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The computational age‐at‐death 
estimation from 3D surface models 
of the adult pubic symphysis using 
data mining methods
Anežka Kotěrová  1,4*, Michal Štepanovský  2,4, Zdeněk Buk  2, Jaroslav Brůžek  1, 
Nawaporn Techataweewan  3 & Jana Velemínská  1

Age-at-death estimation of adult skeletal remains is a key part of biological profile estimation, yet it 
remains problematic for several reasons. One of them may be the subjective nature of the evaluation 
of age-related changes, or the fact that the human eye is unable to detect all the relevant surface 
changes. We have several aims: (1) to validate already existing computer models for age estimation; 
(2) to propose our own expert system based on computational approaches to eliminate the factor 
of subjectivity and to use the full potential of surface changes on an articulation area; and (3) to 
determine what age range the pubic symphysis is useful for age estimation. A sample of 483 3D 
representations of the pubic symphyseal surfaces from the ossa coxae of adult individuals coming 
from four European (two from Portugal, one from Switzerland and Greece) and one Asian (Thailand) 
identified skeletal collections was used. A validation of published algorithms showed very high error 
in our dataset—the Mean Absolute Error (MAE) ranged from 16.2 and 25.1 years. Two completely new 
approaches were proposed in this paper: SASS (Simple Automated Symphyseal Surface-based) and 
AANNESS (Advanced Automated Neural Network-grounded Extended Symphyseal Surface-based), 
whose MAE values are 11.7 and 10.6 years, respectively. Lastly, it was demonstrated that our models 
could estimate the age-at-death using the pubic symphysis over the entire adult age range. The 
proposed models offer objective age estimates with low estimation error (compared to traditional 
visual methods) and are able to estimate age using the pubic symphysis across the entire adult age 
range.

Age‐at‐death estimation is an important indicator in forensic anthropology, especially in the identification of 
the biological profile of an individual1. The current situation with age estimation methods in adults has resulted 
in broad overlapping or open-ended age intervals, for which they are often criticized2–5. Traditional indicators 
of adult age still face lower classification accuracy, and reliable estimates are only available at three broad age 
intervals: young adults, mature adults, and the elderly6–11. It is also difficult to estimate the age of individuals 
older than 50–60 years.12.

The results of age estimation methodologies on different reference collections have shown a non-linear 
and inconsistent relationship between the bone metamorphosis of traditional indicators and the chronological 
age6. Some studies indicate that the limiting factor of age estimation can be the visual evaluation of age-related 
changes13.

The new focus of research in forensic anthropology and bioarchaeology is being shifted to sophisticated data 
mining (machine learning) methods, as the advanced mathematical approaches are continuing to evolve and 
are more available. These methods are used to discover and extract meaningful information from the provided 
dataset and to build a model based on that dataset. Together with medical imaging technologies and surface 
scanning technologies, they are penetrating the methods of the estimation of the biological profile (e.g.14–17), and 
age-at-death estimation is no exception8,18–20. Their great potential lies primarily in freeing the evaluator from 
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the subjective visual evaluation of degenerative age-related changes. Secondly, they can find previously unknown 
age-at-death-related information (features) and numerically quantify it. Thus, they provide repeatable results, 
which is not guaranteed if a given sample is evaluated by a human. The very first attempts to replace experience-
based visual approaches with the use of geometric morphometrics and other advanced mathematical approaches 
to quantify age-related surface changes date back to the 2010s21–26. Attention has been paid mainly to the pubic 
symphyseal surface22,23,25 or the auricular surface26. Biwasaka et al. computed mean curvatures (specifically mean 
curvatures of every 5 mm2) of the pubic symphyseal surface and examined the concavo-convex condition of the 
surface22. A mathematical approach analyzing five variables of the curvature variation of the pubic bone symphy-
seal surface and the auricular surface was proposed by Villa et al.26. These variables were: the arithmetic mean of 
the absolute values of curvature, the highest and the lowest ten percent of the curvature values, and the percent of 
the convex and of the flat surface (curvature values higher than zero and between − 0.01 and 0.01, respectively). 
Villa et al. achieved moderate correlations with the decades of the actual age-at-death, similar to those of tradi-
tional methods, and concluded that such an approach has potential. Among computational approaches, the one 
from Stoyanova et al.24,25, which is focused on pubic symphyseal 3D surface, is the most prominent and offers 
researchers the user-friendly forAge software. Three different shape scores and two combinations thereof are 
computed: SAH-Score proposed by Slice and Algee-Hewitt23, bending energy and the ventral curvature. However, 
their approach has several shortcomings; for example, the approach was proposed only for male individuals, or 
it is not able to distinguish younger from older individuals whose pubic symphyseal surfaces are both rugged 
but in different ways (irregular in older individuals). This results in the strong underestimation of not only older 
individuals25 but of the whole sample27. Validation studies on different population samples uniformly show low 
correlation with actual age and higher estimation error27–30 than the error in the original study (27–32 years), 
which was comparable to the error of one of the traditional visual methods25. Recently, Bravo Morante et al. 
presented a new quantitative method based on the bandpass filtering of partial warp bending energy31, which 
is a modification of one of the shape scores (bending energy) applied in a previous study25. They also restricted 
their sample to male individuals31.

The aim of this study is threefold: firstly, to validate the algorithms proposed in the study of Stoyanova et al. 
in a large multi-populational dataset; secondly, to propose our own computational approaches for adult age 
estimation for both sexes. The first one, namely the SASS (Simple Automated Symphyseal Surface-based) age 
estimation method, is based on explicit features and allows human interpretation of individual influences, con-
tributing to the estimation of age-at-death. The AANNESS (Advanced Automated Neural Network-grounded 
Extended Symphyseal Surface-based) age estimation method is similar to the black box (no explicit features) 
and does not allow human interpretation of individual influences. Lastly, the final aim of this study is to confirm 
or refute the generally accepted assumption that pubic symphysis could be used for age estimation only in a 
restricted age range.

Material
The 483 adult (18–92 years) ossa coxae of males and females used in this study came from 374 individuals of one 
Asian and four European identified osteological collections (104 individuals provided both left and right sides). 
Two osteological collections originated in Portugal and are housed at the University of Coimbra: the 21st Century 
Identified Skeletal Collection (CEI/XXI)32 and the Coimbra Identified Skeletal Collection (CISC)33. The third 
collection is the Heraklion Collection stored at the facilities of the Forensic Pathology Division of the Hellenic 
Ministry of Justice and Human Rights in Crete, Greece34,35. The fourth European collection is from Switzerland: 
the Simon Identified Skeletal Collection, housed at the Laboratory of Prehistoric Archaeology and Anthropology 
of the University of Geneva36. The Asian Khon Kaen University Collection (KKU) is stored at the Department of 
Anatomy in the Faculty of Medicine at this university37,38. Ethics approval was granted by the Ethics Committee 
in Human Research of Khon Kaen University (Reference number HE601315). Table 1 shows the numbers of ossa 
coxae used in our study from each osteological collection and Table 2 presents detailed descriptions of sample 
age distribution in six age categories, both for each sex separately.

Methods
Data acquisition.  All skeletal samples were digitized with the HP 3D Structured Light Scanner PRO S2 or 
S3 surface scanner and post-processed in the integrated software David LaserScanner v.3.10.4. The whole surface 
of os coxae was scanned but only the pubic symphyseal areas were used. For the first goal (i.e. application of algo-
rithms proposed in the Stoyanova study), only the articulation surface was isolated and exported in PLY (Poly-
gon File) format (see Fig. 1a). For the third goal (i.e. proposing our own approaches), we focused not only on the 
articulation surface, but also on the pubic symphyseal surfaces with an approximately 1 cm extended area (see 

Table 1.   Summary table of osteological collections and numbers of ossa coxae used in the present study for 
each sex separately. Portugal 1 = The 21st Century Identified Skeletal Collection (CEI/XXI); Portugal 2 = The 
Coimbra Identified Skeletal Collection (CISC).

Collection sex Portugal 1 Portugal 2 Switzerland Thailand Greece Total

Male 46 84 45 114 10 299

Female 33 58 21 67 5 184

Total 79 142 66 181 15 483
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Fig. 1b). These were saved in STL (Standard Triangle Language) format. In this format, the surface geometry of a 
3D object is represented as numerous small adjacent triangles. When both ossa coxae of the same individual were 
available for our analysis, they were treated individually for validation of Stoyanova et al. models and together in 
the case of the proposal of our own models. The right-sided isolated pubic symphyseal surfaces were mirrored 
to the left-side for easier processing. The filling of the holes was performed only for the AANNESS model. The 
isolation and mirroring were performed in Meshlab software39.

Evaluation of existing algorithms in our dataset.  Stoyanova et  al. presented in their study five 
age-estimation models and provided an open source software called forAGE (available at http://​morph​lab.​
sc.​fsu.​edu/). The first model is TPS/BE (Thin Plate Spline algorithm computing Bending Energy), the second 
is the SAH-Score (Slice and Algee-Hewitt) algorithm23, the third is VC (Ventral Curvature), and the last two 
are a combination of these (VC and SAH-Score, VC and TPS/BE). For detailed information, see the original 
publications24,25. First, we extracted only the articulation surface from all the scans (see e.g. Fig. 1a) and con-
verted it into PLY polygon file format. Then, we used the provided software to evaluate these algorithms in our 
dataset for each bone individually.

Our pre‑processing methods.  The input data, as it comes from the scanner, needs to be pre-processed 
before applying our age estimation methods. First, we need to standardize the position and orientation of all the 
scans, as shown in Fig. 1. Although the STL format is a very convenient input data format, the irregular distri-
bution of all the vertices in the 3D space prevents direct processing by the proposed automated age estimation 
methods (SASS and AANNESS, described below in this section). Therefore, we used two different projections of 
the surfaces, depending on the automated age estimation method that is then applied.

In the case of the SASS age estimation method, only the top view of the articulation surface of the pubic 
symphysis (without extended area) is projected into the x–y plane and approximated over the regular mesh, as 
is illustrated in Fig. 2.

In the case of the AANNESS age estimation method, the whole surface of the pubic symphysis (including 
extended area) is transformed into the new coordinate system first, and only then projected onto the plane and 

Table 2.   Age distribution of the sample; numbers of pelvic bones in each age category.

18–29 30–39 40–49 50–59 60–69 70 + 

Total(years)

Male 24 54 57 56 59 49 299

Mean age 25.88 34.74 44.95 54.82 64.17 76.80 52.43

Female 9 33 33 39 21 49 184

Mean age 23.78 35.24 45.15 54.26 63.86 80.51 55.81

Mean age of sample 53.72

Figure 1.   Example of the 3D scan of the pubic symphyseal surface of a 20-year old individual. The Cartesian 
coordinate system is set in a way that the x-axis defines the dimension with the largest distance/length, the x–y 
plane projects the articular surface of the bone, so the z-axis defines the variance of the articular surface. (a) 3D 
scan of the articulation surface only; (b) 3D scan with an extended area.

http://morphlab.sc.fsu.edu/
http://morphlab.sc.fsu.edu/
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approximated over the regular mesh in way that is similar to the SASS age estimation method. This transforma-
tion allows us to easily explore not only the articulation surface of the pubic symphysis, but also the extended area 
covering the side walls of the pubic symphysis. The transformation is described in detail in Buk et al.40. Figure 3 
shows an example of the symphyseal surface from Fig. 1b in the new coordinate system.

Proposed age estimation methods.  SASS age estimation method.  The SASS age estimation method 
extracts several features from the articulation surface of the pubic symphysis (i.e. without the extended area 
covering the side walls of the pubic symphysis); based on these features, it estimates the age of the individual 
by using multi-linear regression. We considered various features, such as the mean surface curvature, mean 
profile height, the porosity, etc.; however, by using a “greedy” selection algorithm with the Akaike information 
metric implemented in Weka41, we selected the following six features for the SASS method: (1) Dirichlet normal 
energy (more specifically, standard deviation of Dirichlet local energy values), (2) surface curvature (more spe-
cifically, standard deviation of local curvature values), (3) the total number of detected ellipses, (4) the number 
of horizontally oriented detected ellipses, (5) the number of vertically oriented detected ellipses, and finally, (6) 
the number of holes in the surface scan. We used the ariaDNE algorithm42 implemented in Matlab (available 
at https://​github.​com/​sshan​shans/​ariaD​NE_​code) to evaluate Dirichlet normal energy and surface curvature. 
Both Dirichlet normal energy and surface curvature were evaluated over the whole articulation surface by using 
the surface topology (triangular mesh of the articulation surface only and in the resolution as it comes from the 
3D scanner). Figure 4a shows an example of Dirichlet normal energy distribution over the symphyseal surface 
from Fig. 1a). For ellipse detection, we used regular mesh with a grid size of 0.1 × 0.1 mm (see Sect. 3.3, Fig. 2 
for instance) and developed our own approach for surface segmentation (based on the local discrepancies of the 
profile height), allowing us to easily identify disjointed bulging regions. Each such region is approximated with 
a single ellipse. The ellipse orientation gives us the orientation of the underlying region. Figure 4b) shows an 
example of detected ellipses over the entire surface. In this case, 39 ellipses are detected in total. The majority of 
these ellipses are vertically oriented. To decide whether the detected ellipse is considered a horizontal or vertical 
one, we use not only its orientation, but also the major axis length, the eccentricity, and its size, i.e. omitting all 
circular-like and very small ellipses. The ellipse is considered to be circular-like if the ellipse eccentricity is less 
than 0.8. The ellipse is considered to be small if the major axis length is less than 3 mm or if the ellipse area is 
less than 1.5 mm2. Moreover, all ellipses with “uncertain” orientation (about 45°) were also omitted. In this case 
(shown in Fig. 4b), 13 ellipses are considered as vertically oriented, whereas only 3 ellipses are considered as 

Figure 2.   Top view on the articulation surface of the pubic symphysis. (a) Irregular triangulation-based surface 
(triangle edges are not shown); (b) articulation surface approximated over regular mesh (individual “pixels” are 
coloured according to the actual z-value). The actual grid size used for the SASS method is set to 0.1 mm, which 
is five times smaller compared to this illustration. This provides sufficient resolution for further processing.

Figure 3.   Symphyseal surface from Fig. 1b) in the proposed coordinate system. (a) 3D view of the symphyseal 
surface after the transformation. (b) Top view of the symphyseal surface after the transformation. (c) The 
grayscale image generated from the projection of transformed data into the regular mesh.

https://github.com/sshanshans/ariaDNE_code
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horizontally oriented. The remaining ellipses (39 − 13 − 3 = 23) are considered circular-like, very small or with 
uncertain orientation.

The SASS age estimation method uses the following equation to estimate the age-at-death of the individual:

where x1, x2,… x6 are explanatory variables (features), a1, a2,… a6 are slope coefficients corresponding to each 
explanatory variable, and K is the offset. In our case, x1 is the standard deviation of Dirichlet local energy, x2 is 
the standard deviation of local curvature, x3 is the total number of detected ellipses, x4 is the number of hori-
zontal ellipses, x5 is the number of vertical ellipses, and x6 is the number of holes in the surface (e.g. due to the 
bone porosity). As is mentioned above, these features x1–x5 were selected from a larger set of potential features 
by the greedy selection algorithm with the Akaike information metric. Therefore, features with no additional 
benefit or with little age-related information were eliminated. Features x1, x2 and x3 represent the overall sur-
face complexity with no orientation-related information. Although all of these three features represent surface 
complexity, each captures a different aspect of surface complexity; therefore, their combination contributes to 
increasing the robustness of the model. Features x4 and x5 provide additional information about the orientation 
of the dominant shapes of the surface.

AANNESS age estimation method.  The AANNESS age estimation method uses not only the articulation sur-
face of the pubic symphysis, but also its side walls, so the surface is extended about 1 cm in each direction. This 
could potentially provide additional age-related information. The core of the AANNESS age estimation model 
is a convolutional neural network trained to automatically extract the features from the input images. This con-
trasts with the SASS method, which uses explicitly defined features.

The convolutional part of the neural network is followed by a densely connected feed-forward neural net-
work which is trained to map the features to the age. Both parts are trained together, which is one of the greatest 
benefits of such a machine-learning approach: we can train the whole system by using the dataset with images 
(inputs) and ages (outputs). We call this neural network an NN-based (Neural Network-based) estimator—see 
Fig. 5. When applied to the real bone, we typically use multiple projections of the bone based on its 3D scan. 
The same NN-based estimator is applied on the particular projection and the results are aggregated to obtain the 
final age estimation. We have experimented with various aggregation functions like mean, median, mean and 
median with variance-based outliers removal with no significant difference. In this paper, we are presenting the 

(1)Ageestimated = a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + K,

Figure 4.   Examples illustrating the feature extraction used in the SASS method. (a) Top view of the Dirichlet 
normal energy distribution over the symphyseal surface. The yellow colour indicates a higher value of the 
Dirichlet normal energy. The standard deviation of the Dirichlet normal energy computed over the entire 
surface represents a single feature. (b) Detected ellipses over the surface. The yellow colour indicates the highest 
areas of the scan. The ellipse major axis corresponds to the dominant orientation of the underlying area. The 
total number of detected ellipses and the number of ellipses with certain orientation (horizontal, vertical) 
represent other extracted features.

Figure 5.   Principle of age estimation for a single individual. There is a single 3D scan for which we build 
multiple projections (41 in this case). By using the NN-based estimator for each of the projections, we obtain 
multiple age estimations that are finally aggregated to gain the final estimated age. In this paper, we are 
presenting the results using the mean aggregation function.
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results using the mean aggregation function. The number of projections is arbitrary—the model is not limited 
to any specific number. In our experiments, we used 41 projections.

The structure of the whole estimation process for a single individual is shown in Figs. 5 and 6. Figure 7 shows a 
visualisation of selected layers in the neural network as a response to an input image. We can see how the network 
can internally represent the patterns and features. More technical details can be found in the related paper40.

Evaluation of the accuracy of individual models.  In order to evaluate the accuracy of a given model 
and compare it with other models, it is necessary to choose some metrics. For this purpose, we chose Mean 
Absolute Error (MAE) defined as:

Mean Bias Error (MBE) defined as:

and Root Mean Squared Error (RMSE) defined as:

where n is the sample size, yi is the estimated age and ŷi is the actual age. When validating the algorithms pro-
posed by Stoyanova et al. (Sect. 4.1), our entire dataset is directly used as the test set. On the other hand, when 

MAE =
1

n

∑n
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Figure 6.   NN-based estimator. The image shows a neural network structure used to estimate age based on the 
input image. The network consists of multiple layers, where the convolutional layers are mainly responsible for 
handling the low-level patterns in the image, feature extraction and dimension reduction. The top layers (18–20) 
are responsible for building high-level relations among the features.
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evaluating the SASS and AANNESS methods, fivefold cross-validation is used. This means that the dataset is 
randomly partitioned into 5 equal sized disjointed subsamples, from which 4 are used to train the model and 1 
is used to validate the model. This process is repeated until each of the 5 subsamples is used exactly once as the 
validation set.

Ethics declarations.  Ethics approval was granted by the Ethics Committee in Human Research of Khon 
Kaen University (Reference number HE601315).

Results
For the whole sample of the 483 adult (18–92 years) ossa coxae of 374 males and females belonging to one Asian 
and four European identified osteological collections, we computed the accuracies according to the estimation 
models. These accuracies of individual models (presented in Table 3) are expressed by MAE, MBE and RMSE. 
Moreover, we decided to add two very naive models. The model denoted as “Random 18–92” estimates the 
age-at-death randomly within the interval of 18–92 years with uniform distribution. The results of MAE, MBE 
and RMSE for this model were 22.0, 0.8 and 27.4 years, respectively. The model denoted as “Constant 54.1” 
estimates the age-at-death as 54.1 years, which represents the mean age of all individuals. The values of MAE, 
MBE and RMSE for the Constant model were 14.1, 0.0 and 17.0 years, respectively. Although there is almost no 
age-at-death estimation power in these two models, they are useful for determining a baseline performance as 
a benchmark for other methods.

Figure 7.   An example of a 72-year-old individual (predicted age = 71.6) evaluation. Even though we can see 
almost no details in the input image, the model can identify vertical (in this orientation) structures, which seems 
to be key for age identification.

Table 3.   Regression accuracy of various models. MAE mean absolute error, MBE mean bias error, RMSE root 
mean squared error, TPS/BE thin plate spline/bending energy, SAH slice and Algee-Hewitt score, VC ventral 
curvature, SASS Simple Automated Symphyseal Surface-based age estimation method, AANNESS Advanced 
Automated Neural Network-grounded Extended Symphyseal Surface-based age estimation method. When 
both right and left symphyses from a given individual are present, the estimated age is computed as the average 
from both bones. SASS and AANNESS are evaluated using fivefold cross-validation. a Baseline models. b Models 
by Stoyanova et al. 25. c Proposed models by this study.

Regression model

Entire dataset (18–92 years)

MAE MBE RMSE

Random 18–92a 22.0 0.8 27.4

Constant 54.1 (mean age)a 14.1 0.0 17.0

TPS/BEb 25.1 − 24.6 30.7

SAHb 21.4 − 20.2 27.2

VCb 16.2 − 6.6 20.6

VC + SAHb 19.2 − 16.8 24.8

VC + TPS/BEb 20.8 − 19.0 26.6

SASS (proposed #1)c 11.7 0.1 14.3

AANNESS (proposed #2)c 10.6 0.0 12.9
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Validation of algorithms proposed by Stoyanova et al.25.  The results of the reached accuracies of the 
Stoyanova et al. models25 (denoted as “TPS/BE”, “SAH”, “VC”, “VC + SAH”, “VC + TPS/BE”) applied on our data-
set are presented in Table 3. The MAE values ranged between 16.2 (VC) and 25.1 (TPS/BE) years where accuracy 
of the TPS/BE model was even worse than random estimation (22.0 years). The SAH model (MAE 21.4 years) 
was similarly unsuccessful. The values of MBE reached − 6.6 years at the minimum (VC) and 24.6 years at the 
maximum (TPS/BE) and shows strong underestimation of true age by the Stoyanova models. The results of 
RMSE were between 20.6 (VC) and 30.7 (TPS/BE) years, which is worse than or very close to random estimation 
(27.4 years).

Results of the proposed computational approaches (SASS and AANNESS).  We proposed two 
approaches (SASS and AANNESS) for adult age-at-death estimation based on our dataset. The SASS method 
is based on multi-linear regression. The coefficients obtained for this model are presented in Table 4. These 
coefficients in combination with extracted features (Dirichlet normal energy, surface curvature, the total num-
ber of detected ellipses, the number of horizontally oriented detected ellipses, the number of vertically ori-
ented detected ellipses, and the number of holes in the surface scan) allow for the age-at-death estimation when 
applied into the Eq. (1)—see section “Methods”.

In the case of the SASS method, the MAE, MBE and RMSE values were 11.7, 0.1 and 14.3 years, respectively. 
For the AANNESS method, the results were 10.6, 0.0 and 12.9 years, respectively. The results are presented in 
Table 3.

Validity of models and their relevance for age estimation.  In order to show whether the compared 
models evince some systematic error, or whether certain age intervals show some anomalies in age prediction, 
we generated the graphs for each compared model (Random, Constant, original models of Stoyanova et al. and 
our two new models). They are presented in Fig. 8. Graphical representations show the variation of the age esti-
mations per one-year age intervals for each age class. The conventional box plot is used to visualise the variation 
of age estimations for a particular age.

It could be seen that the models of Stoyanova25 applied in our dataset strongly underestimate the older indi-
viduals who are over approximately 50–60 years (with the exception of the VC model). We can interpret this to 
mean that these models are unable to estimate an individual’s age above 50–60. Even though the models proposed 
in the present study, SASS and AANNESS, slightly overestimate the age of younger individuals and underestimate 
the age of older individuals, they are much closer to the ideal estimate (they are closer to the dashed line). This 
also demonstrates that both our models are able to estimate the age-at-death using the pubic symphysis across 
the entire adult age range, in contrast to our assumptions and observations of several researchers2,8,43,44.

Discussion and perspectives
The pubic symphysis is by far the most employed skeletal indicator for age estimation of adults when it comes 
to non-destructive visual methods2,31,45,46. However, age estimation based on visual methods is still problematic, 
characterized by a strong subjectivity of evaluation and a high estimation error in the order of decades, espe-
cially with increasing age5,47,48. The symphysis, therefore, later became the subject of research for computational 
approaches22,23,25,31,49, as it is believed it reduces the subjectivity and potentially offers a new insight into aging 
patterns, especially those that are normally unseen by the human eye. Not only could the computational methods 
detect extremely detailed changes in the structures and automatically extract features, but these methods can 
also discover complex relations among particular features, which is almost impossible even for a human expert.

Validation of existing algorithms (proposed by Stoyanova et al.25).  The most prominent compu-
tational approach for estimating adult age based on the analysis of surface changes in 3D models is the approach 
of Stoyanova et al. (2017)25. We applied their five models on our dataset and found significant discrepancies 
between the MAE (and RMSE and MBE as well) presented by Stoyanova et al. and the MAE computed on our 
dataset (e.g. 10.79 vs. 19.5 years for the VC + SAH model). As can be seen in Fig. 8, all the models by Stoy-
anova et al., except the VC model, very rarely estimate the age above 50–60 years (for our dataset). Even though 
the approach of Stoyanova et al. is relatively new, there are several validation studies on different population 
samples27–29,50. Kotěrová et al.27 conducted a validation on a pooled European sample and later on a Thai sample 
(unpublished30). Samples used in27 and30 are in fact small sub-samples of the significantly extended dataset used 
in this present study. Johnson and Bethard29 tested the Stoyanova models on a Portuguese sample, Joubert et al.28 
on a sample of South Africans of European ancestry, and Figueroa-Soto et al. on skeletal samples from Latin 
America 50. Their results are quite consistent with those of the present study. In the original study, the accuracy 
of the estimated age (2 × RMSE value) was compared to the widely used method of Suchey and Brooks2. Stoy-
anova reached intervals that ranged from 27 to 32 years, which is more or less comparable to the error of Suchey 
and Brooks’ traditional method. However, in the present study, the interval for the models by Stoyanova et al. is 
41–61 years. In our previous study27 based on the sample of 96 individuals with a mean age of 45 years, it was 

Table 4.   Computed coefficients for SASS method. a1–6 coefficients; K offset.

Coefficient a1 a2 a3 a4 a5 a6 K

Value 3,118,517.53 191.36 0.10 1.03 − 3.18 0.14 17.85
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36–44 years27. Slightly better results were found in the Thai population, with the age interval ranging from 30 
to 4030. Johnson and Bethard29 reported very broad age intervals, ranging from 60 to 82 years. Joubert et al.28 
also reported very low correlations with true age (RMSE values were not provided). Lastly, Figueroa-Soto et al.50 
observed only a slightly larger magnitude of error (RMSE was also not provided). Figueroa-Soto et al. moreover 
proposed population-specific regression models; however, they found that they do not improve age estimates in 
their sample50.

We believe that such discrepancies between the results reported by Stoyanova et al. and those in this present 
study are primarily given by the unbalanced age distribution of the dataset used in Stoyanova et al. In fact, their 
dataset consists of 93 individuals, of which 48 (52%) are from the very narrow age interval of 16–39 years. Only 
17 individuals (18%) from their dataset are older than 60 years. Apart from the unbalanced age distribution of 
the original Stoyanova sample, the size and composition of the test samples must also be taken into account. 
For example, Johnson and Bethard29 and Joubert et al.28 also used strongly unbalanced samples: they were 
under-represented by younger individuals. In terms of sample size, Figueroa-Soto et al. validated the method 
on a sample of 81 individuals. Lastly, Kotěrová et al.27 divided their dataset into samples of up to and includ-
ing 40 years (n = 41) and those over 40 years (n = 55). Given that the second group (over 40 years) represents a 
wider age interval (20 and 42 years, respectively), the higher number of individuals in this subgroup is justified 
and convenient. The dataset used in the present study is almost uniformly distributed across all age intervals, as 
presented in Table 2, except the age interval of 18–29 years.

Figure 8.   Visual comparison of all evaluated models from Table 4. Each image shows a variation of age 
estimations for a particular age for a given model. More specifically, for a certain age, the conventional box plot 
is used, i.e. it shows the minimum, maximum, q1, q2 (median) and q3 quartiles. The dark brown central line 
connects the median values. The black dashed line represents an ideal estimation, i.e. the closer to this line the 
model is, the better.
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Another reason for such poor results when the models of Stoyanova were applied to our or other validation 
datasets could partially be seen in the population specificity27,28,50 and different aging rates between populations, 
since their models were proposed solely on American samples. Several studies reported population specificity 
when evaluating the performance of the traditional Suchey-Brooks method48,51–53, while in some others it was 
not demonstrated54,55. The population-specific models of Stoyanova’s computational method adapted for the 
Latin population did not improve the age estimates. The authors concluded that the current computational 
framework is an option for estimating age-at-death on their samples from Latin America50. However, to over-
come the issue of population specificity and especially at this time, characterised by high levels of globalisation 
and migration56–58 resulting in the huge diversity of current populations, several researchers hold the opinion 
(including us) that it is necessary to use large samples consisting of several populations, such as in the following 
publications6,8,13, or more populations from eco-geographically close areas59. Such datasets cover much more 
variability of aging processes and could provide the basis for an accurate and reliable skeletal age estimation tool 
that is low in population sensitivity.

It should also be noted that the models of Stoyanova are restricted to male individuals only. Kotěrová et al., 
Kotěrová and Figueroa-Soto et al.50 also included male individuals only27,30, while Joubert et al.28, Johnson and 
Bethard29 and the present study incorporated both sexes. As the results of all the validation studies are similar, 
the inclusion of female individuals did not appear to affect the performance of the method. After all, Stoyanova 
et al. reported the successful application of their method to female individuals in a conference paper60.

Lastly, the comparability of 3D data acquisition and manipulation (isolation of the pubic symphyseal surface) 
also needs to be discussed as a possible source of error. Since different types of scanning devices and technologies 
(laser and structured light) have different resolutions and capture different levels of detail on the scanned surface 
(e.g. Structured Light Technology, which was used in this and our previous studies27,30, is known for providing 
higher resolution), it could be assumed that this will also affect subsequent analyses (e.g. results of the approach 
of Stoyanova et al.). This issue was already raised, for example, by Villa et al.61, Joubert et al.28 and in our previous 
study62 where different scanning technologies (laser vs. structured light) were compared. Among other things, 
we addressed this issue specifically for the method of Stoyanova and our results showed that various scanning 
technology does not affect age estimation, at least in the case of this particular method62. Another source of error, 
and therefore of differences in the performance of the age estimates, is the fact that 3D symphyseal surfaces have 
to be manually isolated before entering the analysis. As there are no clear descriptive instructions in the original 
study24,25 for the isolation of the symphyseal surface, Joubert et al.28 proposed a standardized protocol for this 
manual step. The authors of the Stoyanova method, however, confirmed strong repeatability and reproducibility 
among researchers during the isolation process28,63.

In summary, we see the following shortcomings in the Stoyanova et al. approach25, which we intended to 
overcome by proposing our own computational approach: (1) the models of Stoyanova et al. were designed for 
male individuals only, (2) they were computed in a small, unbalanced dataset from only one population, (3) 
the presented estimation errors are no better than those provided by traditional method errors, thus they are 
comparable.

Advantage of the proposed computational approaches (SASS and AANNESS).  The main objec-
tive of the present study was to design our own model for estimating the age of adult individuals based on a 3D 
representation of the pubic symphyseal surface. The present article presents two models, SASS and AANNESS, 
which provide the deep analysis of a given 3D surface where the former extracts several features and uses multi-
linear regression while the latter uses a neural network to estimate the age-at-death.

The proposed models are trained on a large multi-population dataset consisting of 483 bones coming from 
374 adult individuals (both males and females). The size of the dataset and its composition (both sexes and dif-
ferent populations) allow for the more precise capturing of various age-related characteristics. The SASS model 
is designed in a way that makes it easy to interpret by researchers. The SASS model combines several features, 
each of which have certain age estimation capabilities. For instance, the number of holes in the scanned surface 
(i.e. the porosity) shows a certain correlation with the actual age-at-death of a given individual. The multi-linear 
regression takes the advantage of combining all such features together to make a more consistent age-at-death 
estimation, thus reducing the estimation error significantly. On the other hand, the AANNESS model relies on 
neural networks which are very hard to interpret by researchers. However, the AANNESS model extracts all the 
features automatically and provides better results compared to SASS. As the presented results (Table 4) indicate, 
our models outperform those that were developed by Stoyanova et al. in terms of all MAE, MBE and RMSE when 
applied on our dataset. When comparing the MAE, MBE and RMSE values computed in the original study25, the 
errors of our models may seem very similar. The MAE in their study (presented as inaccuracy) ranged between 
10.8 and 12.9 years, while our models showed a MAE of 10.6 (AANNESS) and 11.7 (SASS) years. Stoyanova 
et al. reported the MBE (presented as a bias) from − 2.73 to − 1.82 years, which indicates a mild underestimation 
of the true age, while our models showed slightly more accurate values of MBE, i.e. 0.1 (SASS) and 0.0 years 
(AANNESS). Lastly, the RMSE of the Stoyanova models in their study were between 13.68 and 16.55 years, while 
our models in our study showed RMSE 12.9 and 14.3 years (AANNESS and SASS, respectively). However, as 
highlighted above, the fundamental differences regarding the input dataset (ours vs. the original study of Stoy-
anova et al.) must be kept in mind: that is, specifically, a significantly larger and more widely distributed dataset, 
consisting of both male and female individuals from various populations was used in this study.

Apart from the approach of Stoyanova et al., which offers three rather simple shape scores (bending energy, 
the SAH-Score and ventral curvature)23–25, there is the recent quantitative method of Bravo Morante et al.31. They 
draw attention to the limits of use, especially bending energy, which may result in high values in older individuals 
with advanced degeneration of the articular surface, thus underestimating their age. Therefore, they proposed a 
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method based on bandpass filtering partial warp bending energy on the symphysis forms31 in order to improve 
the approach of Stoyanova et al.25. However, this paper has so far only been of an exploratory nature, as it is based 
on male individuals of one population only and does not provide a user-friendly application. The authors also 
conclude that the combination with other indicators may yield better age estimation results.

Validity of the proposed models and their relevance for age estimation.  The commonly accepted 
and used metrics13,19,50 of MAE, MBE and RMSE were used to evaluate the performance (regression accuracy) of 
all the tested and newly proposed models. All of them were used in the original study25, thus comparison with 
our results is easier. MAE (inaccuracy) measures the average magnitude of error without considering their direc-
tion, while MBE (bias) gives information about error direction, i.e. if the true age is under- or over-estimated. 
The RMSE gives a higher weight to large errors compared to MAE. This means the RMSE is preferred when large 
errors are particularly undesirable. Thus, RMSE is suitable for evaluating overall performance or for comparing 
the performance of different estimation methods, whereas MAE is more natural for researchers because of its 
linearity64.

Our models can estimate the age-at-death of an adult individual over the entire age interval (in our case 
between 19 and 92 years)—see Fig. 8. This contrasts with many authors31,43,44,49,50,65, according to which the 
pubic symphysis completes its age-related degenerative changes and then is not considered appropriate for age 
estimation of individuals over 40 or 50 years. In this respect, our results are unexpected. We believe this could be 
due to the use of the advanced computational approaches and data mining techniques applied on surface data. 
Mere visual assessment of skeletal indicators may not be sufficient to detect all the age-related surface changes. 
Nevertheless, more validation of SASS and AANNESS models in different samples is needed.

Even though our results suggest that the pubic symphysis may show age-related changes through the entire 
adult period, we advocate for the use of multiple skeletal indicators to estimate the age-at-death of adult skeletal 
remains. This is currently recommended as different skeletal indicators performed the best in the particular 
adult age range43,49,66–68.

Several new age-at-death techniques have been proposed in order to overcome the issue of subjectivity, 
which is one of the main imperfections of the traditional age estimation approaches regardless of the method 
used, with different levels of success11,65,69. The authors of a recent preliminary study11, for example, set out on 
the path of reducing subjectivity by means of the binary scoring of visually assessed signs on a pubic symphysis. 
The performance of the scoring system was evaluated by machine learning methods11. Based on this approach, 
the most reliable classification is possible when divided into three age intervals (≤ 29, 30–69, ≥ 70 years); fur-
thermore, older individuals are more reliably classified using intervals of < 80 years and ≥ 80 years. The results 
of the present study, as well as some other computational studies, show that fully quantitative approaches that 
analyze three-dimensional surface data may be the right solution. They may considerably reduce or eliminate 
the subjectivity of the traditional gross morphological assessment, which is commonly associated with visual 
evaluation, and also reduce the requirements for the evaluator’s experience26,31,49,50,63. They may also solve the 
low degree of standardization across application and practitioners50.

Perspectives and future direction of research.  Because quantitative computational methods have the 
potential to surpass traditional visual methods, due to the increased objectivity of evaluation and the possibil-
ity to detect age-related surface changes normally undetectable by the human eye, we will not limit our models 
to the surface of pubic symphysis. Other articulation surfaces such as the auricular surface of the ilium and the 
acetabulum should also be analyzed. The final output should be fully computational and should include more 
skeletal indicators, at the same time being user-friendly, i.e. an easy-to-use application.

Conclusion
This paper presents validation results in a large dataset of a recent quantitative aging method 25 based on the 
pubic symphyseal surface. It was shown that the tested algorithms are not appropriate (MAE ranged between 19.2 
and 25.1 years) for adult age estimation in our multi-populational sample containing both sexes. These results 
were considerably worse than the errors stated in the original study, which may be caused by several factors.

This study also aimed to develop computational approaches that would overcome some of the main drawbacks 
of current adult aging methods. As a result, two aging models using data mining and machine learning methods 
were proposed: SASS and AANNESS. These models produce very low errors (11.7 and 10.6 years, respectively) 
compared to traditional visual methods and were developed for both sexes in a multi-populational sample of 
individuals aged from 18 to 92 years. Surprisingly, our results also suggest that the symphyseal surface shows 
age-related changes across the entire adult age range, contrary to the findings of several researchers. A possible 
reason could be seen in the use of sophisticated data mining and machine learning tools in combination with 
3D surface data.

For these reasons, the potential for further evolving our approaches is clear. Another intention is to include 
more skeletal indicators in one approach.

Data availability
The dataset included in this study is available from the corresponding author on reasonable request.
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