the distribution coefficients of  REEA and  REEB, respectively. To evaluate the sepa-
ration of cerium (III) from the other REEs using Cyanex 572, a solution containing five REEs ([Ce] = 0.04 M, 
[Nd] = 0.015 M, [Pr] = 0.004 M, [La] = 0.014 M, and [Y] = 0.008 M) was prepared. It is noted that the mentioned 
concentrations are similar to the actual concentrations of REEs in the leach liquor solution obtained from an 
industrial process (Esfordi Mining Complex). Esfordi phosphate plant is a subsidiary of Iran Minerals Pro-
duction and Supply Company located in Bafq County of Yazd Province. The Esfordi deposit includes three 
apatite-bearing zones, namely, the apatite-iron zone (12%  P2O5), the main apatite zone (16.3%  P2O5), and the 
tremolite-actinolite zone (14.4%  P2O5). The ore reserve of the Esfordi deposit is estimated at 17 million tonnes 
with an average grade of 13%  P2O5

40.

Slope analysis. The extracted Ce (III) complex with Cyanex 572 can be determined by graphical  analysis41,42. 
Cyanex 572 exists as a dimer in  kerosene43, and Ce (III) extraction with Cyanex 572 may be represented by the 
following equation:

The distribution ratio and equilibrium constant for the above reaction can be presented as follows:

By combining Eqs. (5) and (6), the relationship between the logarithmic values of D and  Keq could be pre-
sented by,

Several experiments were carried out to determine the values of x and i for obtaining the stoichiometry of 
the extraction reaction.

Artificial neural network. Artificial neural networks, which are inspired by brain activity, consist of many 
basic processing units called neurons. These neurons are located in the layers of ANN structure (input layer, hid-
den layers, and output layer). These neurons are connected to all neurons in the following and preceding layers 
by weighted links and biases. The activation function is used to sum up, the weighted links along with bias and 
pass the neurons’ weighted output to the hidden  layer35,44.

In this research, the most influential variables on cerium extraction efficiency, including contact time, pH, 
extractant concentration, and nitrate ion concentration, were considered as the inputs to the network for predict-
ing the extraction efficiency of cerium (output). A correlation matrix based on Pearson’s correlation coefficients 
was produced to evaluate the strength of the linear relationships between operating variables and extraction 
efficiency. The obtained results are presented in Table 1. The results indicated that the extraction efficiency of 
cerium has a strong relationship with pH and extractant concentration. Also, there is a positive correlation coef-
ficient between the extraction efficiency of cerium and nitrate ion concentration.

To develop a model for the prediction of cerium extraction, experimental data were used. The range of inputs 
and output parameters and their summary statistics are listed in Table 2.

(3)β REEA
REEB

=
DREEA

DREEB

(4)Ce3+ + x(HL)2(o) ⇄ Ce.H2x−iL2x(o) + iH+
(a)

(5)Keq =

[

Ce.H2x−iL2x(o)
][

H+
]i

[Ce3+].[(HL)2(o)]
x

(6)D =

[

Ce.H2x−iL2x(o)
]

[Ce3+]

(7)logD = x log
[

(HL)2(o)
]

+ ipH + logKeq

Table 1.  Pearson’s correlation coefficients between operating parameters and extraction efficiency.

pH Extractant concentration Nitrate ion concentration Contact time Extraction efficiency

pH 1.000 – – – –

Extractant concentration 0.012 1.000 – – –

Nitrate ion concentration  − 0.001 0.005 1.000 – –

Contact time 0.137 -0.031 0.025 1.000 –

Extraction efficiency 0.854 0.353 0.183 0.072 1.000
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Hybrid neural-genetic algorithm. The backpropagation method of training artificial neural networks 
acts based on the gradient descent with respect to the initial weight vector and biases to minimize the error 
at each  iteration45. This method uses random initial weights and terminates based on the stopping criterion. 
However, this may lead to getting trapped in the local minima and slow down the convergence speed during the 
training phase. Therefore, to improve the efficiency of a neural network, the initial weights and the threshold of 
the network can be optimized using a genetic algorithm (GA)28. A genetic algorithm is a well-known technique 
for solving optimization  problems29,46. Details about the genetic algorithm can be found in the  literature29,47. Fig-
ure 1 shows the flowchart for the implementation strategy of GA-ANN. This methodology optimizes the search 
space of neural networks using a genetic algorithm, as illustrated in Fig. 1.

Model evaluation criteria. There are different statistical criteria’s for evaluating developed models for the 
prediction of extraction efficiency under different operating conditions. The coefficient of determination  (R2) 
and mean square error (MSE) are the most important statistical criteria, and their equations are as follows:

(8)R2
= 1−

∑n
i=1

(

yi − xi
)2

∑n
i=1

(

yi − xi
)2

+
∑n

i=1 (xi − x)2

Table 2.  Range of studied variables and the statistics summary (number of observations was 39).

Variable Min Max Mean Standard deviation

Input

pH 1.00 5.00 3.12 1.15

Extractant concentration (M) 0.05 0.50 0.22 0.16

Nitrate ion concentration (M) 0.05 1.00 0.52 0.27

Contact time (min) 2.50 30.00 18.08 0.73

Output Extraction efficiency (%) 6.35 95.21 50.37 0.24

Figure 1.  Flowchart of GA-ANN model.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10379  | https://doi.org/10.1038/s41598-022-14528-9

www.nature.com/scientificreports/

where n is the number of data; x ,  xi, and  yi are the mean value of experimental data (actual data), the actual value 
and model output, respectively.

Relative importance of each variable. The relative importance of each input variable on the extraction 
efficiency of cerium is determined using the following  equation48:

where W, N, and Ij are connection weight, the number of neurons, and the relative importance of the  jth input 
variable on the extraction of cerium, respectively. ‘k’ and ‘i’ refer to input neurons, ‘m’ and ‘h’ refer to hidden 
neurons, and ‘n’ and ‘o’ refer to output neurons.

Results and discussion
Effect of operating parameters. Among various operating parameters, studies were conducted by var-
ying the contact time and evaluating cerium extraction efficiency. The extraction of cerium versus time was 
shown in Fig. 2a. The amount of cerium extracted by Cyanex 572 was measured at 2.5, 5.0, 7.5, 10, 15, 20, and 
30 min. The extraction efficiency at the initial time was increased drastically and reached an approximately con-
stant value after 10 min. So, 10 min is enough time to attain equilibrium. However, a contact time of 20 min was 
selected to ensure completed equilibrium.

pH is one of the most important variables affecting the extraction process. The extraction of cerium by Cyanex 
572 was investigated at different initial pH varying from 1.0 to 5.0. The obtained results are given in Fig. 2b. As 
the pH of the solution increased, the extraction efficiency of cerium from nitrate medium using Cyanex 572 
was also increased. According to the Eh–pH diagram for the Ce-H2O system at 25 °C, the dominant species of 
cerium at acidic pH values (pH < 7) are  Ce3+ and Ce(OH)3+. Details about the pourbaix diagram of the cerium-
water can be found in  literature1. Good extraction of cerium by Cyanex 572 by increasing pH can be attributed 
to the species of cerium at this range of pH (particularly pH 4–6). Similar findings were reported by Agarwal 
et al.20 while extracting cerium from nitric acid solutions by PC88A. Their results indicated that the percentage 
extraction of cerium was increased from 0 to 58%, with an increase in solution pH from 1.0 to 6.0.

The influence of extractant concentration on cerium extraction by Cyanex 572 was studied by varying the 
solvent concentration from 0.05 to 0.5 M. The obtained results are shown in Fig. 2c. As the concentration of 
Cyanex 572 was increased, the extraction efficiency of cerium from the nitrate medium also increased, because 
of the available molecules of solvent for cerium extraction increased.

The effect of nitrate ion concentration on the cerium extraction was studied by varying it from 0.05 to 1 M. 
The obtained results are shown in Fig. 2d. The efficiency of cerium extraction from nitrate medium increased 
from 59.87 to 74.93%; while increasing nitrate ion concentration from 0.05 to 1.0 M. It can be due to the salting-
out effect, which is attributed to water activity changes and common ion effect caused by the addition of nitrate 
 ion21.

Extraction mechanism
Graphical  analysis41 (slope analysis) was used to recognize the dependency between the logarithmic distribution 
ratio (log D) and the values of equilibrium pH (the pH of aqueous solution in an equilibrium state). As shown 
in Fig. 3, the plot of log D versus  pHeq gives a slope of 2.81, indicating that three hydrogen ions are incorporated 
in the chelates with cerium (III).

The influence of the Cyanex 572 concentration on the distribution ratio of cerium (III) is shown in Fig. 4. 
 DCe increases linearly with an increase in the concentration of extractant. The plot of log  DCe-3pH versus log 
[Cyanex 572] (org) gives a slope of 2.09, which indicates that the chelates of cerium (III) contain two molecules 
of Cyanex 572.

According to the results and above discussion, Eq. 4 could be rewritten as:

Therefore, the composition of Ce (III) extracted complex by Cyanex 572 was proposed to be Ce.  L3 HL. Also, 
the mean value of log  Keq for the above equation was found to be − 2.69.

Fourier Transform Infrared Spectroscopy (FTIR) analysis needs to be conducted to determine the formed 
complex’s structure. Figure 5 shows comparison of FTIR spectra of Cyanex 572 before and after cerium (III) 
loading. The vibration band belongs to the P=O bond of Cyanex 572 component appears at 1172  cm−1 and was 
shifted to 1158  cm−1. The observed vibration band in 970  cm−1 is assigned to the asymmetric stretching vibra-
tion of the P–O–C functional group, which was slightly shifted to 958  cm−1 after the extraction of cerium (III). 
These mentioned changes supported the hypothesis that cerium extraction by Cyanex 572 was performed via 
a cation-exchange mechanism. The IR characteristic peaks for Cyanex 572 and Cyanex 572-cerium (III) are 
presented in Table 3.
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To compare the extraction of cerium from nitrate and nitric acid media, it is necessary to study the influence 
of nitric acid concentration on the extraction of nitric acid by Cyanex 572. Complex formation between nitric 
acid and Cyanex 572 based on the following reaction decreases the extraction of cerium.

It can be found that Cyanex 572 extractant creates a complex with nitric acid and therefore, there is not 
enough molecules of solvent for cerium extraction. It means that the extraction efficiency of cerium decreases. 
On the other hand, the consumption of hydrogen ions through co-extraction of  HNO3 and cerium decreases the 
extraction efficiency of cerium, as illustrated in Fig. 6. Similar results were obtained in similar solvent extraction 
 systems21.

Development of a predictive model for cerium extraction. Development of ANN model. In this 
research, input parameters to the ANN model were contact time, pH, extractant concentration, and nitrate ion 

(12)H+
+NO−

3 + L(org) ↔ HNO3 · L(org)

Conditions: pH=3.25, [Ce (III)] =0.04 M, [Cyanex 
572] =0.05 M, [NO3-] =0.525 M, and stirring 

speed=300 rpm

Conditions: time=20 min, [Ce (III)] =0.04 M, [Cyanex 
572] =0.05 M, [NO3-] =0.525 M, and stirring speed =

300 rpm

Conditions: time=20 min, pH=1.5, [NO3-] = 0.525 
M, [Ce (III)] =0.04 M, and stirring speed=300 rpm

Conditions: time=20 min, pH=4.25, [Ce (III)] =0.04 
M, [Cyanex 572] =0.05 M, and stirring speed=300 rpm 
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Figure 2.  Effect of (a) contact time, (b) pH, (c) extractant concentration and (d) nitrate ion concentration on 
the cerium extraction efficiency.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10379  | https://doi.org/10.1038/s41598-022-14528-9

www.nature.com/scientificreports/

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
00.511.522.5

lo
g 

D

Equiblirium pH

y = 2.8132x - 4.2289
R² = 0.9826
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Figure 5.  FTIR spectra of Cyanex 572 and Cyanex 572-cerium (III).
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concentration. The extraction efficiency of cerium was considered the output of this technique. The ANN model, 
consists of three inputs, hidden, and output layers, are constructed. The neural network correlates the input and 
the output parameters based on gradient descent to minimize the error between the actual and model output 
 values49. Applied transfer functions in hidden and output layers were sigmoid and linear transfer functions, 
 respectively50. To train the network, the Levenberg–Marquardt back-propagation algorithm was  used51. To train 
the developed model, 70% of data (28) were randomly selected, and the rest 30% (11) were selected for testing 
the model. All the 39 datasets were normalized in the range of − 1 and + 1 before modeling using the following 
equation:

where  XNormal, X,  Xmax, and  Xmin are normalized, original, maximum, and minimum values of the parameters, 
respectively. The optimal ANN structure can be determined by changing the number of hidden layers and the 
number of neurons in those layers (trial and error method)52. For this purpose, different topologies varying the 
number of neurons from 2 to 20 were constructed. According to the statistical observations, the structure of 4:7:1 
with Levenberg–Marquardt backpropagation was selected as the best arrangement for the network.

Development of the GA‑ANN model. In the ANN models, weights were first selected randomly. These random 
initial weights may be resulted in trapping into the local minima and slow convergence speed in the training 
 phase53. Therefore, a genetic algorithm (GA) was combined with a neural network to optimize the initial weight 
vector and the threshold of the network. The operators of GA include selection, crossover, and mutation. This 
research, used the roulette wheel selection algorithm (selection operator) was used to select individuals with 
larger fitness as parents for the next  generation54. The number of generations and population size for the pre-
sent study were considered 150 and 150, respectively. The multi-point crossover with the probability of 0.5 was 
applied to generate a new population with high diversity. The mutation operator with the probability of 0.04 was 
considered for altering the values of few genes of the chromosome to generate new individuals. The stopping cri-
terion for this research was the maximum number of generations. Figure 7 shows the architecture of GA-ANN 
implementation topology for the present work.

To improve the performance of ANN, while learning the network, the initial weights and the threshold of the 
network were optimized by the GA technique. The convergence curves of the average fitness and the best fitness 

(13)XNormal = 2
X − Xmin

Xmax − Xmin
− 1

Table 3.  IR characteristic peaks for Cyanex 572 and Cyanex 572-cerium (III).

Bonds

Wavenumber  (cm−1)

Cyanex 572 Cyanex 572-cerium (III)

P–O–H 970 958

P–O–C 1034 1038

P=O 1172 1158

CH3 1364, 1464 1364, 1464

C–H 2872, 2954 2872, 2954

y = -0.8554x - 1.0443
R² = 0.9907
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Figure 6.  Influence of nitric acid concentration on the distribution coefficient of cerium (contact time = 20 min, 
[Ce] = 0.04 M, [Cyanex 572] = 0.5 M, and stirring speed = 300 rpm).
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of evolution generation for initial weight and bias are shown in Fig. 8. It can be seen that the value of MSE was 
decreased by increasing the number of generations. Finally, the best fitness value for the developed model was 
obtained at 0.1140. The connection weights and biases related to the chromosome that has the least value of MSE 
were considered for training the network.

After optimizing the initial weights and the threshold of the network, they are considered for back propagation 
training. Figure 9a,b show the correlation between predicted cerium extraction using the GA-ANN method and 
the measured cerium extraction for training and testing datasets, respectively. The MSE and  R2 were obtained at 
1.728 and 0.9938 for the training phase and 7.225 and 0.9899 for the testing phase, respectively. Whereas, the MSE 
and  R2 for ANN approach were 10.687 and 0.9836 for the training phase and 13.827 and 0.9693 for the testing 
phase, respectively. Results indicated that the GA-ANN model has a higher capability than the ANN model to 
develop a complex nonlinear expression to predict cerium extraction by Cyanex 572.

After optimizing the neural weight data, they were applied to calculate the relative importance of each input 
variable on cerium extraction. The obtained results are presented in Fig. 10. The results indicate that pH had the 
highest effect (44%) on cerium extraction among the studied parameters. After that, extractant concentration 
(32%) considerably influenced the cerium extraction, followed by nitrate ion concentration (21%) and contact 
time (3%). The obtained results were consistent with Table 1.

Separation studies from other rare earth elements. Due to lanthanide contraction, the change in 
the atomic or ionic radii of rare earth elements is very small. Hence, their physical and chemical properties are 
 similar11. Given their similar physicochemical properties, it is challenging to separate cerium from other rare 
earth  elements55. The solvent extraction of Ce (III) from the aqueous solution was successfully performed using 
Cyanex  57256. But, there is no systematic report about the separation of Ce (III) from other rare earths by Cyanex 

Figure 7.  Architecture of GA-ANN implementation topology.

Figure 8.  Convergence curves of the average fitness and the best fitness of evolution generation for optimizing 
the initial weights and biases of the network.
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572. As presented in Table 4, the distribution coefficients of rare earths increase with an increase in the pH of 
a solution. The separation between cerium and neodymium seemed not be feasible because of the low value of 
separation factor (β = 5.8). The low values of separation factors showed the difficulties of separation for the ele-
ments of cerium and lanthanum. It is noted that the concentrations rare earths in the leach liquor solution are 
different from each other ([Ce] = 0.04 M, [Nd] = 0.015 M, [Pr] = 0.004 M, [La] = 0.014 M, and [Y] = 0.008 M). In 
addition, Pr (III) and Y (III) exhibit similar extraction behaviors when the aqueous pH values were adjusted. 
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Figure 9.  Correlation between predicted cerium extraction using ANN and GA-ANN methods vs. the 
measured cerium extraction for (a) training and (b) testing datasets.
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However, the extraction efficiency of Ce (III) is still significantly higher than that of other rare earths at higher 
pH values. Also, under similar conditions, the separation factors of cerium from other rare earths were improved 
with an increase in solution acidity. The optimum value of pH for the separation of cerium from other rare earths 
was found to be 3.5.

Conclusions
A systematic study of the solvent extraction of Ce (III) was carried out using Cyanex 572 diluted in kerosene 
from nitrate media. The effects of contact time, pH, extractant concentration, and nitrate ion concentration were 
investigated to characterize the Cerium extraction behavior. Based on these results, an extraction mechanism 
was suggested. By specific extraction experiments and FTIR spectra analysis, a cation exchange mechanism was 
proposed, and the stoichiometry of Cyanex 572 to Ce (III) was found to be 2:1. Then, these operating parameters 
of cerium extraction were considered input for model development based on intelligent techniques (ANN and 
GA-ANN). Results indicated that the GA-ANN model has a higher capability than the ANN model to understand 
the mechanisms and predict cerium extraction by Cyanex 572. By optimizing the initial weights and biases, the 
GA-ANN model outperforms the ANN model significantly. The relative importance of each studied variable on 
cerium extraction was also evaluated using the neural weight data. Results indicated that pH is the most effective 
parameter for cerium extraction (44%), followed by extractant concentration (32%), nitrate ion concentration 
(21%), and contact time (3%). Finally, the separation of Ce (III) from other rare earths like La (III), Nd (III), Pr 
(III), and Y (III) was investigated using this extraction system. The results illustrated that the present system pro-
vides better separation of cerium from heavy rare earths than light rare earths. Overall, it can be concluded that 
Cyanex 572 would be an effective extractant for the separation and enrichment of Cerium from various resources.
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