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Channel estimation based 
on superimposed pilot 
and weighted averaging
Qun Wu1, Xiao Zhou1*, Chengyou Wang1 & Zhiliang Qin1,2

Channel estimation based on superimposed pilot (SP) is a challenge in orthogonal frequency division 
multiplexing (OFDM) systems. To reduce the pilot data interference in the SP and estimate the channel 
state information accurately, a weighted averaging (WA) channel estimation method based on the 
superimposed pilot is proposed in this paper. At the transmitter, two signals with data symbols and 
pilot symbols superimposed at different subcarriers are transmitted. At the receiver, the elimination 
scheme is proposed to remove the pilot data interference. Based on the temporal correlation of 
wireless channels, the WA method is used to reduce the interference caused by additive white 
Gaussian noise in the channel. Simulation results verify that the proposed method can be applied to 
different channel scenarios. It has better normalized mean square error and bit error rate performance 
than other existing methods, and the superimposed pilot can improve the throughput of wireless 
communication systems.

Orthogonal frequency division multiplexing (OFDM) technology, as one of the key technologies of the 5th gen-
eration (5G) mobile communication, has been widely used in modern wireless communication systems due to its 
higher spectrum efficiency and robustness to wireless channel frequency selectivity1. Interference in the channel 
will cause the transmitted signal to fade. To recover the signal accurately at the receiver, channel estimation is 
essential2. Channel estimation methods for OFDM systems have been exhaustively studied, which can generally 
be divided into three categories: blind channel estimation3, semi-blind channel estimation4, and pilot-based 
channel estimation5. Compared with pilot-based channel estimation, blind and semi-blind channel estimation 
methods have higher spectrum efficiency but are limited by higher computational complexity. Therefore, pilot-
based channel estimation methods are more popular in practical applications. Abdzadeh et al.6 employed the basis 
expansion modeling (BEM) to represent the time-varying channel. The Schmidt-extended Kalman filtering7 and 
particle filtering8 are used to estimate the carrier frequency offset and BEM coefficients. Gong et al.9 considered 
the time-varying characteristics of different symbols and adopted a new interpolation method to introduce gen-
eralized spatial modulation-OFDM technology into the high-speed railway wireless communication system. In 
pilot-based channel estimation, it can be divided into comb pilot10, block pilot9, and scattered pilot11 according 
to the way of pilot insertion. Although the channel can be easily estimated by inserting pilot sequences into the 
transmitted data, it will lead to undesirable loss of data-rate and reduce spectrum efficiency12.

Superimposed pilot (SP)13 is based on other types of pilot9–11, and the data symbols are superimposed with 
pilot symbols, which can avoid the reduction of spectral efficiency and data rate. Moreover, compared with the 
conventional pilot scheme, it increases the available bandwidth14. The SP scheme is very attractive in most wire-
less communication systems, especially in 5G communication systems with high data rate requirements15. 5G 
technologies use SP to overcome existing intractable issues, such as the pilot contamination in massive multiple 
input multiple output (MIMO) systems16–18, or combined with new technologies like nonorthogonal multiple 
access19. Lago et al.16 proposed a pilot decontamination method in time division duplex massive MIMO systems. 
The method combines SP with the block pilot to estimate channel state information (CSI) prior to downlink data 
transmission, and subsequently the CSI obtained by the block pilot is used to reduce the interference caused by 
transmitting pilot and data together. Zhang et al.17 studied the cell-free massive MIMO system with SP for the 
first time and derived closed-form linear minimum mean square error (LMMSE) channel estimation. Zhang 
et al.18 mathematically characterized the effect on the performance of massive MIMO systems. They concluded 
that even if the number of base station antennas tends to infinity, the pilot contamination and the pilot data 
interference (PDI) caused by SP will not vanish.
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The PDI will make channel estimation difficult. Conventional pilot-assisted channel estimation algorithms, 
such as least square (LS)20, minimum mean square error21, and LMMSE22, are not effective in SP-based channel 
estimation. There is much literature on SP-based channel estimation15,23–27. Estrada et al.15 proposed a super-
imposed model on a pre-coded data scheme, which introduces an interference control factor to determine the 
proportion of pilot power in the SP. They also proposed a data detection method to improve the bit error rate 
(BER) performance. On the basis of15, Zhang and Sheng23 moved the superposition index to the position where 
the power sum of data and pilot is minimum, which further improves the accuracy of channel estimation. Bao 
et al.24 proposed a method that transmits superimposed pilots before precoding the data and pilot separately. 
Only one waveform is needed to realize the two functions of channel estimation and data detection at the receiver. 
However, the channel estimation accuracy will decrease as the Doppler shift increases. Gong et al.25 proposed an 
SP-based two-phase channel estimation scheme for the unmanned aerial vehicle assisted cellular communication 
system, and the scheme considers various unitarily-invariant channel statistics errors. Estrada et al.26 proposed 
a superimposed training approach for channel estimation in multiple-input single-output direct current biased 
OFDM visible light communication scenarios. Simultaneously, the analytical expressions of mean square error 
(MSE) and spectral efficiency are derived when the LS estimator is considered. Liao et al.27 proposed an iterative 
extended Kalman filter channel estimation method based on the BEM. This method can be used in high-speed 
mobile scenarios while the computational complexity of the algorithm is relatively high. SP can also be used for 
channel estimation of underwater acoustic communication. Yang et al.28 developed a message-passing-based 
bidirectional channel estimation method for underwater acoustic communication and combined the method 
with SP to obtain accurate CSI and mitigate inter-symbol interference (ISI). However, the method can only 
transmit the data that follows the Gaussian distribution, which limits its scope of application. Yang et al.29 
proposed a time-varying underwater acoustic channel estimation and equalization method based on SP and 
low-complexity Turbo equalization in the frequency domain. However, the method requires multiple iterations 
and is computationally complex.

Because of the temporal correlation of wireless channels, multi-frame averaging (FA) can be used to estimate 
the channels30–32. Zhang et al.30 designed a channel estimation algorithm based on adaptive weighted averaging 
to suppress noise by averaging the channel coefficients of adjacent OFDM symbols. On this basis, Zhang et al.31 
proposed a joint sparse channel estimation algorithm based on adaptive average and MSE optimal thresholds for 
MIMO-OFDM systems, which can be adapted to high-speed mobile scenarios does not require channel prior 
information. Multi-frame averaging can also be used in SP-based channel estimation. Estrada et al.15 estimated 
the channel after averaging several continuous frames of adjacent OFDM symbols. Muntane and Fernandez32 
simplified the channel, aiming at the minimum MSE, and obtained the optimal average frame number of OFDM 
symbols. Multi-frame averaging can suppress the additive noise in the channel effectively, and the superimposed 
pilot can improve the spectrum efficiency and data rate. Therefore, this paper proposes a weighted averaging 
channel estimation method based on superimposed pilot, which is named superimposed pilot-weighted averag-
ing (SP-WA). Our main contributions are summarised as follows:

•	 A new pilot superposition scheme is proposed. Two signals are transmitted, one is superimposed at odd 
subcarriers, and the other is superimposed at even subcarriers. In this way, data symbols can be transmitted 
separately and pilot symbols can be contained in all subcarriers.

•	 An elimination scheme is proposed to remove PDI. The two received signals are subtracted to remove the 
PDI in preparation for channel estimation.

•	 A weighted averaging channel estimation method is proposed according to the temporal correlation of wire-
less channels. On the basis of LS estimation, the channel coefficients of two adjacent OFDM symbols are 
weighted and averaged to eliminate additive white Gaussian noise (AWGN) and obtain accurate CSI.

•	 To evaluate the performance of the proposed method, the normalized mean square error (NMSE), BER, 
and throughput are tested, respectively. Experimental results show that the proposed method has noticeable 
signal-to-noise ratio (SNR) gains compared with the LS method and the multi-frame averaging (the average 
number of frames is 2, 4, and 6, respectively) method. The superimposed pilot used in this paper can improve 
the throughput of the wireless communication system compared with comb pilot.

The remainder of the paper is organized as follows. “System model” section describes the system model. “The 
proposed method” section introduces the proposed channel estimation and data detection method. Numerical 
analysis is illustrated in “Numerical results” section. “Conclusion” section concludes the paper.

Notations In this paper, M and K represent the number of OFDM symbols and the total number of subcarri-
ers, respectively; bold italic A represents the matrix; A(k, m) represents the element of the kth row and the mth 
column of A ; k ∈ [1,K] , m ∈ [1,M] ; k1 and k2 are odd and even in the range of [1, K], respectively; E(·) represent 
the mathematical expectation of a random variable; V ∼ CN(0, σ 2) represent that V is a complex Gaussian 
random variable with zero mean and σ 2 variance.

System model
It is supposed that one OFDM symbol is transmitted in one frame in this paper. The system architecture of the 
proposed SP-WA method is shown in Fig. 1.

Transmitter.  Figure 1 shows that the input bits are modulated to complex symbols by quadrature phase shift 
keying (QPSK) or 16-quadrature amplitude modulation (16QAM), and then changed from serial to parallel 
(S/P), denoted as S . S and pilot P are added at different subcarriers to generate two transmitted signals X1 and 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10293  | https://doi.org/10.1038/s41598-022-14482-6

www.nature.com/scientificreports/

X2 . In Fig. 2, the stacking indexes of X1 and X2 are at the odd subcarriers and the even subcarriers, respectively, 
that is:

The K-point inverse fast Fourier transform (IFFT) converts X1 and X2 from the frequency domain to the time 
domain, and subsequently cyclic prefix (CP) is added to avoid ISI before X1 and X2 , respectively. Next, X1 and 
X2 are changed from parallel to serial (P/S). Finally, the two signals are transmitted to a multipath channel with 
AWGN successively.

Receiver.  It is assumed that the received signal is perfectly synchronized. After S/P and CP removal, the two 
received signals are transformed from the time domain to the frequency domain by K-point fast Fourier trans-
form (FFT), and then Y1 and Y2 are obtained, that is:

(1)X1(k1,m) = S(k1,m)+ P(k1,m)

(2)X1(k2,m) = S(k2,m)

(3)X2(k1,m) = S(k1,m)

(4)X2(k2,m) = S(k2,m)+ P(k2,m)

(5)Y1(k1,m) = H(k1,m)S(k1,m)+H(k1,m)P(k1,m)+ N1(k1,m)
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Figure 1.   System architecture of the proposed SP-WA method.
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Figure 2.   Superimposed pilot pattern in two signals: (a) the first signal and (b) the second signal.
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where N1(k,m) ∼ CN(0, σ 2) . H(k, m) and N1(k,m) denote the channel coefficient and AWGN in the channel, 
respectively.

The proposed method
Channel estimation.  As shown in Fig. 1, the two received signals are preprocessed at first. (5) and (8) show 
that the odd subcarriers of Y1 and the even subcarriers of Y2 have both pilot and data symbols, while (6) and (7) 
show that the even subcarriers of Y1 and the odd subcarriers of Y2 only have data symbols. Therefore, PDI can 
be eliminated by the subtraction between Y1 and Y2 . That is:

where Ỹ(k,m) represents the received signal after preprocessing, N2(k,m) denotes the AWGN in Ỹ(k,m) , and 
N2(k,m) ∼ CN(0, 2σ 2) , respectively. (9) and (10) show that PDI has been removed, and only the interference 
caused by AWGN remains in Ỹ(k,m) . The final processed signal Ŷ(k,m) is obtained by taking the negative values 
on the even subcarriers:

The coarse channel frequency response (CFR) is obtained by LS estimation:

where NLS(k,m) represents the estimated error of CFR.
AWGN in the channel has always been a key factor affecting the accuracy of channel estimation33, and a 

channel estimation method to deal with AWGN has been proposed in34. Multi-frame averaging is a method to 
deal with AWGN too. In quasi-static channels, CFR changes slowly with time, so it can be considered that CFR 
does not change within F OFDM symbols. Therefore, the average of the adjacent F channel coefficients will only 
reduce the noise power. Based on LS estimation, the average of multi-frame can be expressed as:

Substituting (13) into (14), we have:

(15) shows that, at the mth OFDM symbol, the channel coefficient does not change, and the power of AWGN is 
decreased by a factor of F, which reduces the interference of AWGN. The more average frames are selected, the 
higher the channel estimation accuracy will be, and the more data the computer needs to cache. To reduce the 
amount of data cached by the computer and improve the accuracy of channel estimation, a weighted scheme 
based on the average of two frames is introduced and a weighting factor by the correlation between the mth and 
(m− 1) th OFDM symbols is set in this paper. The final channel estimation result can be expressed as:

where α is the weighting factor. The method can improve the channel estimation accuracy effectively and prepare 
for data detection in “Data detection” section. Taking NMSE and BER as evaluation criteria, the specific experi-
mental results of channel estimation accuracy are given in “Analysis of channel estimation accuracy” section.

Data detection.  According to (6) and (7), there are only data symbols at the indices of even subcarriers of 
Y1 and odd subcarriers of Y2 , hence Y2 and Y1 are used to recover data symbols at odd and even subcarriers, 
respectively. The LS equalizer is used to obtain the data:

(6)Y1(k2,m) = H(k2,m)S(k2,m)+ N1(k2,m)

(7)Y2(k1,m) = H(k1,m)S(k1,m)+ N1(k1,m)

(8)Y2(k2,m) = H(k2,m)S(k2,m)+H(k2,m)P(k2,m)+ N1(k2,m)

(9)Ỹ(k1,m) = Y1(k1,m)− Y2(k1,m) = H(k1,m)P(k1,m)+ N2(k1,m)

(10)Ỹ(k2,m) = Y1(k2,m)− Y2(k2,m) = −H(k2,m)P(k2,m)+ N2(k2,m)

(11)Ŷ(k1,m) = Ỹ(k1,m)

(12)Ŷ(k2,m) = − Ỹ(k2,m)

(13)HLS(k,m) =
Ŷ(k,m)

P(k,m)
= H(k,m)+ NLS(k,m)

(14)HA(k,m) =
1

F

m
∑

i=m−F+1

HLS(k, i)

(15)HA(k,m) =
1

F

m
∑

i=m−F+1

H(k, i)+ NLS(k, i) = H(k,m)+
1

F

m
∑

i=m−F+1

NLS(k, i)

(16)Ĥ(k,m) =

{

HLS(k,m),

αHLS(k,m)+ (1− α)Ĥ(k,m− 1),
m = 1
m > 1
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The output bits are obtained by QPSK or 16QAM demodulation of Ŝ(k,m) , and the BER of the proposed method 
can be obtained by comparing the output bits with the input bits.

Numerical results
We consider a single input single output-OFDM (SISO-OFDM) system with K = 1024 subcarriers. The quasi-
static channel is assumed, and the parameters used in this section are summarized in Table 1. We perform tests 
in China digital television test 1st (CDT 1) and CDT 635 channels, respectively. These channels are all Rayleigh 
channels with the taps number of 6, whose power delay profiles are shown in Table 2.

We first give the procedure of determining the weighting factor α . Then, numerical results are given in terms 
of NMSE and BER, respectively, to prove that the proposed method can improve the channel estimation accuracy. 
NMSE is expressed as:

where h and ĥ represent the real channel impulse response (CIR) and the CIR obtained by various channel 
estimation methods, respectively. BER is expressed as:

where nE and nT represent the number of error bits and the number of transmitted bits, respectively. Moreover, we 
also analyze the impact of the superimposed pilot on the throughput of the system, which can be expressed as15:

where, NP represents the number of pilot subcarriers, NB represents the number of transmitted bits per OFDM 
symbol, and T is the transmission time and assumed as T = 1.

(17)Ŝ(k1,m) =
Y2(k1,m)

Ĥ(k1,m)

(18)Ŝ(k2,m) =
Y1(k2,m)

Ĥ(k2,m)

(19)eNMSE =

√

E(|h− ĥ|2)

E(|h|2)

(20)rBER =
nE

nT

(21)RThroup =
K − NP

K
·
NB(1− rBER)

T

Table 1.   Simulation parameters of the OFDM system.

Parameters Specifications

System model SISO-OFDM

Channel distribution Rayleigh

Baseband symbol rate 7.56 MHz

Modulation mode QPSK/16QAM

Taps number 6

OFDM frames number 100

Subcarriers number 1024

CP length (subcarriers) 256

Table 2.   Power delay profile for CDT 1 and CDT 6 multipath fading channels.

Tap

CDT 1 CDT 6

Delay ( µs) Power (dB) Delay ( µs) Power (dB)

1 −1.8 −20 −18 −10

2 0 0 −1.8 −20

3 0.15 −20 0 0

4 1.8 −10 0.15 −20

5 5.7 −14 1.8 −10

6 18 −18 5.7 −14
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Determination of α.  According to (16), the maximum value of α is 1 and the minimum value is 0. When 
α = 1 , the final estimation of the channel is the LS estimation of the channel. When α = 0 , the signal experi-
ences all of the same changes in the channel. Obviously, when α = 1 or α = 0 , the error of channel estimation is 

(a)

(b)

Figure 3.   NMSE curves with α within 0 to 1: (a) CDT 1 and (b) CDT 6.
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maximum. With an interval of 0.2, the obtained NMSE simulation curves of α within 0 to 1 in CDT 1 and CDT 
6 channels are shown in Fig. 3a,b, respectively. Since the proposed method is applicable to a variety of wireless 
channels, the trend of the final simulation is similar. Therefore, the simulation results of CDT 1 channel are taken 
as an example to elaborate.

(a)

(b)

Figure 4.   NMSE curves with α within 0.8 to 1: (a) CDT 1 and (b) CDT 6.
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Figure 3a shows that the curves of α = 1 and α = 0 overlap and both have the worst performance, which also 
validates the previous inference. With the increase of α , the estimation of CSI is more accurate, and there is a 
minimum value of eNMSE when α is between 0.8 and 1. For this purpose, the NMSE simulation curves of α within 

(a)

(b)

Figure 5.   The NMSE performance in CDT 1 channel: (a) QPSK and (b) 16QAM.
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0.8 to 1 in CDT 1 and CDT 6 channels obtained with an interval of 0.05 are shown in Fig. 4a,b, respectively. The 
simulation result of the CDT 1 channel is still illustrated in detail as an example.

(a)

(b)

Figure 6.   The NMSE performance in CDT 6 channel: (a) QPSK and (b) 16QAM.
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In Fig. 4a, the curves at α = 0.9 and α = 0.95 are close to overlap. Local magnification shows that eNMSE is 
smaller at α = 0.9 . When the value of α is close to 0.9, the slight change in the value of α has no obvious influ-
ence on the accuracy of channel estimation, so the weighting factor α of the experiment is finally selected as 0.9.

Analysis of channel estimation accuracy.  At the transmitter, the comb pilot and SP schemes are 
adopted, respectively. At the receiver, LS method, multi-frame averaging method, and weighted averaging 

(a)

(b)

Figure 7.   The BER performance in CDT 1 channel: (a) QPSK and (b) 16QAM.
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(a)

(b)

Figure 8.   The BER performance in CDT 6 channel: (a) QPSK and (b) 16QAM.
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method are adopted to estimate the channel, respectively. In this paper, the proposed method is tested in 
quasi-static channels. To fully compare the channel estimation accuracy of different methods, the frame num-
bers of the multi-frame averaging method are taken as 2, 4, 6, and 100, respectively. Seven simulation curves 
are obtained, which are named Comb-LS, SP-LS, SP-2FA, SP-4FA, SP-6FA, SP-100FA, and SP-WA, respec-
tively.

NMSE.  The performance curves of NMSE in CDT 1 and CDT 6 channels are shown in Figs. 5 and 6, respec-
tively. Figures 5a and 6a are obtained under QPSK modulation, Figs. 5b and 6b are obtained under 16QAM 
modulation.

Figure 5a shows that the NMSE of all methods decreases with the increase of SNR, and the performance 
of SP-LS is the worst. This is because the power of AWGN has doubled after the data are preprocessed at the 
receiver. In the multi-frame averaging channel estimation, SP-100FA has better channel estimation accuracy 
than SP-6FA, SP-4FA, and SP-2FA, this is because the power of AWGN decreases with the increase of the average 
frame number. The reason that the channel estimation accuracy of the proposed SP-WA is better than that of 
SP-6FA, SP-4FA, and SP-2FA is that SP-WA considers the weights between two adjacent OFDM symbols instead 
of simply averaging. The reason why the channel estimation accuracy of SP-WA is inferior to that of SP-100FA 
is that SP-100FA averages all OFDM symbols. However, SP-100FA needs to cache a lot of data, whereas SP-WA 
does not. Figure 5b shows that the downward trend of the simulation curve obtained with 16QAM modulation 
is the same as that obtained with QPSK modulation, but the eNMSE is smaller.

Similar results can be obtained in Fig. 6a,b, but the Comb-LS flattens out when SNR is large, which is deter-
mined by the characteristics of the CDT 6 channel. However, SP scheme weakens the inherent influence of chan-
nel on signal when preprocessing at the receiver, so this phenomenon does not appear in the proposed method.

BER.  The performance curves of BER in CDT 1 and CDT 6 channels are shown in Figs. 7 and 8, respectively. 
Figures 7a and 8a are obtained under QPSK modulation, Figs. 7b and 8b are obtained under 16QAM modula-
tion.

In Fig. 7a, the BER of all methods shows a decrease with the increase of SNR. This is because with the increase 
of SNR, the interference of AWGN in the channel on the signal will be reduced, so the accuracy of channel 
estimation will be higher. Similar experimental results are also presented in Fig. 7b, which also proves that the 
proposed method is applicable to different modulation modes from the perspective of BER.

Figure 8a compared with Fig. 7a, Fig. 8b compared with Fig. 7b, the accuracy of channel estimation is obvi-
ously decreased, which is caused by the selectivity of the CDT 6 channel. To further demonstrate the effectiveness 
of the proposed method in BER, the specific SNR gains of SP-WA than that of other channel estimation methods 
at the BER of 10−3 are shown in Table 3.

Table 3 shows that, compared with SP-100FA, the SNR gains of SP-WA is less than 0, indicating that the 
channel estimation accuracy of SP-WA is worse, but SP-100FA does not improve much compared with SP-WA. 
Moreover, SP-WA does not need to cache a large amount of data, which is beneficial to practical applications. 
Except for the first row, the other values in Table 3 are positive, indicating that SP-WA has higher channel esti-
mation accuracy than SP-6FA, SP-4FA, Comb-LS, SP-2FA, and SP-LS, respectively. Comparing the SNR gains 
of different modulation mode in the same channel scenario, it can be seen that the proposed method is more 
suitable for high-order modulation.

Analysis of throughput.  To clarify that SP can improve spectral efficiency than comb pilot, the throughput 
is analyzed in this subsection. Figure 9 shows the throughput comparison between SP and comb pilot, in which 
Fig. 9a is under the QPSK modulation mode, and Fig. 9b is under the 16QAM modulation mode.

Figure 9a shows that, the larger the comb pilot interval is, the higher the throughput will be. The throughput of 
comb pilot will approach the throughput of SP with the gradual increase of comb pilot interval, but will not reach 
the throughput that SP can bring. The reason is that, with superimposed pilot, [(K − NP)/K] is equal to 1, whereas 
with comb pilot, [(K − NP)/K] can approach to 1 but not equal to 1. The same behavior is obtained in Fig. 9b. 
Comparing Fig. 9a,b, it can be concluded that higher throughput can be obtained in 16QAM than in QPSK.

Table 3.   The SNR gains of SP-WA than that of other methods at the BER of 10−3 (dB).

Methods

CDT1 CDT6

QPSK 16QAM QPSK 16QAM

SP-100FA − 0.26 − 0.82 − 0.35 − 0.56

SP-6FA 0.30 0.72 0.40 0.82

SP-4FA 0.74 1.60 0.88 1.61

Comb-LS 1.11 2.17 1.61 5.58

SP-2FA 2.06 3.67 2.07 3.20

SP-LS 4.11 6.24 3.89 5.31
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(a)

(b)

Figure 9.   Throughput comparison of SP and comb pilot with different pilot intervals: (a) QPSK and (b) 
16QAM.
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Conclusion
To improve the spectrum efficiency and the channel estimation accuracy of wireless communication systems, a 
weighted averaging channel estimation method based on superimposed pilot is proposed. Firstly, the superposi-
tion of data and pilot is adopted to improve the spectrum efficiency of the communication system. Then, the PDI 
is eliminated by the subtraction between received signals. Finally, the weighted averaging method is performed 
to improve the performance of removing AWGN.

Simulation results demonstrate that the proposed SP-WA method can significantly improve the channel 
estimation accuracy than SP-6FA, SP-4FA, Comb-LS, SP-2FA, and SP-LS, respectively. Although the channel 
estimation accuracy of SP-WA is inferior to that of SP-100FA, it does not need to cache a large amount of data 
for averaging. Therefore, the proposed SP-WA is more beneficial to practical applications. Compared with comb 
pilot, the superimposed pilot used in this paper can improve the throughput of the system and save frequency 
band resources. SP-WA can be used in different channel scenarios, and is more suitable for high-order modula-
tion, which provides convenience for improving data transmission rate.
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